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ABSTRACT

Although stochastic gradient descent (SGD) method and its variants (e.g., stochas-
tic momentum methods, ADAGRAD) are algorithms of choice for solving non-
convex problems (especially deep learning), big gaps still remain between the the-
ory and the practice with many questions unresolved. For example, there is still
a lack of theories of convergence for SGD and its variants that use stagewise step
size and return an averaged solution in practice. In addition, theoretical insights
of why adaptive step size of ADAGRAD could improve non-adaptive step size
of SGD is still missing for non-convex optimization. This paper aims to address
these questions and fill the gap between theory and practice. We propose a uni-
versal stagewise optimization framework for a broad family of non-smooth non-
convex problems with the following key features: (i) at each stage any suitable
stochastic convex optimization algorithms (e.g., SGD or ADAGRAD) that return
an averaged solution can be employed for minimizing a regularized convex prob-
lem; (ii) the step size is decreased in a stagewise manner; (iii) an averaged solution
is returned as the final solution. Our theoretical results of stagewise ADAGRAD
exhibit its adaptive convergence, therefore shed insights on its faster convergence
than stagewise SGD for problems with slowly growing cumulative stochastic gra-
dients. To the best of our knowledge, this is the first work for addressing the
unresolved issues of existing theories mentioned earlier. Besides theoretical con-
tributions, our empirical studies show that our stagewise SGD and ADAGRAD
improve the generalization performance of existing variants/implementations of
SGD and ADAGRAD.

1 INTRODUCTION

Non-convex optimization has recently received increasing attention due to its popularity in emerging
machine learning tasks, particularly for learning deep neural networks. One of the keys to the
success of deep learning for big data problems is the employment of simple stochastic algorithms
such as SGD or ADAGRAD (Krizhevsky et al., 2012; Dean et al., 2012). Analysis of these stochastic
algorithms for non-convex optimization is an important and interesting research topic, which already
attracts much attention from the community of theoreticians (Ghadimi & Lan, 2013; 2016; Yang
et al., 2016; Davis & Drusvyatskiy, 2018b; Ward et al., 2018; Li & Orabona, 2018). However, one
issue that has been largely ignored in existing theoretical analysis is that the employed algorithms in
practice usually differ from their plain versions that are well understood in theory. Below, we will
discuss several important heuristics used in practice for training deep neural networks and the gap
between the practice and the theory to motivate this work.

First, a trick for setting the step size in training deep neural networks is to change it in a stagewise
manner from a large value to a small value, i.e., a constant step size is used in a stage for a number
of iterations and is decreased for the next stage (Krizhevsky et al., 2012; Ren et al., 2018). Although
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this trick has been adopted by most open-sourced libraries, e.g., Caffe (Jia et al., 2014), Tensor-
Flow (Abadi et al., 2015), Pytorch (Paszke et al., 2017), it still lacks theoretical analysis to date for
non-convex optimization. A related question that stands out is how and when to decrease the step
size. On standard benchmark datasets for academic use such as CIFAR-10, CIFAR-100 (Krizhevsky
et al.), people could follow the setting reported in previous studies to get a good result, which how-
ever might not work well for new datasets. Hence, a better solution to setting the stagewise step size
with insights from theory would be much preferred. However, in the existing literature of theory
for non-convex optimization (Ghadimi & Lan, 2013; Davis & Drusvyatskiy, 2018b), only strategies
based on an iteratively decreasing step size or a small constant step size have been well analyzed.
For example, the existing theory usually suggests an iteratively decreasing step size proportional to
1/
√
t at the t-th iteration or a small constant step size, e.g., proportional to ε2 with ε� 1 for finding

an ε-stationary solution whose gradient’s magnitude (in expectation) is small than ε.

Second, the averaging heuristic is usually used in practice, i.e., an averaged solution is returned
for prediction (Bottou, 2010), which could yield improved stability and generalization (Hardt et al.,
2016). However, existing theory for many stochastic non-convex optimization algorithms only pro-
vides guarantee on a uniformly sampled solution or a non-uniformly sampled solution with decreas-
ing probabilities for latest solutions (Ghadimi & Lan, 2013; Yang et al., 2016; Davis & Drusvyatskiy,
2018b). In particular, if an iteratively decreasing step size proportional to 1/

√
t at the t-th iteration

is employed, the convergence guarantee was provided for a random solution that is non-uniformly
selected from all iterates with a sampling probability proportional to 1/

√
t for the t-th iterate. This

means that the latest solution always has the smallest probability to be selected as the final solution,
which contradicts to the common wisdom. If a small constant step size is used, then usually a uni-
formly sampled solution is provided with convergence guarantee. However, both options are rarely
used in practice and cannot justify the heuristic that returns the last solution.

A third common approach in practice is to use adaptive coordinate-wise step size of ADA-
GRAD (Dean et al., 2012). Although adaptive step size has been well analyzed for convex problems
(e.g., why and when it could yield faster convergence than SGD) (Duchi et al., 2011; Chen et al.,
2018b), it still remains an mystery for non-convex optimization with missing insights from theory.
Several recent studies have attempted to analyze ADAGRAD for non-convex problems (Ward et al.,
2018; Li & Orabona, 2018; Chen et al., 2018a; Zou & Shen, 2018). Nonetheless, none of them are
able to exhibit the adaptive convergence of ADAGRAD to data as in the convex case and its potential
advantage over SGD for non-convex problems.

To overcome the shortcomings of existing theories for stochastic non-convex optimization, this paper
analyzes new algorithms that employ some or all of these commonly used heuristics in a systematic
framework, aiming to fill the gap between theory and practice. The main results and contributions
are summarized below:

• We propose a universal stagewise optimization framework for solving a family of non-convex
problems, i.e., weakly convex problems, which is broader than smooth non-convex problems and
includes some non-smooth non-convex problems. At each stage, any suitable stochastic convex
optimization algorithms (e.g., SGD, ADAGRAD) with a constant step size parameter can be em-
ployed for optimizing a regularized convex problem with a number of iterations, which usually
return an averaged solution. The step size parameter is decreased in a stagewise manner following
a polynomial decaying scheme.

• We analyze several variants of the proposed framework by employing different basic algorithms,
including SGD, ADAGRAD, stochastic heavy-ball (SHB) method, and stochastic Nesterov’s ac-
celerated gradient (SNAG) method. We prove the convergence of their stagewise versions for an
averaged solution that is randomly selected from all stagewise averaged solutions.

• To justify a heuristic approach that returns the last averaged solution in stagewise learning, we
present and analyze a non-uniform sampling strategy over stagewise averaged solutions with sam-
pling probabilities increasing as the stage number.

• Regarding the convergence results, for stagewise SGD, SHB, SNAG, we establish the same order
of iteration complexity for finding a nearly stationary point as the existing theories of their non-
stagewise variants. For stagewise ADAGRAD, we establish an adaptive convergence for finding a
nearly stationary point, which is provably better than (stagewise) SGD, SHB, and SNAG when the
cumulative growth of stochastic gradient is slow.
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• Besides theoretical contributions, we also empirically verify the effectiveness of the proposed
stagewise algorithms. In particular, our empirical studies show that (i) the stagewise ADAGRAD
dramatically improves the generalization performance of existing variants of ADAGRAD, (ii)
stagewise SGD, SHB, SNAG also outperform their plain variants with an iteratively decreasing
step size; (iii) the proposed stagewise algorithms achieve similar if not better generalization per-
formance than their heuristic variants implemented in existing libraries on standard benchmark
datasets.

2 RELATED WORK

SGD for unconstrained smooth non-convex problems was first analyzed by Ghadimi & Lan (2013),
who established an O(1/ε4) iteration complexity for finding an ε-stationary point x in expectation
satisfying E[‖∇f(x)‖] ≤ ε, where f(·) denotes the objective function. As mentioned earlier, the
returned solution is either a uniformly sampled solution or a non-uniformly sampled one with sam-
pling probabilities proportional to the decreasing step size. Similar results were established for the
stochastic momentum variants of SGD (i.e., SHB, SNAG) by Yang et al. (2016); Ghadimi & Lan
(2016). Recently, SGD was also analyzed for (constrained) weakly convex problems, whose objec-
tive function is non-convex and not necessarily smooth, by Davis & Drusvyatskiy (2018b). How-
ever, none of these studies provide results for algorithms that return an averaged solution, and these
analyzed algorithms differ significantly from that used in practice for achiving the state-of-the-art
results (Krizhevsky et al., 2012; Ren et al., 2018; Loshchilov & Hutter, 2017).

