
LightRec: a Memory and Search-Efficient Recommender System
Defu Lian

1
, Haoyu Wang

3
, Zheng Liu

2
, Jianxun Lian

2
, Enhong Chen

1
, Xing Xie

2

1
Anhui Province Key Laboratory of Big Data Analysis and Application, School of Computer Science and Technology &

School of Data Science, University of Science and Technology of China

2
Microsoft Research Asia

3
University at Buffalo

{liandefu,cheneh}@ustc.edu.cn,{zheng.liu,jianxun.lian,xingx}@microsoft.com,hwang79@buffalo.edu

ABSTRACT
Deep recommender systems have achieved remarkable improve-

ments in recent years. Despite its superior ranking precision, the

running efficiency and memory consumption turn out to be severe

bottlenecks in reality. To overcome both limitations, we propose

LightRec, a lightweight recommender system which enjoys fast on-

line inference and economic memory consumption. The backbone

of LightRec is a total of B codebooks, each of which is composed of

W latent vectors, known as codewords. On top of such a structure,

LightRec will have an item represented as additive composition of

B codewords, which are optimally selected from each of the code-

books. To effectively learn the codebooks from data, we devise an

end-to-end learning workflow, where challenges on the inherent

differentiability and diversity are conquered by the proposed tech-

niques. In addition, to further improve the representation quality,

several distillation strategies are employed, which better preserves

user-item relevance scores and relative ranking orders. LightRec is

extensively evaluated with four real-world datasets, which gives

rise to two empirical findings: 1) compared with those the state-of-

the-art lightweight baselines, LightRec achieves over 11% relative

improvements in terms of recall performance; 2) compared to con-

ventional recommendation algorithms, LightRec merely incurs neg-

ligible accuracy degradation while leads to more than 27x speedup

in top-k recommendation.

KEYWORDS
Composite Encoding, Quantization, Online Recommendation, Rec-

ommender System

ACM Reference Format:
Defu Lian

1
, Haoyu Wang

3
, Zheng Liu

2
, Jianxun Lian

2
, Enhong Chen

1
, Xing

Xie
2
. 2020. LightRec: a Memory and Search-Efficient Recommender System.

In Proceedings of The Web Conference 2020 (WWW ’20), April 20–24, 2020,
Taipei, Taiwan. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3366423.3380151

1 INTRODUCTION
Personalized recommendation is an important way to address in-

formation overload, by finding a short list of items with largest

relevance scores.With the development of deep learning techniques,

significant leap-forward has been made recently, particularly with

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380151

those techniques on modeling high-order features [9, 12, 16, 19, 28,

32, 39], sequential behavior [40, 41, 50] and joint incorporation of

text [20, 36], images [7, 14], and knowledge graph [38, 45].

However, one of the notable challenges for today’s recommender

system is running efficiency, as its scale is becoming far more mag-

nificent than ever before. This challenge remains for the models

ranging from the simplest matrix factorization to DSSM [20] and

other matching networks [18, 25], which estimate relevance scores

via inner product, Euclidean distance or cosine similarity between

user representation and item representation. The representation is

learned from their features, which can include unique id of users

or items. Given D-dimensional representation of N items, the rec-

ommendation of the top-k results will incur a time complexity of

O(ND + k logk). With approximate search approaches, such as

hashing [43], PCATree [3], hierarchical metric tree [24], or product

quantization [23], acceleration can be achieved for the recommenda-

tion calculation. However, the search index is usually constructed

independently of the learning of recommendation system; and

sometimes, user-item’s relevance may be expressed in different

ways from the distance metric used by the search index. Because of

such an incompatibility, the recommendation accuracy will proba-

bly get impaired. For example, if user-item’s relevance is expressed

by inner product but the distance metric is based on Euclidean

distance, two items with similar relevance scores may locate in dif-

ferent clusters since inner product is not a valid metric [18]. Apart

from the running efficiency, the memory consumption is another

unneglectable challenge, given that the size of representation pa-

rameters grows linearly with the ever-increasing scale of items. For

example, if items are represented by 256-dim double-precision float

vectors, 10 million items’ representations will take over 9.5 GB of

storage space, which is hard to be deployed into general devices

with limited memory, such as GPU.

To address these challenges, we propose LightRec – a lightweight

recommender system, which enjoys both fast online inference and

economic memory consumption. The backbone of LightRec is a set

of B codebooks, each of which is composed ofW D-dimensional

vectors, known as codewords. These codebooks serve as a basis of

the latent space, with which items can be represented in a highly

compact way. In particular, instead of representing an item with a

D-dimensional float vector, we compose the most similar codeword

within each codebook for representation. Since the binary indica-

tor of whether a specific codeword is included can be compactly

encoded by logW bits, the item is now merely represented with

B ∗ logW bits. As illustrated in the upper part of Fig. 1, where there

are 4 codewords in each of 4 codebooks, each item is encoded with

2 bits in each codebook, and then fully represented with an 8-bit

unsigned integer. By assuming vector length equals bit length, i.e.,

https://doi.org/10.1145/3366423.3380151
https://doi.org/10.1145/3366423.3380151
https://doi.org/10.1145/3366423.3380151