Although adaptive variants of SGD, e.g., ADAGRAD (Duchi et al., 2011), ADAM (Kingma & Ba,
2015; Reddi et al., 2018), were widely used for training deep neural networks, there are few stud-
ies on theoretical analysis of these algorithms for non-convex problems. Several recent studies
attempted to analyze ADAGRAD for non-convex problems (Ward et al., 2018; Li & Orabona, 2018;
Chen et al., 2018a; Zou & Shen, 2018). Although these studies have established an iteration com-
plexity of O(1/ε4) for different variants of ADAGRAD for finding an ε-stationary solution of a
stochastic non-convex optimization problem, none of them can exhibit the potential adaptive advan-
tage of ADAGRAD over SGD as in the convex case. Besides that, these studies also suffer from the
following shortcomings: (i) they all assume smoothness of the objective function, while we con-
sider non-smooth and non-convex problems; (ii) their convergence is provided on a solution with
minimum magnitude of gradient that is expensive to compute, though their results also imply a con-
vergence on a random solution selected from all iterates with decreasing sampling probabilities. In
contrast, these shortcomings do not exist in this paper. To the best of our knowledge, our result is the
first one that explicitly shows that coordinate-wise adaptive step size could yield faster convergence
than using non-adaptive step size for non-smooth non-convex problems, which is similar to that in
the convex case and was observed in practice for deep learning (Dean et al., 2012).

The proposed stagewise algorithm is similar to several existing algorithms in design (Xu et al.,
2017; Davis & Grimmer, 2017), which are originated from the proximal point algorithm (Rock-
afellar, 1976). I.e., at each stage a regularized convex subproblem is formed and then a stochastic
algorithm is employed for optimizing the regularized subproblem inexactly with a number of itera-
tions. Xu et al. (2017) used this idea for solving problems that satisfy a local error bound condition,
aiming to achieve faster convergence than vanilla SGD. Davis & Grimmer (2017) are probably the
first who analyzed this idea for solving non-smooth weakly convex problems. In these two pa-
pers SGD with decreasing step sizes for a strongly convex problem is employed at each stage for
solving the regularized subproblem. Our stagewise algorithm is developed following the similar
idea. The key differences from (Xu et al., 2017; Davis & Grimmer, 2017) are that (i) we focus on
non-convex problems instead of convex problems considered in (Xu et al., 2017); (ii) we analyze a
non-uniform sampling strategy with sampling probabilities increasing as the stage number to justify
a heuristic approach that uses the last averaged solution for prediction, unlike the uniform sampling
used in (Davis & Grimmer, 2017); (iii) we present a unified algorithmic framework and convergence
analysis, which enable one to employ any suitable stochastic convex optimization algorithms at each
stage. Importantly, it brings us several interesting variants including stagewise stochastic momentum
methods and stagewise ADAGRAD. Finally, we note that a similar idea that adds a strongly convex
term into the non-convex objective has been considered in several recent works (Allen-Zhu, 2017;
Lan & Yang, 2018; Carmon et al., 2016). However, the key difference between these works and the
present work is that they need to assume the objective function is smooth or has a smooth component.
In addition, Allen-Zhu (2017); Lan & Yang (2018) consider finite-sum problems, and Carmon et al.
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(2016) consider deterministic problems. In contrast, we consider more general stochastic problems
without assuming the objective function is smooth.

3 PRELIMINARIES

The problem of interest in this paper is:

min
x∈Ω

φ(x) = Eξ[φ(x; ξ)], (1)

where Ω ⊆ Rd is a closed convex set, ξ ∈ U is a random variable, φ(x) and φ(x; ξ) are non-convex
functions, with the basic assumptions on the problem given in Assumption 1.

To state the convergence property of an algorithm for solving the above problem. We need to in-
troduce some definitions. These definitions can be also found in related literature, e.g., Davis &
Grimmer (2017); Davis & Drusvyatskiy (2018b). In the sequel, we let ‖ · ‖ denote an Euclidean
norm, [S] = {1, . . . , S} denote a set, and δΩ(·) denote the indicator function of the set Ω.

Definition 1. (Fréchet subgradient) For a non-smooth and non-convex function f(·),

∂F f(x) = {v ∈ Rd|f(y) ≥ f(x) + v>(y − x) + o(‖y − x‖), ∀y ∈ Rd}

denotes the Fréchet subgradient of f .

Definition 2. (First-order stationarity) For problem (1), a point x ∈ Ω is a first-order stationary
point if 0 ∈ ∂F (φ + δΩ)(x), where δΩ denotes the indicator function of Ω. Moreover, a point x
is said to be ε-stationary if dist(0, ∂F (φ + δΩ)(x)) ≤ ε, where dist denotes the Euclidean distance
from a point to a set.

Definition 3. (Moreau Envelope and Proximal Mapping) For any function f and λ > 0, the follow-
ing function is called a Moreau envelope of f

fλ(x) = min
z
f(z) +

1

2λ
‖z− x‖2. (2)

Further, the optimal solution to the above problem denoted by

proxλf (x) = arg min
z
f(z) +

1

2λ
‖z− x‖2

is called a proximal mapping of f .

Definition 4. (Weakly convex) A function f is µ-weakly convex (µ > 0), if f(x) + µ
2 ‖x‖

2 is convex.

It is known that if f(x) is µ-weakly convex and γ < µ−1, then its Moreau envelope fγ(x) is
C1-smooth with the gradient given by (see e.g., Davis & Drusvyatskiy (2018b))

∇fγ(x) = γ−1(x− proxγf (x)).

The tool of Moreau envelope is introduced to measure the convergence for optimizing non-smooth
and non-convex functions. A small norm of ∇fγ(x) has an interpretation that x is close to a point
that is nearly stationary. In particular for any x ∈ Rd, let x̂ = proxγf (x), then we have (Davis &
Drusvyatskiy, 2018b)

f(x̂) ≤ f(x), ‖x− x̂‖ = γ‖∇fγ(x)‖, dist(0, ∂f(x̂)) ≤ ‖∇fγ(x)‖, (3)

where the first inequality follows from the definition of proxλf (x) such that f(x̂) + 1
2λ‖x̂− x‖2 ≤

f(x) (Please see Appendix H for a detailed proof of (3)). This means that a point x satisfying
‖∇fγ(x)‖ ≤ ε is close to a point in distance of O(ε) that is ε-stationary.

It is notable that for a non-smooth function f(·), there could exist a sequence of solutions {xk}
such that ∇fγ(xk) converges while dist(0, ∂f(xk)) may not converge (Drusvyatskiy & Paquette,
2018). A simple example is to consider minx∈R |x|. As long as x 6= 0, dist(0, ∂f(x)) = 1 6= 0 no
matter how close is x to the stationary point 0. To handle such a challenging issue for non-smooth
non-convex problems, we will follow existing works (Davis & Drusvyatskiy, 2018a; Drusvyatskiy
& Paquette, 2018; Davis & Grimmer, 2017) to prove the near stationarity in terms of ∇fγ(x).
In the case when f is smooth, ‖∇fγ(x)‖ is closely related to the magnitude of the gradient. In
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particular, let us define the projected gradient below, which is used as a criterion for non-convex
smooth optimization in the presence of constraints (Ghadimi & Lan, 2016; Allen-Zhu, 2017):

Gγ(x) =
1

γ
(x− proxγδΩ(x− γ∇f(x))). (4)

Note that the projected gradient becomes the normal gradient when the constraint x ∈ Ω is absent. It
was shown that when f(·) is smooth with L-Lipschitz continuous gradient (Drusvyatskiy & Lewis,
2016):

(1− Lγ)‖Gγ(x)‖ ≤ ‖∇fγ(x)‖ ≤ (1 + Lγ)‖Gγ(x)‖,∀x ∈ Ω. (5)

Thus, the near stationarity in terms of ∇fγ(x) implies the near stationarity in terms of Gγ(x) for a
smooth function f(·) for a properly chosen γ > 0 (e.g., γ = 1/(2L)). In this work, we define φγ(x)
as the Moreau envelope of φ(x) + δΩ(x) as in (2) with f(x) replaced by φ(x) + δΩ(x) and study
the convergence in terms of of∇φγ(x).

Now, we are ready to state the basic assumptions of the considered problem (1).
Assumption 1. (i) There is a measurable mapping g : Ω×U → R such that Eξ[g(x; ξ)] ∈ ∂Fφ(x)
for any x ∈ Ω; (ii) for any x ∈ Ω, E[‖g(x; ξ)‖2] ≤ G2; (iii) there exists ∆φ > 0 such that
φ(x)−minz∈Ω φ(z) ≤ ∆φ for any x ∈ Ω; (iv) the objective function φ is µ-weakly convex;
Remark: Assumption 1(i), (ii) assume a stochastic subgradient is available for the objective function
and its Euclidean norm square is bounded in expectation, which are standard assumptions for non-
smooth optimization. Assumption 1(iii) assumes that the objective value with respect to the optimal
value is bounded. Assumption 1(iv) assumes weak convexity of the objective function, which is
weaker than assuming smoothness. Below, we present some examples of objective functions in
machine learning that are weakly convex.