WWW ’20, April 20–24, 2020, Taipei, Taiwan Defu Lian1 , Haoyu Wang3 , Zheng Liu2 , Jianxun Lian2 , Enhong Chen1 , Xing Xie2

i2

i3

i4
i5

i1 11

10

00

00

01

10

00

11

01

11

01

11

00

10

01

00

10

11

01

10

228

142

51

25

118

it
em

 r
ep

re
se

n
ta

ti
o

n

codebook codebook codebook codebook

codeword

i2

i3

i4
i5

i1

it
e
m

 r
e
p
re

se
n

ta
ti

o
n

ite
m

 co
d
e

++ + =

3

2

0

0

1

2

0

3

1

3

1

3

0

2

1

0

2

3

1

2

r1

r2

r3

r4

r5

D

D× × × ×

~

~

~

~

~

predicted
 sco

res

relevance scores for codeword

user representation

Figure 1: Illustration of Memory and Search Efficiency.

D = B logW , the overall memory consumption ofN items turns out

to be
1

8
ND + 4D2W /logW bytes. Back to the aforementioned case

of 10 million items: by settingW = 256 the memory cost will drop

to around 337 MB, which means almost 96.5% reduction. LightRec

also greatly benefits the running efficiency. By storing each user’s

relevance scores for BW codewords in a table (BW ≪ N), as shown

in the lower part of Fig. 1, her relevance scores for items can be

calculated via efficient table look-up, instead of float multiplica-

tion. Moreover, such an encoding scheme can be coordinated with

inverted file system [23] to avoid exhaustive search.

However, it is very challenging to end-to-end train LightRec

since codeword maximum selection is not differentiable and gradi-

ent can not be back-propagated. Noting that softmax is considered

as a soft variant of the max function, we follow [6, 22, 29] to use

tempered softmax to approximate maximum selection of codewords.

To make similarity for selecting codewords compatible with the

relevance function, we propose to parameterize the similarity, so

that LightRec is capable of learning the similarity function from

data. Another difficulty is how to ensure differences among B code-

books, so that composite representation can be as informative as

possible. One may consider to impose diversity regularization [42]

on these codebooks, but computational cost may be comparatively

high, since diversity is required to compute between any two code-

books. Instead, LightRec proposes a recurrent mechanism to learn

diversified codebooks. Concretely, the first codebook is used to

approximate item representation, and the b-th codebook is used to

approximate item residual representation, which subtracts composi-

tion of the firstb−1 codewords from item representation. To further

improve quality of composite representation, we employ several

distillation strategies, which preserve either relevance scores or

relative ranking order as much as possible. The contributions are

summarized as follows:

• Wepropose LightRec – a lightweight recommender system,which

enjoys both fast online inference and economic memory con-

sumption. LightRec reduces memory cost of item representation

by more than 96% and achieves over 27x speedup in top-k rec-

ommendation while leads to negligible accuracy degradation.

• We propose to parameterize similarity for codeword selection

in LightRec, so that the similarity function is able to automati-

cally learn from data. This makes the similarity function more

compatible with user-item’s relevance.

• We develop a recurrent relaxed optimization algorithm to end-

to-end learn codeword assignments and diversified codebooks in

LightRec, and employ several strategies of knowledge distillation

to improve quality of composite representation.

• We extensively evaluate the proposed framework with four real-

world datasets. The experimental results show that LightRec

outperforms the state-of-the-art lightweight baselines by more

than 11% in terms of recall performance. The experimental results

also reveal the effectiveness of recurrent mechanism, knowledge

distillation and side information.

2 RELATEDWORK
2.1 Search-Efficient Recommendation
Search-efficient recommendation is organized into three categories.

The first taxonomy is hashing based recommendation, to learn

binary representation for users and items. Learning can be data-

independent [10, 21, 30, 35, 43], or from real-valued representa-

tion [18, 49, 51] or directly from data [26, 27, 46, 48]. Memory cost

is very low since binary vector can be compactly stored into integers.

User-item relevance based on both inner product and Euclidean

distance can be quickly evaluated by bit-wise CPU operations (such

as xor and popcount) over integers. Top-k recommendation can

be approximately achieved in sublinear time via inverted multi-

index [2, 31]. However, hashing based recommendation usually

suffers from low capacity of representation and low accuracy of

approximate recommendation.

The second taxonomy is index-based recommendation, which

builds search index from real-valued representation. For example,

Koenigstein et al. built a metric tree, a binary space-partitioning

tree, from item representation [24, 33]. Instead of using beam search

for sublinear-time recommendation, they established a new bound

for maximum inner product search and used a simple branch-and-

bound algorithm to efficiently obtain exact top-k recommendation.

Metric tree can be hierarchically built by approximately picking a

pair of pivot points farthest apart from each other, and assigning

points to the closest pivot. Data points are recursively split until the

number of points in the node exceeds a given threshold. Multiple

metric trees were implemented in ANNOY
1
– a open-source library

for similarity search, to improve accuracy of approximate search.

Balanced binary tree can be also used for approximate search [52],

by recursively applying balanced 2-means for data splitting until

each node only contains one data point. Instead of defining node as

the mean of data points, this work learned node representation from

behavior datawhose items are the descendant of this node. However,

search index is built independently of representation learning and

can not learned jointly with recommendation models in an end-to-

end way. Moreover, the metric used for tree construction is based on

Euclidean distance, being incompatible with user-item’s relevance.

The last taxonomy is quantization-based recommendation, where

each item is represented by a semi-structured vector. For example,

1
https://github.com/spotify/annoy

LightRec: a Memory and Search-Efficient Recommender System WWW ’20, April 20–24, 2020, Taipei, Taiwan

User Encoding Item Encoding

MLP Recurrent Composite Encoding

Substract

user positive negativenegativenegative

Lo
ss ×

×

×

codeword

Tempered-Softmax

w
eighted sum

codebook

-

codeword

w
eigh

ted
 su

m

codebook

-

codeword

w
eighted sum

codebook

-

codeword

w
eighted sum

codebook

Figure 2: The framework of LightRec.

product quantization [23] equally divided representation space into

several subspaces, and applied K-means for clustering items in each

subspace, yielding a codebook of each subspace. Each item is then

represented by concatenating center representation in all subspaces.

Optimized product quantization [11] jointly learned space decom-

position and subspace clustering. Composite Quantization [47] and

Additive Quantization [1] did not decompose space but directly

learned multiple codebooks in an iterative way. Residual vector

quantization [8] learned codebooks from residual representation,

which subtracts composition of learned codebooks from item rep-

resentation. The work [13] extended PQ from Euclidean space to

inner product space. However, they are based on either Euclidean

distance or inner product, and leaned independently of representa-

tion learning. Therefore, these works suffers from similar issues to

index-based recommendation. LightRec belongs to this taxonomy.

2.2 Deep Learning-based Recommendation
We organize the literature into two categories, but we don’t con-

sider sequence-based or session-based models. The first is to model

side information including textual data [20, 36], visual data [7, 14],

social networks [37], and knowledge graph [38, 45] via deep learn-

ing techniques. In spite of this, behavior data is still shallowly

modeled based on inner product or Euclidean distance between

user representation and item representation. Deep modeling is eas-

ily achieved by replacing them with a neural architecture. Such

neural networks can be generalized to asymmetric siamese net-

work and regularized by the gravity regularizer [25] for improving

matching accuracy. The advantage of such models is easy to use

the state-of-the art methods for approximate search. The second

is to model feature interaction, since categorical features are more

prevalence in recommender system while they suffer from spar-

sity. Representative work for explicit or implicit interaction mod-

eling include Deep&Wide [9], product-based neural network [32],

neural factorization machine [15], DeepFM [12], XDeepFM [28],

Deep&Cross [39]. We focus on the first taxonomy among these

work, since computing relevance scores can be more efficient. In

the second taxonomy, memory is also straightforwardly reduced if

we replace composite encoding for conventional embedding.

3 MEMORY AND SEARCH-EFFICIENT
RECOMMENDER SYSTEMS

In this section, we will get started with the preliminaries and frame-

work of LightRec; then elaborate the design of LightRec.

3.1 Preliminaries and Analysis
LetM denote the number of users, N denote the number of items.

Reserve u to index user and i to index item. We will use the DSSM-

like network for recommendation, due to the power of modeling

side information, as illustrated in the left part of Fig. 2. In the DSSM-

like network, relevance scores are based on user representation and

item representation. Concretely, users are fed into user encoding

module for obtaining user representation and items are fed into item

encoding module for item representation. Both encoding modules

can be a simple embedding module or the state-of-the-art module,

such as CNN and LSTM, for modeling side information.

Let B denote the number of codebooks,W denote the number of

codewords in each codebook, and cbw ∈ RD denote thew-th code-

word in the b-th codebook. LightRec encodes items by composing

the most similar codeword of each codebook. Concretely, an item’s

representation qi ∈ R
D
is approximately encoded as follows:

qi ≈
B∑
b=1

cb
wb
i
, s.t.wb

i = argmax

w
s(qi ,c

b
w), (1)

where s(qi ,c
b
w) is a similarity function to measuring the similarity

between codeword and item representation. This is totally different

from [6], where codeword assignments are derived only from item

representation qi . The proposed method is thus more effective

for codeword assignment, due to explicit relationship modeling

between item representation and codeword.Moreover, the proposed

method is better connected with Gaussian Mixture model (or K-

means) according to Proposition 2.

In the DSSM-like network, we will use inner product rather than

cosine similarity to estimate relevance scores in the model, since

the computation can be dramatically accelerated in this case and

gradient explosion due to reciprocal of norm can be easily prevented.

Concretely, denoting pu ∈ RD user representation outputted by

MLP, the relevance score is defined as

r̂ui = ⟨pu ,qi ⟩ ≈
B∑
b=1

⟨pu ,c
b
wb
i
⟩. (2)

In the testing stage, qi is discarded and only codeword indices in

each codebook, i.e. [w1

i , · · · ,w
B
i] ∈ {1, · · · ,W }B , are stored with

the codebooks. Therefore, memory cost of N items is reduced from

4ND bytes to
1

8
NB logW + 4DBW bytes, where codeword index

in each codebook is compactly encoded by logW bits. In practice,

we assume code length of composite encoding is equal to the di-

mension of representation, i.e., B logW = D, and set the number

WWW ’20, April 20–24, 2020, Taipei, Taiwan Defu Lian1 , Haoyu Wang3 , Zheng Liu2 , Jianxun Lian2 , Enhong Chen1 , Xing Xie2

of codewordsW = 256. The memory cost of N items becomes

1

8
ND + 128D2

bytes. For 10 million items, memory cost of item rep-

resentation is reduced from over 9.5GB to around 337MB. Consider

scoring all items for a user, time complexity is reduced from O(ND)
to O(N +DBW), since the relevance scores are computed by looking

up a table. The table stores user relevance scores for BW codewords,

as illustrated in Fig 1. In practice, exhaustive search can be avoided

via inverted file system [23], so only a part of items are required

to score. Therefore, composite encoder is usually coordinated with

the use of inverted file system.