Ex. 1: Smooth Non-Convex Functions. If φ(·) is a L-smooth function (i.e., its gradient is L-
Lipschitz continuous), then it is L-weakly convex. This will include the objective function for
neural networks with a smooth activation function (e.g., the sigmoid function) and a smooth loss
function (e.g., softmax loss).

Ex. 2: Convex and Smooth Composition. Consider φ(x; ξ) = h(c(x; ξ)) where h(·) : Rm → R is
closed convex and M -Lipschitz continuous, and c(x; ξ) : Rd → Rm is nonlinear smooth mapping
with L-Lipschitz continuous gradient. This class of functions has been considered in (Drusvyatskiy
& Paquette, 2018) and it was proved that φ(x; ξ) is ML-weakly convex. An interesting example
is phase retrieval, where φ(x; a, b) = |(x>a)2 − b|. Another example related to deep learning is
that if c(x; ξ) denotes the mapping function of a neural network parameterized by x with a smooth
activation function and h denotes a non-smooth Lipschitz continuous convex loss function (e.g.,
hinge loss), then the resulting loss h(c(x; ξ)) is a weakly convex function of x. More examples of
this class can be found in (Davis & Drusvyatskiy, 2018a).

4 STAGEWISE OPTIMIZATION: ALGORITHMS AND CONVERGENCE

In this section, we will present the proposed stagewise algorithms and their convergence results.
We will first present a Meta algorithmic framework highlighting the key features of the proposed
algorithms and then present several variants of the Meta algorithm.

The Meta algorithmic framework is described in Algorithm 1. There are several key features that
differentiate Algorithm 1 from existing stochastic algorithms that come with theoretical guarantee.
First, the algorithm is run with multiple stages. At each stage, a basic stochastic algorithm (SA)
is called to optimize a regularized problem fs(x) inexactly that consists of the original objective
function and a quadratic term, which is guaranteed to be convex due to the weak convexity of φ
and γ < µ−1. The convexity of fs allows one to employ any suitable existing stochastic algorithms
(cf. Theorem 1) that have convergence guarantee for convex problems. The returned solution from
the (s − 1)-th stage is used as a reference point for constructing fs and as an initial solution for
warm-start. It is notable that SA usually returns an averaged solution xs at each stage. Second, a
decreasing sequence of step size parameters ηs is used. At each stage, the SA uses a constant step
size parameter ηs and runs the updates for a number of Ts iterations. We do not initialize Ts as it
might be adaptive to the data as in stagewise ADAGRAD. The setup of ηs and Ts will depend on the
specific choice of SA, which will be exhibited later for different variants.
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Algorithm 1 A Meta Stagewise Algorithm: Stagewise-SA
1: Initialize: a sequence of decreasing step size parameters {ηs}, x0 ∈ Ω, γ < µ−1

2: for s = 1, . . . , S do
3: Let fs(·) = φ(·) + 1

2γ ‖ · −xs−1‖2
4: xs = SA(fs,xs−1, ηs, Ts) � xs is usually an averaged solution
5: end for

To illustrate that Algorithm 1 is a universal framework such that any suitable SA algorithm can be
employed, we present the following result by assuming that SA has an appropriate convergence for
a convex problem.

Theorem 1. Let f(·) be a convex function, x∗ = arg minx∈Ω f(x) and Θ denote some problem
dependent constants. Suppose for x+ = SA(f,x0, η, T ), we have

E[f(x+)− f(x∗)] ≤ ε1(η, T,Θ)‖x0 − x∗‖22 + ε2(η, T,Θ)(f(x0)− f(x∗)) + ε3(η, T,Θ). (6)

Under Assumption 1(i), (iii) and (iv), by running Algorithm 1 with γ = 1/(2µ), and with ηs, Ts
satisfying ε1(ηs, Ts,Θ) ≤ 1/(48γ), ε2(ηs, Ts,Θ) ≤ 1/2, ε3(ηs, Ts,Θ) ≤ c3/s for some c3 > 0, we
have

E
[
‖∇φγ(xτ )‖2

]
≤ 32∆φ(α+ 1)

γ(S + 1)
+

48c3(α+ 1)

γ(S + 1)
,

where τ is randomly selected from {0, . . . , S} with probabilities pτ ∝ (τ + 1)α, α ≥ 1.
Remark: It is notable that the convergence guarantee is provided on a stagewise average solution
xτ . To justify a heuristic approach that returns the final average solution for prediction, we analyze a
new sampling strategy that samples a solution among all stagewise average solutions with sampling
probabilities increasing as the stage number increases. This sampling strategy is better than uniform
sampling strategy or a strategy with decreasing sampling probabilities in the existing literature. The
convergence upper bound in (6) of SA covers the results of a broad family of stochastic convex
optimization algorithms. When ε2(ηs, Ts,Θ) = 0 (as in SGD), the upper bound can be improved
by a constant factor. Moreover, we do not optimize the value of γ. Indeed, any γ < 1/µ will work,
which only has an effect on constant factor in the convergence upper bound.

Next, we present several variants of the Meta algorithm by employing SGD, ADAGRAD, and
stochastic momentum methods as the basic SA algorithm, to which we refer as stagewise SGD,
stagewise ADAGRAD, and stagewise stochastic momentum methods, respectively. It is worth
mentioning that one can follow similar analysis to analyze other stagewise algorithms by using
their basic convergence for stochastic convex optimization, including RMSProp (Mukkamala &
Hein, 2017), AMSGrad (Reddi et al., 2018), stochastic alternating direction methods of multipliers
(ADMM) (Ouyang et al., 2013; Suzuki, 2013).

4.1 STAGEWISE SGD

In this subsection, we analyze the convergence of stagewise SGD, in which SGD shown in Algo-
rithm 3 in the Appendix is employed in the Meta framework. Besides Assumption 1, we impose the
following bounded domain assumption in this subsection.

Assumption 2. There exists D > 0 such that ‖x− y‖ ≤ D for any x,y ∈ Ω.
It is worth mentioning that bounded domain assumption is imposed for simplicity, which is usu-
ally assumed in convex optimization. For machine learning problems, one usually imposes some
bounded norm constraint to achieve a regularization. Nevertheless, the bounded domain assumption
is not essential for the proposed algorithm. We present a more involved analysis in subsection 4.3 for
unbounded domain Ω = Rd. The following is a standard basic convergence result of SGD (Zinke-
vich, 2003), which clearly satisfies the bound in (6).

Lemma 1. For Algorithm 3, assume that f(·) is convex and E‖gt‖2 ≤ G2,∀t, then for any x ∈ Ω

E[f(x̂T )− f(x)] ≤ ‖x− x0‖2

2η(T + 1)
+
ηG2

2

The following theorem exhibits the convergence of stagewise SGD.
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Algorithm 2 ADAGRAD(f,x0, η, ∗)
1: Initialize: x1 = x0, g1:0 = [], H0 ∈ Rd×d
2: while T does not satisfy the condition in Theorem 3 do
3: Compute a stochastic subgradient gt for f(xt)
4: Update g1:t = [g1:t−1,g(xt)], st,i = ‖g1:t,i‖2
5: Set Ht = H0 + diag(st) and ψt(x) = 1

2 (x− x1)>Ht(x− x1)

6: Let xt+1 = arg min
x∈Ω

ηx>
(

1
t

∑t
τ=1 gτ

)
+ 1

tψt(x)

7: end while
8: Output: x̂T =

∑T
t=1 xt/T

Theorem 2. Suppose Assumption 1 and 2 hold. By setting γ = 1/(2µ), ηs = η0/s, Ts = 12γs/η0

where η0 > 0 is a free parameter, then stagewise SGD (Algorithm 1 employing SGD) guarantees
that

E
[
‖∇φγ(xτ )‖2

]
≤ 16µ∆φ(α+ 1)

S + 1
+

24µη0Ĝ
2(α+ 1)

(S + 1)
,

where Ĝ2 = 2G2 + 2γ−2D2, and τ is similarly defined as in Theorem 1.
Remark: To find a solution with E

[
‖∇φγ(xτ )‖2

]
≤ ε2, we can set S = O(1/ε2) and the total

iteration complexity
∑S
s=1 Ts is in the order of O(1/ε4). The above theorem is essentially a corol-

lary of Theorem 1 by applying Lemma 1 to fs(·) at each stage. We present a complete proof in the
appendix.