Belowwe establish theoretical connection between composite en-

coding and generalized low-rank factorization of item presentation

matrix. Note that the result is different from [6], whose approxima-

tion is based on Euclidean distance instead of inner product.

Proposition 1. Composite encoding is equivalent to a generalized
binary low-rank factorization of item representation matrix with
respect to user representation matrix.

The proof is provided in the appendix.

It is straightforward to first learn item representation in the

network, and then feed them into vector quantization methods to

learn codebooks and codeword assignments, but inner product is

incompatible with Euclidean distance used for vector quantization.

Moreover, user representation and item representation may be not

best suitable for vector quantization. Therefore, it is especially im-

portant to end-to-end learn codebooks and codeword assignments.

3.2 Continuous Relaxation
Given the estimation of relevance scores r̃ui =

∑B
b=1⟨pu ,c

b
wb
i
⟩, we

can use them to formulate the loss function of recommendation.

We can use any differentiable loss function. Here we adopt the

commonly-used BPR loss in recommender system [34], which is

defined as follows:

L =
∑
(u ,i)

∑
j<Iu

− logσ (r̃ui − r̃uj) + λ∥Θ∥2, (3)

where σ (x) = 1/(1+e−x). λ∥Θ∥2 is a regularization term to prevent

overfitting. However, this objective function is non-differentiable

due to the maximum selection operator in codeword assignment.

Codeword selection in each codebook can be expressed by multipli-

cation, as long as codeword index is transferred into an one-hot vec-

tor. Belowwe focus on discussion of the b-th codebook and drop the

superscript b for concise representation. Assume ei = one-hot(wi)

is one-hot representation of codeword index of item i in the b-th
codebook, wherewi = argmaxw s(qi ,cw). Then the most similar

codeword cwi = Cei , whereC ∈ RD×W
is a codeword matrix in the

b-th codebook. The maximum can be relaxed by tempered softmax,

since softmax is a soft variant of the max function. Concretely, the

w-th element of ei

ei [w] ≈ ẽi [w] =
exp(s(qi ,cw)/T)∑
w ′ exp(s(qi ,cw ′)/T)

. (4)

When T → 0, the approximation becomes exact. Finally, the most

similar codeword cwi ≈ Cẽi . However, it is important to control

temperature T , which should be neither too large nor too small.

To make the similarity function for codeword selection compati-

ble with relevance function based on inner product, we learn the

similarity function from the data, which is parameterized in a very

general manner,

s(qi ,cw) = qTi Wcw + ⟨w1,qi ⟩ + ⟨w2,cw ⟩, (5)

which can be connected with Euclidean distance (whenW = −2I ,
w1 = qi , w2 = cw), Mahalanobis Distance (when W = −2Z ,

w1 = Zqi , w2 = Zcw), scaled inner product (whenW = 1/
√
DI ,

w1 = 0,w2 = 0) and inner product. Given the similarity function,

the next proposition provides a good interpretation of Eq (4).

Proposition 2. ẽi [w] can be considered as the posterior probabil-
ity that item representation qi belongs to clusterw , when s(qi ,cw) =

−∥qi − cw ∥2.

The proof is provided in the appendix. In this case, if reconstruc-

tion error ∥qi −Cẽi ∥ is considered as the objective function, this

is equivalent to learning Gaussian mixture model.

Such a general similarity function leads to the following useful

properties, which help us to derive a concise equation for recurrent

composite encoding in next subsection.

Proposition 3. Both ei and ẽi are invariant to codebook scaling.

The proof is provided in the appendix. In other words, multiply-

ing codebook with a positive number does not alter ei and ẽi .
Till now, the continuous relaxation ẽi is used to approximate ei

for back-propagation. When estimating relevance scores, we should

directly use ei instead of ẽi , to be consistent with online recom-

mendation. To close the gap between forward pass and backward

pass, we follow a similar idea to Straight-Through Estimator [4], to

rewrite ei as follows

êi = ẽi + stop_gradient(ei − ẽi), (6)

where the stop_gradient operator will prevent the gradient from

back-propagating through it. In the foward pass, stop_gradient does

not take affect, êi = ei = one-hot(argmaxw s(qi ,cw)). One one

hand, this indicates only the most similar codeword in each code-

book is always used for inference, i.e., estimating relevance scores

and loss values. On the other hand, the temperatureT → 0 is set in

the forward pass. In the backward pass, stop_gradient takes affect,

so ∇ê iL = ∇ẽ iL. Since a larger T is usually used, gradient can

back-propagate through it. Therefore, based on tempered softmax

and stop_gradient tricks, this framework is capable of end-to-end

learning composite representation.

3.3 Recurrent Composite Encoding
After continuous relaxation, the network can be end-to-end trained

by any available solvers like SGD and ADAM. Since composite

encoding directly sums the most similar codeword in each of B
codebooks, codebooks should be distinguished from each other. If

codebooks are exactly the same, only one of B codebooks is use-

ful. Random initialization to centers may take some effect, just as

K-means algorithm can produce different clustering results when

selecting different center points. A more appealing way is to design

some strategies to ensure their differences. Note that composite

encoding can be considered as cluster ensemble, a straightforward

way is to impose diversity regularizer (e.g. squared Frobenius norm,

von Neumann divergence, or log-determinant divergence [42]) over

LightRec: a Memory and Search-Efficient Recommender System WWW ’20, April 20–24, 2020, Taipei, Taiwan

codebooks, since diversity of base learners in ensemble learning im-

proves generalization error [44]. However, since regularizer should

be imposed between any two codebooks, there are total
B(B−1)

2

terms in the regularizer. The time cost may be comparatively high.

Moreover, these regularizers are usually vulnerable to permuta-

tion of codewords. In other words, if one codebook is composed

of codewords in another codebook with permutation, the diversity

regularization is non-zero. The larger the regularization is, the more

diverse codebooks are.

In this paper, we propose Recurrent Composite Encoding to learn

diversified codebooks. Concretely, as illustrated in Fig. 2, the code-

books are sequentially learned, where the b-th codebook is learned

from item residual representation, which subtracts composition of

the first b − 1 codewords from item representation. Let yb be the

most similar codeword in the b-th codebook, i.e., yb = cb
wb , and

Q(x |Cb) : RD → RD be a function to quantize xb = xb−1 −yb−1

with codebookCb
, such that yb = Q(xb |Cb). The recursive equa-

tion can be unfolded as follows

yb = Q(x1 −
b−1∑
t=1

yt |Cb), (7)

where x1 = q is item representation, as input of the recurrent

composite encoding module. Recurrent composite embedding can

be well interpreted by the following proposition.

Proposition 4. Recurrent composite encoding learns the encoding
function by following gradient descent of reconstruction error with
respect to the encoding function.

The proof is provided in appendix. Note that weighting each code-

book is not necessary any more due to the absorption of weights

into codebooks according to Proposition 3.

Based on this result, recurrent composite encoding is connected

with gradient boosting, so it can provides diversified codebooks

for quantization functions. Significantly different from gradient

boosting, recurrent composite encoding is trained in an end-to-end

manner, and much easier to extend. For example, since input to

the b-th quantizer is xb = xb−1 − yb−1, it can be generalized to

xb = ϕ(xb−1,yb−1). Therefore, this can be intuitively implemented

by RNN, where yb−1 is input and xb−1 is state. This is also the

reason that this method is called recurrent composite encoding. We

will pay special attention to the following two cases. The one is

xb = xb−1 −Wyb−1 and the other one is xb =W 1xb−1 −W 2yb−1.
These two cases may better align codewords with item residual

representation. They are especially useful when codeword and item

representation are not of the same dimension.

3.4 Knowledge Distillation
Though LightRec can be end-to-end trained by adjusting parame-

ters according to noisy gradient from the end task, it fails to well

learn item representation and representation network (when side

information is available). The main reason is that LightRec does

not understand the goodness of item representation but only the

goodness of item’s composite representation. It is possible to add a

shortcut before and after recurrent composite encoding to allow the

end task to guide the learning of item representation [6], however,

the quality of representation is still not as good as expected. In

this part, we focus on how to distill knowledge from pre-trained

representation, where the basic idea is to enforce composite rep-

resentation to mimic pre-trained item representation. Note that

representation can be simultaneously learned well with composite

encoder as long as item representation and item’s composite encod-

ing are respectively fed into different loss functions for multi-task

learning. However, this is independent of the design of knowledge

distillation, and thus left for future work.

As illustrated in Fig. 2, let qi and yi denote input and output of

recurrent composite encoding, respectively. The first strategy is to

minimize reconstruction error, i.e., the ℓ2 distance between them

LE−KD = ∥qi −yi ∥
2. (8)

During training, LE−KD is added into the loss L to train jointly.

Since relevance score is estimated based on inner product, it is

more appealing to preserve inner product, that is

LI P−KD = ∥P1qi − P2yi ∥
2

(9)

where PT
1
and PT

2
are user representation of all users. The reason to

use two distinct user representations lies in significant differences

between real-valued vector representation and composite represen-

tation and its superiority to a single user representation according

to our empirical observation. However, to reduce the number of pa-

rameters, we can derive P2 from P1 via MLP, as illustrated in Fig. 2.

To reduce the time complexity, which is now in linear proportion

to the number of users, we rewrite the loss:

LI P−KD =
[
qTi yTi

] [PT
1
P1 −PT

1
P2

−PT
2
P1 PT

2
P2

] [
qi
yi

]
. (10)

As long as we cache PT
1
P1, P

T
1
P2 and P

T
2
P2, and dynamically update

them when P1 and P2 are updated, the computational cost can be

reduced to O(D2). The techniques for caching and updating these

matrices can refer to [25] and are not elaborated any more.

The last strategies is to preserve ranking order of items with

respect to a specific user. However, this task is very challenging,

one one hand, because the order is discrete and not differentiable,

on the other hand because there are so many items available. Pre-

serving relative order of top-k preferred items via pairwise/listwise

ranking losses seems a good and efficient method. However, we

observe that such losses are very difficult to reduce. Note that we

use SGD for optimizing LightRec, where for each positive item of

a user, we randomly sample a fixed number of items as negative.