4.2 STAGEWISE ADAGRAD
One of the main contributions of the present work is to develop a variant of ADAGRAD with adaptive
convergence to data for stochastic non-convex optimization. In this subsection, we analyze stagewise
ADAGRAD and establish its adaptive complexity. In particular, we consider the Meta algorithm that
employs ADAGRAD in Algorithm 2 to optimize each fs. The key difference of stagewise ADAGRAD
from stagewise SGD is that the number of iterations Ts at each stage is adaptive to the history of
learning. It is this adaptiveness that makes the proposed stagewise ADAGRAD achieve adaptive
convergence. It is worth noting that such adaptive scheme has been also considered in (Chen et al.,
2018b) for solving stochastic strongly convex problems. In contrast, we consider stochastic weakly
convex problems. Similar to previous analysis of ADAGRAD (Duchi et al., 2011; Chen et al., 2018b),
we assume ‖g(x; ξ)‖∞ ≤ G,∀x ∈ Ω in this subsection. Note that this is stronger than Assumption 1
(ii). We formally state this assumption required in this subsection below.
Assumption 3. ‖g(x; ξ)‖∞ ≤ G for any x ∈ Ω.
The convergence analysis of stagewise ADAGRAD is build on the following lemma, which is at-
tributed to Chen et al. (2018b) with a proof sketch provided in the Appendix.
Lemma 2. Let f(x) be a convex function, H0 = GI with G ≥ maxt ‖gt‖∞, and iteration number
T satisfy T ≥ M max{G+maxi ‖g1:T,i‖

2c , c
∑d
i=1 ‖g1:T,i‖} for some c > 0. Algorithm 2 returns an

averaged solution x̂T such that

E[f(x̂T )− f(x∗)] ≤
c

Mη
‖x0 − x∗‖2 +

η

Mc
, (7)

where x∗ = arg minx∈Ω f(x), g1:t = (g(x1), . . . ,g(xt)) and g1:t,i denotes the i-th row of g1:t.

The convergence property of stagewise ADAGRAD is described by following theorem.
Theorem 3. Suppose Assumption 1(i), (iii), (iv), Assumption 2 and Assumption 3 hold. By setting
γ = 1/(2µ), ηs = η0/

√
s, Ts ≥ Ms max{(Ĝ + maxi ‖gs1:Ts,i

‖)/(2c), c
∑d
i=1 ‖gs1:Ts,i

‖} where
η0, c > 0 are free parameters, and Msηs ≥ 24γc, then stagewise ADAGRAD guarantees that

E[‖∇φγ(xτ )‖2] ≤16µ∆φ(α+ 1)

S + 1
+

4µ2η2
0(α+ 1)

c2(S + 1)
,

where Ĝ = G + γ−1D, gs1:t,i denotes the cumulative stochastic gradient of the i-th coordinate at
the s-th stage, and τ is similarly defined as in Theorem 1.
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Remark: Note that the free parameter c is introduced to balance the two terms in the lower bound
of Ts due to that (Ĝ + maxi ‖gs1:Ts,i

‖) ∝ Ĝ
√
Ts and

∑d
i=1 ‖gs1:Ts,i

‖ ∝ dĜ
√
Ts have different

orders when d is very large. One way to balance these two terms is to set c in the order of
√

1/d,
resulting O(d/(S + 1)) for the second term in the above convergence bound. Another way is to
choose c in the s-th stage such that the two terms in the max of the lower bound of Ts match each
other. One can derive a similar order of O(d/(S+ 1)) for the second term in the above convergence
bound. It is obvious that the total number of iterations

∑S
s=1 Ts is adaptive to the data. Next,

let us present more discussion on the iteration complexity. Note that Ms = O(
√
s) by setting

c as a constant. By the boundness of stochastic gradient ‖gs1:Ts,i
‖ ≤ O(

√
Ts), therefore Ts in

the order of O(s) will satisfy the condition in Theorem 3. Thus, in the worst case the iteration
complexity for finding E[‖∇φγ(xτ )‖2] ≤ ε2 is in the order of

∑S
s=1O(s) ≤ O(1/ε4). To show

the potential advantage of adaptive step size as in the convex case, let us consider a good case
when the cumulative growth of stochastic gradient is slow, e.g., assuming ‖gs1:Ts,i

‖ ≤ O(Ts
α)

with α < 1/2. Then Ts = O(s1/(2(1−α))) will work, and then the total number of iterations∑S
s=1 Ts ≤ S1+1/(2(1−α)) ≤ O(1/ε2+1/(1−α)), which is better than O(1/ε4).

4.3 STAGEWISE STOCHASTIC MOMENTUM (SM) METHODS
Finally, we present stagewise stochastic momentum (SM) methods and their convergence results. In
the literature, there are two popular variants of stochastic momentum methods, namely, stochastic
heavy-ball method (SHB) and stochastic Nesterov’s accelerated gradient method (SNAG). Both
methods have been used for training deep neural networks (Krizhevsky et al., 2012; Sutskever et al.,
2013), and have been analyzed by (Yang et al., 2016) for non-convex optimization. To contrast with
the results in (Yang et al., 2016), we will consider the same unified stochastic momentum methods
that subsume SHB, SNAG and SGD as special cases when Ω = Rd. The updates are presented in
Algorithm 4 in the Appendix. There are two additional parameters: β ∈ (0, 1) is the momentum
parameter and ρ is a parameter that can vary between [0, 1/(1 − β)]. By changing the value of ρ,
we can obtain the three variants, SHB (ρ = 0), SNAG (ρ = 1) and SGD (ρ = 1/(1− β)). Due to the
limit of space, we only present the convergence of stagewise SM methods below.
Theorem 4. Suppose Assumption 1 holds. By setting γ = 1/(2µ), ηs = (1− β)γ/(96s(ρβ + 1)),
Ts ≥ 2304(ρβ + 1)s, with τ similarly defined as in Theorem 1 stagewise SM methods guarantee

E[‖∇φγ(xτ )‖2] ≤ 16µ∆φ(α+ 1)

S + 1
+
G2(β + 48(2ρβ + 1)(1− β))(α+ 1)

96(ρβ + 1)(1− β)(S + 1)
.

Remark: The bound in the above theorem is in the same order as that in Theorem 2. The total
iteration complexity for finding a solution xτ with E

[
‖∇φγ(xτ )‖2

]
≤ ε2 is O(1/ε4) similar to that

achieved in (Yang et al., 2016).

5 EXPERIMENTS

In this section, we present some empirical results to verify the effectiveness of the proposed stage-
wise algorithms. We use two benchmark datasets, namely CIFAR-10 and CIFAR-100 (Krizhevsky
et al.) for our experiments. We implement the proposed stagewise algorithms in TensorFlow.
We compare different algorithms for learning ResNet-20 (He et al., 2016) with batch normaliza-
tion (Ioffe & Szegedy, 2015) adopted after each convolution and before ReLu activation.
Baselines. We compare the proposed stagewise algorithms with their variants implemented in Ten-
sorFlow. It is notable that ADAGRAD has a step size (aka learning rate) parameter 1, which is a
constant in theory (Li & Orabona, 2018; Chen et al., 2018a; Zou & Shen, 2018). However, in the
deep learning community a heuristic fixed frequency decay scheme for the step size parameter is
commonly adopted (Ren et al., 2018; Wilson et al., 2017). We thus compare two implementations
of ADAGRAD - one with a constant learning rate parameter and another one with a fixed frequency
decay scheme, which are referred to as ADAGRAD (theory) and ADAGRAD (heuristic). For each
baseline algorithms of SGD, SHB, SNAG, we also implement two versions - a theory version with
iteratively decreasing size η0/

√
t suggested by previous theories and a heuristic approach with fixed

frequency decay scheme used in practice, using (theory) and (heuristic) to indicate them. The fixed
1note it is not equivalent to the step size in SGD.

8



Published as a conference paper at ICLR 2019

0 20 40 60 80 100
�� ���#�!�#� �"���	���

0.0

0.2

0.4

0.6

0.8

1.0

��
"#
��
��
!
! 
!

��"��#��������������
���

����
�

�
��
�����$!�"#��"�

�
��
���#�� !&�
�#���%�"��
�
��
�

0 20 40 60 80 100
������"� �"���!���	���

0.0

0.2

0.4

0.6

0.8

1.0

��
!"

��
��

 
 �

 

��!��"��������������
���
�������# �!"��!�
�����"��� %�
�"���$�!�����

0 20 40 60 80 100
������"� �"���!���	���

0.0

0.2

0.4

0.6

0.8

1.0

��
!"

��
��

 
 �

 

��!��"��������������
���
�������# �!"��!�
�����"��� %�
�"���$�!�����

0 20 40 60 80 100
������!���!��� ���	���

0.0

0.2

0.4

0.6

0.8

1.0

��
 !
��
��
��

��
�

�� ��!�������������
���
��
�����"�� !�� �
��
���!����$�
�!���#� ����
�

0 20 40 60 80 100
�� ���#�!�#� �"���	���

0.2

0.4

0.6

0.8

1.0

��
"#
��
��
!
! 
!