Therefore, we propose to preserve the relative order of the negative

samples. Denoting these L negative samples by j1, · · · jL , ranking
preservation loss is formulated by following a list-wise ranking

loss [5]:

LR−KD = −
∑
l

exp(⟨p
1u ,qjl ⟩/T)∑

l ′ exp(⟨p1u ,qjl ′ ⟩/T)
log

exp(⟨p
2u ,y jl ⟩/T)∑

l ′ exp(⟨p2u ,y jl ′ ⟩/T)

(11)

where

exp(⟨p
1u ,q jl

⟩/T)∑
l ′ exp(⟨p1u ,q jl ′

⟩/T) is considered the top one probability of

the item jl , being ranking on the top, and cross entropy is used to

measure difference between two probability distributions. And p
1u

and p
2u are the u-th row of matrices P1 and P2 respectively. The

objective function is usually used together with LI P−KD , and both

of them are added into the task specific loss L for training.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Defu Lian1 , Haoyu Wang3 , Zheng Liu2 , Jianxun Lian2 , Enhong Chen1 , Xing Xie2

4 EXPERIMENTS
In this part, we firstly compare the proposed LightRec with base-

lines, including state-of-the-art lightweight algorithms, and then

study the effect of modeling side information and post-ranking.

Following that, we conduct ablation study for investigating effec-

tiveness of each component in LightRec. Finally, we show efficiency

improvement and memory reduction of LightRec due to composite

representation.

4.1 Experiment Settings
4.1.1 Dataset. Weuse four public real-world datasets, includingCi-
teULike, Gowalla, Amazon and MovieLens, to evaluate the proposed

algorithm. Because Amazon and MovieLens are explicit feedback

data, we set ratings higher than 3 as positive samples, to convert

them into implicit feedback data. In addition, due to the extreme

sparsity of the datasets, we filter users who have less than 3 ratings.

Table 1 summarizes the filtered datasets. For each user, we ran-

domly sample 80% positive samples as training and the remaining

as test. 10% of training data are held-out for validation. We repeat

five random splits and report the averaged results.

Table 1: Statistics of datasets

Dataset #User #Item #Rating Density

CiteULike 7,947 25,975 107,154 0.052%

Gowalla 29,858 40,988 822.358 0.067%

Amazon 157,465 128,939 3,031,673 0.015%

MovieLens 69,662 8,939 4,702,571 0.755%

4.1.2 Comparison Methods. We compare the proposed LightRec

and a variant LightRec+, which incorporates textual information,

with the following baselines:

• BPR [34], as the upper bound of LightRec, is a matrix factoriza-

tion method based on the Bayesian Personalized Ranking loss.

It has been one of the most widely-used methods for implicit

feedback data. It is implemented in the tensorflow framework

and optimized by ADAM. For each positive item of a user, we

randomly sample a fixed number of unobserved items as negative.

• KDE [6], K-way D-dimensional Encoding, can be considered the

state-of-the-art composite encoding to end-to-end train, but it

is not specially designed for recommender system. Its codeword

selector is only based on item representation, and no constrains

are imposed on codebooks.

• RVQ [8], Residual Vector Quantization, quantizes residual item

representation each time via K-means clustering by minimizing

reconstruction error. This algorithm is not end-to-end trained

but a two-stage solution.

• OPQ [11], Optimized Product Quantization, jointly optimizes

space decomposition and reconstruction error. It is an improved

version of Product Quantization [23], and a two-stage solution.

• DCMF [26], the state-of-the-art hashing-based collaborative fil-

tering with side information. Binary codes are directly learned

from the end task, similar to LightRec, but representation space

is smaller than LightRec.

• DSSM [20], as the upper bound of LightRec+, is a deep structured

semantic model for CTR prediction and recommendation with

textual information. DSSM maps bag-of-words representation

with word hashing to latent semantic vector via multilayer per-

ceptron. For fair comparison, we also leverage inner product to

estimate relevance scores and optimize the BPR loss.

Remarks: Here we only include BPR and DSSM as the baselines

for conventional recommendation models because BPR and DSSM

bounds LightRec and LightRec+ from the above in terms of model

capacity, and the margin between them exactly tells information

loss due to composite representation. Other advanced algorithms

can not be fairly compared, so they are not included.

4.1.3 Evaluation Metric. Since a practical recommender system is

to perform top-k recommendation, we retrieve the top-k preferred

items for each user based on relevance scores from all unobserved

items and evaluate the top-k ranking list against positive items in

the test set. We use two common metrics in recommender system –

NDCG and Recall. Recall@k, recall at a cutoff k, is the proportion

of positive items in the top-k ranking list over the total number of

positive items in the test set. NDCG@k, NDCG at a cutoff k, rewards

methods that ranks positive items at the top of the ranking. The

positive items at bottom positions of the ranking list contribute less

to the final score than that at the top positions. NDCG (i.e., without

a cutoff) indicates an average of NDCG@Nu , where Nu denotes

the number of positive items of user u in the test set. Recall does

better in assessing item recalling while NDCG is good at measuring

how well “ground-truth” items are ranked. We will report NDCG,

Recall@100 and NDCG@k, where k ranges from 10 to 100.

4.1.4 Parameter Settings. The dimension of representation space

is set to D = 32 by default. The number of codewords in each

codebook is set to K = 256, such that codeword indexes are com-

pactly encoded by 1 byte. The number of codebooks is set to 4,

such that binary code length just equals to 32 bits. For DCMF, we

tune α , λ on the validation set by grid search over {1e-4,1e-3,1e-

2,1e-1,1e0,1e1,1e2} and β on the validation set by grid search over

{1e-6,1e-5,1e-4,1e-3,1e-2,1e-1,1e0}. For OPQ, each subspace is of di-

mension 8, and clustered into 256 groups. For BPR, KDE, LightRec

and the variant, we set batch size 1024, learning rate 0.001 and

regularization coefficient 0.001 on all datasets. For every positive

item of a user, we randomly sample 5 negative samples from unob-

served items. Though temperature schedule is very important for

approximating the max function with tempered softmax, we find

that the temperature lower than 1 performs well. Therefore, we

set the temperature in Eq (4) to 0.9. The temperature in Eq (11) is

set 0.5 by following [17]. The coefficient of knowledge distillation

losses is tuned on the validation set by grid search over {1e-10,1e-

9,1e-8,1e-7,1e-6,1e-5,1e-4}.

4.2 Comparison with Baselines
Table 2 and Fig. 3 show the results of comparison with baselines.

From them, we have following important findings.

• LightRec dramatically outperforms the state-of-the-art lightweight
baselines in terms of recall performance. On average, LightRec has

more than 11.56% improvements with respect to Recall@100 and

over 6.59% improvements with respect to NDCG. Note that Recall

is a better metric of the item recalling task, so the improvements

are remarkable. In more details, the relative improvements to the

LightRec: a Memory and Search-Efficient Recommender System WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 2: Comparison with baselines in the four datasets.

CiteULike Gowalla Amazon MovieLens10M

Recall@100 IMP(%) Recall@100 IMP(%) Recall@100 IMP(%) Recall@100 IMP(%) AVG_IMP(%)

BPR 0.3288 -4.47 0.3653 -6.30 0.1983 -13.36 0.6194 -2.34 -6.62

KDE 0.2846 +10.37 0.3024 +13.19 0.1371 +25.30 0.5711 +5.92 +13.70

RVQ 0.2845 +10.40 0.3198 +7.04 0.1437 +19.55 0.5537 +9.25 +11.56

OPQ 0.2799 +12.22 0.3050 +12.23 0.1444 +18.98 0.5610 +7.83 +12.82

DCMF 0.2181 +44.02 0.2507 +36.54 0.1213 +41.63 0.4510 +34.12 +39.08

LightRec 0.3141 - 0.3423 - 0.1718 - 0.6049 - -

CiteULike Gowalla Amazon MovieLens10M

NDCG IMP(%) NDCG IMP(%) NDCG IMP(%) NDCG IMP(%) AVG_IMP(%)

BPR 0.2237 -3.44 0.3065 -4.01 0.1958 -4.90 0.5061 -1.52 -3.46

KDE 0.1965 +9.92 0.2678 +9.85 0.1722 +8.13 0.4714 +5.73 +8.41

RVQ 0.2014 +7.25 0.2505 +5.45 0.1748 +6.52 0.4652 +7.14 +6.59

OPQ 0.1995 +8.27 0.2653 +10.89 0.1748 +6.52 0.4542 +9.73 +8.85

DCMF 0.1745 +23.78 0.2509 +17.26 0.1661 +12.10 0.3902 +27.73 +20.22

LightRec 0.2160 - 0.2942 - 0.1862 - 0.4984 - -

Position: k

0 20 40 60 80 100

N
D

C
G

0.05

0.1

0.15

0.2

BPR

LightRec

LightRec(PR)

KDE

(a) Gowalla

Position: k

0 20 40 60 80 100

N
D

C
G

0.2

0.25

0.3

0.35

0.4

BPR

LightRec

LightRec(PR)

KDE

(b) MovieLens10M

Position: k

0 20 40 60 80 100

N
D

C
G

0.04

0.06

0.08

0.1

0.12

0.14

BPR

LightRec

LightRec(PR)

KDE

(c) CiteULike

Position: k

0 20 40 60 80 100

N
D

C
G

0

0.02

0.04

0.06

0.08

BPR

LightRec

LightRec(PR)

KDE

(d) Amazon

Figure 3: The performance of LightRec with Post Ranking, i.e. LightRec(PR).

state-of-the-art end-to-end composite encoding are up to 13.70%

on average with respect to Recall@100while the relative improve-

ments to the state-of-the-art hashing-based recommendation are

up to 39.08%.

• End-to-end codebook learning leads to superior performance of item
recalling. This can be observed by comparing LightRec with RVQ,

since RVQ also quantizes item residual representation. The main

difference between them lies in the end-to-end framework, which

enables to plug in a general similarity function so as to better

align with the relevance function based on inner product.

• Recurrent mechanisms can remarkably promote the quality of code-
books. This is based on the superiority of LightRec to KDE. We

know that both of them are end-to-end trained, but LightRec uses

the recurrent mechanism to learn multiple codebooks while KDE

purely depends on random initialization. Though they are also

different in modeling codeword selection, the recurrent mecha-

nism is the main difference. This can also be observed in later

ablation study.