��"��#��������������
����

����
�

�
��
�����$!�"#��"�

�
��
���#�� !&�
�#���%�"��
�
��
�

0 20 40 60 80 100
������"� �"���!���	���

0.2

0.4

0.6

0.8

1.0

��
!"

��
��

 
 �

 

��!��"��������������
����
�������# �!"��!�
�����"��� %�
�"���$�!�����

0 20 40 60 80 100
������"� �"���!���	���

0.2

0.4

0.6

0.8

1.0

��
!"

��
��

 
 �

 

��!��"��������������
����
�������# �!"��!�
�����"��� %�
�"���$�!�����

0 20 40 60 80 100
������!���!��� ���	���

0.2

0.4

0.6

0.8

1.0

��
 !
��
��
��

��
�

�� ��!�������������
����
��
�����"�� !�� �
��
���!����$�
�!���#� ����
�

Figure 1: Comparison of Testing Error on CIFAR-10 (top) and CIFAR-100 (bottom).

frequency decay scheme used in the heuristic variants is similar as that in (He et al., 2016), i.e., the
step size parameter is decreased by 10 at 40k, 60k iterations. We also compare stagwise ADAGRAD
with AMSGrad (Reddi et al., 2018) - a corrected version of Adam.
Parameters. The stagewise step size ηs = η0/

√
s is used in stagwise ADAGRAD, the num-

ber of iterations Ts in stagwise ADAGRAD is set according to Theorem 3 with some simplifi-
cations for dealing with unknown Ĝ, in particular we set Ts to the smallest value larger than
T0

√
smaxi ‖gs1:Ts,i

‖
∑
i ‖gs1:Ts,i

‖. For stagewise SGD, SHB, SNAG, the stagewise step size and

iteration number is set to ηs = η0/s and Ts = T0s, respectively. The involved parameters in the
compared algorithms are tuned for the best performance, including the initial step size parameter η0

of all algorithms, the value of T0 and γ for our stagewise algorithms.
Results. We consider two settings - with/without an `2 norm regularization on weights. For compar-
ison, we evaluate the training error and testing error of obtained solutions in the process of training.
For our stagewise algorithms, the evaluation is done based on the current averaged solution, and for
other baselines the evaluation is done based on the current solution. Due to the limit of space, we
only show the results of testing error on CIFAR-10 and CIFAR-100 for the setting without regu-
larization in Figure 1. All results are included in the Appendix. From all results, we have several
observations. (i) The proposed stagewise algorithms perform much better in terms of testing error
than the existing theoretical versions reported in the literature (marked with theory in the legend).
This indicates the proposed stagewise step size scheme is better than iteratively decreasing step size
scheme. (ii) The proposed stagewise algorithms achieve similar and sometimes even better testing
error than the heuristic approaches with a fixed frequency decay scheme used in practice. However,
the heuristic approaches usually give smaller training error. This seems to indicate that the proposed
algorithms are less vulnerable to the overfitting. In another word, the proposed algorithms have
smaller generalization error, i.e., the difference between the testing error and the training error.

6 CONCLUSION & FUTURE WORK

In this paper, we have proposed a universal stagewise learning framework for solving stochastic non-
convex optimization problems, which employs well-known tricks in practice that have not been well
analyzed theoretically. We provided theoretical convergence results for the proposed algorithms for
non-smooth non-convex optimization problems. We also established an adaptive convergence of a
stochastic algorithm using data adaptive coordinate-wise step size of ADAGRAD, and exhibited its
faster convergence than non-adaptive stepsize when the growth of cumulative stochastic gradients is
slow similar to that in the convex case. For future work, one may consider developing more variants
of the proposed meta algorithm, e.g., stagewise AMSGrad, stagewise RMSProp, etc. We will also
consider the empirical studies on the large-scale ImageNet data set.
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Algorithm 3 SGD(f,x0, η, T )

for t = 0, . . . , T do
Compute a stochastic subgradient gt for f(xt).
xt+1 = ΠΩ[xt − ηgt]

end for
Output: x̂T =

∑T
t=0 xt/(T + 1)

Algorithm 4 Unified Stochastic Momentum Methods: SUM(f,x0, η, T )

Set parameters: ρ ≥ 0 and β ∈ (0, 1).
for t = 0, . . . , T do

Compute a stochastic subgradient gt for f(xt).
yt+1 = xt − ηgt
ŷt+1 = xt − ρηgt
xt+1 = yt+1 + β(ŷt+1 − ŷt)

end for
Output: x̂T =

∑T
t=0 xt/(T + 1)

A MORE EXPERIMENTAL RESULTS

In this section, we present more experimental results. Comparison of training and testing er-
ror in the two settings (w/o regularization) on the two data sets are plotted in Figure 2, 3, 4,
5. We also report the final testing error (after running 80k iterations) of different algorithms in
the two settings on the two datasets in Table 1. For parameter tuning, the initial step sizes of
all algorithms are tuned in {0.1, 0.3, 0.5, 0.7, 0.9}. The value of γ of stagewise algorithms is
tuned in {1, 10, 100, 500, 1000, 1500, 2000, 3000}. The initial value T0 for stagewise SGD, SHB,
SNAG is tuned in {10, 100, 1k, 5k, 6k, 7k, 10k, 20k}, and that for stagewise ADAGRAD is tuned in
{1, 10, 15, 20, 25, 50, 100}.

B PROOF OF THEOREM 1

Proof. Below, we use Es to denote expectation over randomness in the s-th stage given all history
before s-th stage. Define

zs = arg min
x∈Ω

fs(x) = proxγ(φ+δΩ)(xs−1) (8)

Then∇φγ(xs−1) = γ−1(xs−1− zs). By applying the convergence bound of SA to fs(x), we have

Es[fs(xs)− fs(zs)] ≤ ε1(ηs, Ts,Θ)‖xs−1 − zs‖22 + ε2(ηs, Ts,Θ)(fs(xs−1)− fs(zs)) + ε3(ηs, Ts,Θ)︸ ︷︷ ︸
Es

.

It then follows that

Es

[
φ(xs) +

1

2γ
‖xs − xs−1‖2

]
≤ fs(zs) + Es ≤ fs(xs−1) + Es

≤ φ(xs−1) + Es (9)

On the other hand, we have that

‖xs − xs−1‖2 =‖xs − zs + zs − xs−1‖2

=‖xs − zs‖2 + ‖zs − xs−1‖2 + 2〈xs − zs, zs − xs−1〉
≥(1− α−1

s )‖xs − zs‖2 + (1− αs)‖xs−1 − zs‖2
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Table 1: Comparison of Final Testing Error (%) on CIFAR-10 and CIFAR-100 Datasets
CIFAR-10 CIFAR-100

Algorithms with reg. without reg. with reg. without reg.

SGD (theory) 16.25 19.18 43.51 45.78
SGD (heuristic) 8.34 10.81 33.67 37.19
Stagewise-SGD 8.34 9.01 32.25 34.95
SHB (theory) 15.67 16.55 39.15 46.23
SHB (heuristic) 8.58 10.28 33.30 37.56
Stagewise-SHB 8.30 8.61 32.85 34.49
SNAG (theory) 17.64 16.76 39.34 44.21
SNAG (heuristic) 8.85 10.34 33.89 36.84
Stagewise-SNAG 8.00 8.93 31.42 33.29
AMSGrad 10.76 11.13 38.62 39.96
AdaGrad (theory) 12.11 13.96 39.09 44.49
AdaGrad (heuristic) 10.71 13.80 37.04 41.06
Stagewise-AdaGrad 9.09 9.51 33.95 34.62
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Figure 2: Comparison of Training Error (Top) and Testing Error (bottom) on CIFAR-10 without
Regularization.
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Figure 3: Comparison of Training Error (Top) and Testing Error (bottom) on CIFAR-10 with Regu-
larization. The regularization parameter is set 5e− 4.

where the inequality follows from the Young’s inequality with 0 < αs < 1. Combining the above
inequality with (9) we have that

Es

[
(1− αs)

2γ
‖xs−1 − zs‖2

]
≤ Es

[
φ(xs−1)− φ(xs) +

(α−1
s − 1)

2γ
‖xs − zs‖2 + Es

]
≤ Es

[
φ(xs−1)− φ(xs) +

(α−1
s − 1)

γ(γ−1 − µ)
(fs(xs)− fs(zs)) + Es

]
≤ Es

[
φ(xs−1)− φ(xs) +

α−1
s − γµ

(1− γµ)
Es
]
≤ Es

[
φ(xs−1)− φ(xs)

]
+ Es

[
α−1
s − γµ

(1− γµ)
{ε1(ηs, Ts,Θ)‖xs−1 − zs‖2 + ε2(ηs, Ts,Θ)(fs(xs−1)− fs(zs)) + ε3(ηs, Ts,Θ)}

]
,

(10)14
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Figure 4: Comparison of Training Error (Top) and Testing Error (bottom) on CIFAR-100 without
Regularization.
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Figure 5: Comparison of Training Error (Top) and Testing Error (bottom) on CIFAR-100 with Reg-
ularization. The regularization parameter is set 5e− 4.
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Figure 6: Comparison of different stagewise algorithms in terms of Training Error and Testing Error
on CIFAR-10 (top) and CIFAR-100 (bottom) with regularization. The regularization parameter is
set 5e− 4.

where the second inequality uses the strong convexity of fs(x), whose strong convexity parameter
is γ−1−µ. Next, we bound fs(xs−1)− fs(zs) given that xs−1 is fixed. According to the definition

15
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of fs(·), we have

fs(xs−1)− fs(zs) = φ(xs−1)− φ(zs)−
1

2γ
‖zs − xs−1‖2

= φ(xs−1)− φ(xs) + φ(xs)− φ(zs)−
1

2γ
‖zs − xs−1‖2

= [φ(xs−1)− φ(xs)] +

[
fs(xs)− fs(zs) +

1

2γ
‖zs − xs−1‖2 −

1

2γ
‖xs − xs−1‖2

]
− 1

2γ
‖zs − xs−1‖2

≤ [φ(xs−1)− φ(xs)] + [fs(xs)− fs(zs)].

Taking expectation over randomness in the s-th stage on both sides, we have

fs(xs−1)− fs(zs) ≤ Es[φ(xs−1)− φ(xs)] + Es[fs(xs)− fs(zs)]
≤ E[φ(xs−1)− φ(xs)] + ε1(ηs, Ts,Θ)‖xs−1 − zs‖22 + ε2(ηs, Ts,Θ)(fs(xs−1)− fs(zs)) + ε3(ηs, Ts,Θ).

Thus,

(1− ε2(ηs, Ts,Θ))(fs(xs−1)− fs(zs)) ≤ E[φ(xs−1)− φ(xs)] + ε1(ηs, Ts,Θ)‖xs−1 − zs‖22 + ε3(ηs, Ts,Θ).

Assuming that ε2(ηs, Ts,Θ) ≤ 1/2, we have

ε2(ηs, Ts,Θ)(fs(xs−1)− fs(zs)) ≤ Es[φ(xs−1)− φ(xs)] + ε1(ηs, Ts,Θ)‖xs−1 − zs‖22 + ε3(ηs, Ts,Θ).

Plugging this upper bound into (10), we have

Es

[
(1− αs)

2γ
‖xs−1 − zs‖2

]
≤ Es

[
φ(xs−1)− φ(xs)

]
+ Es

[
α−1
s − γµ

(1− γµ)
{2ε1(ηs, Ts,Θ)‖xs−1 − zs‖2 + φ(xs−1)− φ(xs) + 2ε3(ηs, Ts,Θ)}

]
(11)

By setting αs = 1/2, γ = 1/(2µ) and assuming ε1(ηs, Ts,Θ) ≤ 1/(48γ), we have

Es

[
1

8γ
‖xs−1 − zs‖2

]
≤ 4Es

[
φ(xs−1)− φ(xs)

]
+ 6ε3(ηs, Ts,Θ)}

Define ws = sα. Multiplying both sides by ws, we have that

wsγEs[‖∇φγ(xs−1)‖2] ≤ Es

[
32ws∆s + 48ε3(ηs, Ts,Θ)ws

]
By summing over s = 1, . . . , S + 1, we have

S+1∑
s=1

wsE[‖∇φγ(xs−1)‖2] ≤ E

[
32

γ

S+1∑
s=1

ws∆s +
48

γ

S+1∑
s=1

wsε3(ηs, Ts,Θ)

]
Taking the expectation w.r.t. τ ∈ {0, . . . , S}, we have that

E[‖∇φγ(xτ )‖2]] ≤ E

[
32
∑S+1
s=1 ws∆s

γ
∑S+1
s=1 ws

+
48
∑S+1
s=1 wsε3(ηs, Ts,Θ))

γ
∑S+1
s=1 ws

]
For the first term on the R.H.S, we have that

S+1∑
s=1

ws∆s =

S+1∑
s=1

ws(φ(xs−1)− φ(xs)) =

S+1∑
s=1

(ws−1φ(xs−1)− wsφ(xs)) +

S+1∑
s=1

(ws − ws−1)φ(xs−1)

= w0φ(x0)− wS+1φ(xS+1) +

S+1∑
s=1

(ws − ws−1)φ(xs−1)

=

S+1∑
s=1

(ws − ws−1)(φ(xs−1)− φ(xS+1)) ≤ ∆φ

S+1∑
s=1

(ws − ws−1) = ∆φwS+1

16



Published as a conference paper at ICLR 2019

Then,

E[‖∇φγ(xτ )‖2] ≤ 32∆φwS+1

γ
∑S+1
s=1 ws

+
48
∑S+1
s=1 wsε3(ηs, Ts,Θ)

γ
∑S+1
s=1 ws

The standard calculus tells that
S∑
s=1

sα ≥
∫ S

0

xαdx =
1

α+ 1
Sα+1

S∑
s=1

sα−1 ≤ SSα−1 = Sα,∀α ≥ 1,

S∑
s=1

sα−1 ≤
∫ S

0

xα−1dx =
Sα

α
,∀0 < α < 1

Combining these facts and the assumption ε3(ηs, Ts,Θ) ≤ c/s, we have that

E[‖∇φγ(xτ )‖2] ≤


32∆φ(α+1)
γ(S+1) + 48c(α+1)

γ(S+1) α ≥ 1

32∆φ(α+1)
γ(S+1) + 48c(α+1)

γ(S+1)α 0 < α < 1

In order to have E[‖∇φγ(xτ )‖2] ≤ ε2, we can set S = O(1/ε2). The total number of iterations is

S∑
s=1

Ts ≤
S∑
s=1

12γs ≤ 6γS(S + 1) = O(1/ε4)

C PROOF OF THEOREM 2

Proof. The proof is almost a duplicate to that of Theorem 1. Define ws = sα. We apply Lemma 1
to each call of SGD in stagewise SGD,

E[fs(xs)− fs(zs)] ≤
‖zs − xs−1‖2

2ηsTs
+
ηsĜ

2

2︸ ︷︷ ︸
Es

,

where Ĝ2 is the upper bound of E[‖g(x; ξ) + γ−1(x − xs−1)‖2], which exists and can be set to
2G2 + 2γ−2D2 due to the Assumption 1-(ii) and the bounded assumption of the domain. Then
following the same analysis as that in the proof of Theorem 1, we have

Es

[
(1− αs)

2γ
‖xs−1 − zs‖2

]
≤Es

[
φ(xs−1)− φ(xs) +

(α−1
s − 1)

2γ
‖xs − zs‖2 + Es

]
≤E

[
φ(xs−1)− φ(xs) +

(α−1
s − 1)

γ(γ−1 − µ)
(fs(xs)− fs(zs)) + Es

]
≤E

[
φ(xs−1)− φ(xs) +

α−1
s − γµ

(1− γµ)
Es
]

(12)

Combining the above inequalities, we have that(
(1− αs)γ −

γ2(α−1
s − µγ)

(1− µγ)ηsTs

)
Es[‖∇φγ(xs−1)‖2] ≤ Es

[
2∆s +

(α−1
s − µγ)ηsĜ

2

(1− µγ)

]
Multiplying both sides by ws, we have that

ws

(
(1− αs)γ −

γ2(α−1
s − µγ)

(1− µγ)ηsTs

)
Es[‖∇φγ(xs−1)‖2] ≤ Es

[
2ws∆s +

(α−1
s − µγ)wsηsĜ

2

(1− µγ)

]
By setting αs = 1/2 and γ = 1/(2µ), Tsηs ≥ 12γ, we have

1

4
wsγEs[‖∇φγ(xs−1)‖2] ≤ Es[2ws∆s + 3wsηsĜ

2]

17
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By summing over s = 1, . . . , S + 1, we have

S+1∑
s=1

wsE[‖∇φγ(xs−1)‖2] ≤ E

[
16µ

S+1∑
s=1

ws∆s + 24µ

S+1∑
s=1

wsηsĜ
2

]
Taking the expectation w.r.t. τ ∈ {0, . . . , S}, we have that

E[‖∇φγ(xτ )‖2]] ≤ E

[
16µ

∑S+1
s=1 ws∆s∑S+1
s=1 ws

+
24µ

∑S+1
s=1 wsηsĜ

2∑S+1
s=1 ws

]
By similar analysis, we have that

E[‖∇φγ(xτ )‖2] ≤


16µ∆φ(α+1)

S+1 + 24η0µĜ
2(α+1)

S+1 α ≥ 1

16µ∆φ(α+1)
S+1 + 24η0µĜ

2(α+1)
(S+1)α 0 < α < 1

In order to have E[‖∇φγ(xτ )‖2] ≤ ε2, we can set S = O(1/ε2). The total number of iterations is

S∑
s=1

Ts ≤
S∑
s=1

12γs ≤ 6γS(S + 1) = O(1/ε4)

D PROOF OF THEOREM 4

We need the following lemma for the convergence bound of stochastic momentum methods for a
strongly convex problem, whose proof is postponed to Section F.
Lemma 3. For Algorithm 4, assume f(x) = φ(x) + 1

2γ ‖x− x0‖2 is a λ-strongly convex function,
gt = g(xt; ξ) + 1

γ (xt − x0) where g(x; ξ) ∈ ∂Fφ(xt) such that E[‖g(x; ξ)‖2] ≤ G2, and η ≤
(1− β)γ2λ/(8ρβ + 4), then we have that

E[f(x̂T )− f(x∗)] ≤
(1− β)‖x0 − x∗‖2

2η(T + 1)
+
β(f(x0)− f(x∗))

(1− β)(T + 1)
+

2ηG2(2ρβ + 1)

1− β
+

4ρβ + 4

(1− β)

η

γ2
‖x0 − x∗‖2 (13)

where x̂T =
∑T
t=0 xt/(1 + T ) and x∗ ∈ arg minx∈Rd f(x).

Remark: It is notable that in the above result, we do not use the bounded domain assumption since
we consider Ω = Rd for the unified momentum methods in this subsection. The key to get rid of
bounded domain assumption is by exploring the strong convexity of f(x) = φ(x) + 1

2γ ‖x− x0‖2.

Proof. of Theorem 4 According to the definition of zs in (8) and Lemma 3, we have that

Es

[
φ(xs) +

1

2γ
‖xs − xs−1‖2

]
≤ fs(zs) +

β(fs(xs−1)− fs(zs))
(1− β)(Ts + 1)

+
(1− β)‖xs−1 − zs‖2

2ηs(Ts + 1)
+

2ηsG
2(2ρβ + 1)

1− β
+

1

24γ
‖xs−1 − zs‖2︸ ︷︷ ︸

Es

≤ φ(xs−1) + Es,

where the last inequality uses the value of ηs = (1−β)γ/(96s(ρβ+ 1)) ≤ (1−β)γ/(96(ρβ+ 1)),
which also satisfies the condition in Lemma 3 by noting that λ = γ−1 − µ = 1/(2γ). Similar to the
proof of Theorem 1, we have

(1− αs)
2γ

‖xs−1 − zs‖2 ≤Es[φ(xs−1)− φ(xs)] +
α−1
s − γµ

(1− γµ)
Es (14)

18
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Plugging the expression of Es and rearranging above inequality, we have that(
(1− αs)γ −

γ2(α−1
s − µγ)(1− β)

(1− µγ)ηs(Ts + 1)
− α−1

s − γµ
(1− γµ)

γ

24

)
‖∇φγ(xs−1)‖2

≤2Es[∆s] +
2(α−1

s − µγ)

(1− µγ)

[
β(fs(xs−1)− fs(zs))

(1− β)(Ts + 1)
+

2ηsĜ
2(2ρβ + 1)

1− β

]
The definition of fs gives that

fs(xs−1)− fs(zs) = φ(xs−1)− φ(zs)−
1

2γ
‖zs − xs−1‖2

On the other hand, the µ-weakly convexity of φ gives that

φ(zs) ≥ φ(xs−1) + 〈g(xs−1), zs − xs−1〉 −
µ

2
‖zs − xs−1‖2,

where g(xs−1) ∈ ∂Fφ(xs−1). Combing these two inequalities we have that

fs(xs−1)− fs(zs) ≤〈g(xs−1),xs−1 − zs〉 −
µ

2
‖zs − xs−1‖2

≤G
2

2µ
+
µ− µ

2
‖zs − xs−1‖2 =

G2

2µ

where the second inequality follows from Jensen’s inequality for ‖ · ‖ and Young’s inequality. Com-
bining above inequalities and multiplying both side by ws, we have that

ws

(
(1− αs)γ −

γ2(α−1
s − µγ)(1− β)

(1− µγ)ηs(Ts + 1)
− α−1

s − γµ
(1− γµ)

γ

24

)
‖∇φγ(xs−1)‖2

≤2wsEs[∆s] +
2ws(α

−1
s − µγ)

(1− µγ)

[
βG2

2µ(1− β)(Ts + 1)
+

2ηsG
2(2ρβ + 1)

1− β

]
(15)

By setting αs = 1/2, ηs(Ts + 1) ≥ 24(1− β)γ, we have that

wsγ

4
‖∇φγ(xs−1)‖2 ≤ 2wsEs[∆s] +

wsηsβG
2

4(1− β)2
+

12wsηsG
2(2ρβ + 1)

1− β
Summing over s = 1, . . . , S + 1 and rearranging, we have

S+1∑
s=1

ws‖∇φγ(xs−1)‖2 = E

[ S+1∑
s=1

8

γ
ws∆s +

wsηsG
2(β + 48(2ρβ + 1)(1− β))

γ(1− β)2

]
Following similar analysis as in the proof of Theorem 2, we can finish the proof.

E PROOF OF THEOREM 3

Proof. Applying Lemma 2 with Ts ≥ Ms max{ Ĝ+maxi ‖gs1:Ts,i
‖

2c , c
∑d
i=1 ‖gs1:Ts,i

‖} Ms > 0, and
the fact that φ(xs−1) ≥ φ(zs) + 1

2γ ‖xs−1 − zs‖2 in sth stage, we have that

Es

[
φ(xs) +

1

2γs
‖xs − xs−1‖2

]
≤ fs(zs) +

c

Msηs
‖xs−1 − zs‖2 +

ηs
Msc︸ ︷︷ ︸

Es

≤ φ(xs) + Es
According to (14), we have that

(1− αs)
2γ

Es[‖xs−1 − zs‖2] ≤φ(xs−1)− φ(xs) +
(α−1
s − 1)

2γ
‖xs − zs‖2 + Es

≤φ(xs−1)− φ(xs) +
α−1
s − γµ

(1− γµ)

(
c

Msηs
‖xs−1 − zs‖2 +

ηs
Msc

)
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Rearranging above inequality then multiplying both side by ws, we have that

ws

(
(1− αs)γ−

2γ2c(α−1
s − µγ)

(1− µγ)Msηs

)
‖∇φγ(xs−1)‖2

≤2wsEs[∆s] +
2wsηs(α

−1
s − µγ)

cMs(1− µγ)

By using Msηs ≥ 24γc and summing over s = 1, . . . , S + 1, we have that

S+1∑
s=1

ws‖∇φγ(xs−1)‖2 ≤ E

[ S+1∑
s=1

8ws∆s

γ
+
wsη

2
s

c2γ2

]
By the definition of τ in the theorem, taking expectation of ‖∇φγ(xτ )‖2 w.r.t. τ ∈ {0, . . . , S} we
have that

E[‖∇φγ(xτ )‖2] =E

[
8

γ

S+1∑
s=1

ws∆s∑S+1
i=1 wi

]
+

η2
0

c2γ2

S+1∑
s=1

sα−1∑S+1
i=1 wi

≤8∆φ(α+ 1)

γ(S + 1)
+

η2
0(α+ 1)

c2γ2(S + 1)αI(α<1)
,

where I(α < 1) is 1 if α < 1 and 0 otherwise.

F PROOF OF LEMMA 3

Proof. Following the analysis in Yang et al. (2016), we directly have the following inequality,

E[‖xk+1 + pk+1 − x∗‖2] =

= E[‖xk + pk − x∗‖2]− 2η

1− β
E[(xk − x∗)

>∂f(xk)]− 2ηβ

(1− β)2
E[(xk − xk−1)>∂f(xk)]

− 2ρη2β

(1− β)2
E[g>k−1∂f(xk)] +

(
η

1− β

)2

E[|gk‖2]

We also note that

f(xk)− f(x∗) ≤ (xk − x∗)
>∂f(xk)− λ

2
‖xk − x∗‖2

f(xk)− f(xk−1) ≤ (xk − xk−1)>∂f(xk)− λ

2
‖xk − xk−1‖2

− E[g>k−1∂f(xk)] ≤ E[‖gk−1‖2 + ‖∂f(xk)‖2]

2
≤ 1

γ2
‖xk−1 − x0‖2 +

1

γ2
‖xk − x0‖2 + 2G2

Ek[‖gk‖2] ≤ 2

γ2
‖xk − x0‖2 + 2G2

where the first two inequalities are due to the strong convexity of f(·) and the last three inequalities
are due to the boundness assumption. Thus

E[‖xk+1 + pk+1 − x‖2] ≤ E[‖xk + pk − x‖2]− 2η

1− β
E[(f(xk)− f(x))]

− 2ηβ

(1− β)2
E[(f(xk)− f(xk−1))] +

(
η

1− β

)2

(2ρβ + 1)4G2

− λη

1− β
‖xk − x∗‖2 −

ληβ

(1− β)2
‖xk − xk−1‖2

+
2ρβ

(1− β)2

η2

γ2
‖xk−1 − x0‖2 +

2ρβ + 2

(1− β)2

η2

γ2
‖xk − x0‖2
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By summarizing the above inequality over k = 0, . . . , T , we have

2η

1− β
E

[ T∑
k=0

(f(xk)− f(x∗))

]
≤ E[‖x0 − x∗‖2] +

2ηβ

(1− β)2
E[f(x0)− f(x∗)]

+

(
η

1− β

)2

(2ρβ + 1)4G2(T + 1)

− ηλ

1− β

T∑
k=0

‖xk − x∗‖2 +
4ρβ

(1− β)2

η2

γ2

T∑
k=0

‖xk−1 − x∗‖2 +
4ρβ + 4

(1− β)2

η2

γ2

T∑
k=0

‖xk − x∗‖2

+
4ρβ + 4

(1− β)2

η2

γ2
(T + 1)‖x0 − x∗‖2

When η ≤ (1− β)γ2λ/(8ρβ + 4), we have

E

[
(f(x̂T )− f(x∗))

]
≤ (1− β)‖x0 − x∗‖2

2η(T + 1)
+

β

(1− β)

f(x0)− f(x∗)

T + 1
+

η

1− β
(2ρβ + 1)2G2

+
4ρβ + 4

(1− β)

η

γ2
‖x0 − x∗‖2

G PROOF OF LEMMA 2

The proof is almost a duplicate of the proof of Proposition 1 in Chen et al. (2018b). For complete-
ness, we present a proof here.

Proof. Let ψ0(x) = 0 and ‖x‖H =
√
x>Hx. First, we can see that ψt+1(x) ≥ ψt(x) for any

t ≥ 0. Define ζt =
∑t
τ=1 gt and ∆τ = (∂F (xt)− gt)

>(xt − x). Let ψ∗t be defined by

ψ∗t (g) = sup
x∈Ω

g>x− 1

η
ψt(x)

Taking the summation of objective gap in all iterations, we have

T∑
t=1

(f(xt)− f(x)) ≤
T∑
t=1

∂f(xt)
>(xt − x) =

T∑
t=1

g>t (xt − x) +

T∑
t=1

∆t

=

T∑
t=1

g>t xt −
T∑
t=1

g>t x−
1

η
ψT (x) +

1

η
ψT (x) +

T∑
t=1

∆t

≤ 1

η
ψT (x) +

T∑
t=1

g>t xt +

T∑
t=1

∆t + sup
x∈Ω

{
−

T∑
t=1

g>t x−
1

η
ψT (x)

}

=
1

η
ψT (x) +

T∑
t=1

g>t xt + ψ∗T (−ζT ) +

T∑
t=1

∆t

Note that

ψ∗T (−ζT ) = −
T∑
t=1

g>t xT+1 −
1

η
ψT (xT+1) ≤ −

T∑
t=1

g>t xT+1 −
1

η
ψT−1(xT+1)

≤ sup
x∈Ω
−ζ>T x−

1

η
ψT−1(x) = ψ∗T−1(−ζT )

≤ ψ∗T−1(−ζT−1)− g>T∇ψ∗T−1(−ζT−1) +
η

2
‖gT ‖2ψ∗

T−1
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where the last inequality uses the fact that ψt(x) is 1-strongly convex w.r.t ‖ · ‖ψt = ‖ · ‖Ht and
consequentially ψ∗t (x) is η-smooth wr.t. ‖ · ‖ψ∗

t
= ‖ · ‖H−1

t
. Thus, we have

T∑
t=1

g>t xt + ψ∗T (−ζT ) ≤
T∑
t=1

g>t xt + ψ∗T−1(−ζT−1)− g>T∇ψ∗T−1(−ζT−1) +
η

2
‖gT ‖2ψ∗

T−1

=

T−1∑
t=1

g>t xt + ψ∗T−1(−ζT−1) +
η

2
‖gT ‖2ψ∗

T−1

By repeating this process, we have
T∑
t=1

g>t xt + ψ∗T (−ζT ) ≤ ψ∗0(−ζ0) +
η

2

T∑
t=1

‖gt‖2ψ∗
t−1

=
η

2

T∑
t=1

‖gt‖2ψ∗
t−1

Then
T∑
t=1

(f(xt)− f(x)) ≤1

η
ψT (x) +

η

2

T∑
t=1

‖gt‖2ψ∗
t−1

+

T∑
t=1

∆t (16)

Following the analysis in Duchi et al. (2011), we have
T∑
t=1

‖gt‖2ψ∗
t−1
≤ 2

d∑
i=1

‖g1:T,i‖2

Thus
T∑
t=1

(f(xt)− f(x)) ≤ G‖x− x1‖22
2η

+
(x− x1)>diag(sT )(x− x1)

2η
+ η

d∑
i=1

‖g1:T,i‖2 +

T∑
t=1

∆t

≤ G+ maxi ‖g1:T,i‖2
2η

‖x− x1‖22 + η

d∑
i=1

‖g1:T,i‖2 +

T∑
t=1

∆t

Now by the value of T ≥M max{ (G+maxi ‖g1:T,i)‖
2c , c

∑d
i=1 ‖g1:T,i‖}, we have

(G+ maxi ‖g1:T,i‖2)

2ηT
≤ c

ηM
,

η
∑d
i=1 ‖g1:T,i‖2

T
≤ η

Mc
Dividing by T on both sides and setting x = x∗, following the inequality (3) and the convexity of
f(x) we have

f(x̂)− f∗ ≤
c

Mη
‖x0 − x∗‖2 +

η

Mc
+

1

T

T∑
t=1

∆t

Let {Ft} be the filtration associated with Algorithm 1 in the paper. Noticing that T is a random
variable with respect to {Ft}, we cannot get rid of the last term directly. Define the Sequence
{Xt}t∈N+

as

Xt =
1

t

t∑
i=1

∆i =
1

t

t∑
i=1

〈gi − E[gi],xi − x∗〉 (17)

where E[gi] ∈ ∂f(xi). Since E [gt+1 − E[gt+1]] = 0 and xt+1 = arg min
x∈Ω

ηx>
(

1
t

∑t
τ=1 gτ

)
+

1
tψt(x), which is measurable with respect to g1, . . . ,gt and x1, . . . ,xt, it is easy to see {∆t}t∈N
is a martingale difference sequence with respect to {Ft}, e.g. E[∆t|Ft−1] = 0. On the other
hand, since ‖gt‖2 is upper bounded by G, following the statement of T in the theorem, T ≤ N =

M2 max{ (G+1)2

4 , d2G2} < ∞ always holds. Then following Lemma 1 in (Chen et al., 2018b) we
have that E[XT ] = 0.

Now taking the expectation we have that

E[f(x̂)− f∗] ≤
c

Mη
‖x0 − x∗‖2 +

ηc

M
Then we finish the proof.
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H PROOF OF INEQUALITY (3)

Let us recall the definition of x̂ = proxγf (x).

proxγf (x) = arg min
z
f(z) +

1

2γ
‖z− x‖2 (18)

First, note that when f(z) is µ-weakly convex and γ < µ−1, the above problem is strongly convex
and x̂ = proxγf (x) is well-defined and unique.

By the optimality condition of x̂, it is clear that f(x̂) + 1
2γ ‖x̂− x‖2 ≤ f(x), which proves the first

inequality f(x̂) ≤ f(x). Note that when x = x∗ ∈ arg minz f(z), we can prove that x̂ = x = x∗.
This is because that by definition of x̂, it is unique and satisfies 0 ∈ ∂f(x̂)+ 1

γ (x̂−x). When x = x∗,
we have 0 ∈ ∂f(x) and x∗ clearly satisifes the first-order condition 0 ∈ ∂f(x∗) + 1

γ (x∗ − x). By
the uniqueness of x̂, it follows that x̂ = x∗.

The first-order condition 0 ∈ ∂f(x̂) + 1
γ (x̂− x) also gives that dist(0, ∂f(x̂)) ≤ 1

γ ‖x̂− x‖. Also,
we have∇fγ(x) = 1

γ (x̂−x) (Rockafellar, 1970), which implies the second and the third inequality
in (3).
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