• Hashing-based recommendation can not show comparable perfor-
mance to quantization-based recommendation. This is indicated
by the worst performance of DCMF, though it is the state-of-

the-art algorithm to learn binary codes from the end task. This

is mainly because representation capacity of binary Hamming

space is much smaller than semi-structured vector space used

in LightRec. Therefore, when mapping item presentation into

binary Hamming space, much more information will be lost, and

recommendation performance will be degraded more.

• Without post ranking, LightRec shows comparatively worse perfor-
mance than BPR, and the gap between them is very small. How
to narrow the performance gap between recommendation algo-

rithm and the approximation is a key research problem. This is

achieved by increasing representation capacity by replacing Ham-

ming space with semi-structured vector space, and improving

the quality of approximate representation by the use of recur-

rent mechanism, a general yet compatible similarity function

and knowledge distillation. Finally, without post reranking, the

performance degradation of LightRec is only 6.62% with respect

to Recall@100 on average and 3.46% with respect to NDCG.

• Recommendation models are more precisely approximated in the
denser datasets. This is based on the observation that LightRec

is best trained in the densest MovieLens dataset, leading to the

smallest margin from BPR. However, in the sparsest Amazon

dataset, the margin between LightRec and BPR is the largest. The

possible reason is that there are more useful interactions between

user and item in the denser dataset, from which both codebook

and representation can be better learned.

WWW ’20, April 20–24, 2020, Taipei, Taiwan Defu Lian1 , Haoyu Wang3 , Zheng Liu2 , Jianxun Lian2 , Enhong Chen1 , Xing Xie2

Table 3: The effect of features for LightRec.

Recall@100 NDCG

CiteULike Amazon CiteULike Amazon

BPR 0.3288 0.1983 0.2237 0.1958

DSSM 0.3726 0.2097 0.2364 0.2017

LightRec 0.3141 0.1718 0.2160 0.1862

LightRec+ 0.3490 0.2198 0.2227 0.2048

4.3 Effectiveness of Side Textual Information
4.3.1 Settings. Following the comparison with baselines, we study

the power of modeling textual information in LightRec, to under-

stand the effect of side information for learning composite repre-

sentation. This variant, denoted by LightRec+, is evaluated with the

CiteULike and Amazon datasets, both of which is provided with

abundant reviews. We follow DSSM to process review text. The

generated semantic vector representation is concatenated with item

embedding for final item representation. Table 3 and Fig. 4 show

the results of comparison.

4.3.2 Findings – Side information leads to improvements of both
item recalling and item ranking. This is indicated by the superiority

of DSSM to BPR and the superiority of LightRec+ to LightRec. In

more details, the improvements for item ranking are 13.32% with

respect to Recall@100 and 5.68% with respect to NDCG in the Ci-

teUlike dataset, while item recalling is improved by 11.11% with

respect to Recall@100 and 3.10% with respect to NDCG. The im-

provements in item recalling are comparatively smaller than item

ranking. In the Amazon dataset, LightRec is improved by 27.94%

with respect to Recall@100 and 9.99% with respect to NDCG, while

DSSM only outperforms BPR by 5.75% with respect to Recall@100

and 3.01% with respect to NDCG. The improvements of item recall-

ing are surprisingly much larger than item ranking. Noting that

the Amazon dataset is much sparser, this result can be explained by

the role of regularization which composite encoding plays, since

DSSM is more likely to overfit in the sparse dataset. It is worth

mentioning review texts are only processed simply, so these results

well illustrate the great flexibility of LightRec.

Position: k

0 20 40 60 80 100

N
D

C
G

0.06

0.08

0.1

0.12

0.14

0.16

DSSM

LightRec+

BPR

LightRec

LightRec+(PR)

(a) CiteULike

Position: k

0 20 40 60 80 100

N
D

C
G

0.03

0.04

0.05

0.06

0.07

0.08

0.09

DSSM

LightRec+

BPR

LightRec

LightRec+(PR)

(b) Amazon

Figure 4: The effect of features for LightRec with Post Rank-
ing, i.e., LightRec+(PR).

4.4 Study of Post-Ranking
4.4.1 Settings. LightRec learns composite encoding for items, with

the aims of fast recalling potentially positive items. The ranking of

these candidate items can be improved by post-ranking according

to exact recommendation models. In this part, we investigate the

effect of post ranking. Concretely, we use LightRec (LightRec+) to

firstly recall top-500 items and leverage BPR (DSSM) to post-rank

these items. To better understand how well these items are ranked,

particularly in the first few positions, we only show NDCG@k in

Fig. 3 and Fig. 4, where k ranges from 10 to 100.

4.4.2 Findings – Post-ranking dramatically improves ranking of
candidate items recalled by LightRec/LightRec+; With post-ranking,
LightRec/LightRec+ only achieves negligible performance degradation.
The first finding is evidenced by the superiority of LightRec(PR)

to LightRec and KDE, and the superiority of LightRec+(PR) to

LightRec+. The second finding is indicated by observations that

the yellow (purple) dashed line are almost coincident with the blue

line in Fig. 3 (Fig. 4). Both findings imply that candidate items re-

called by LightRec include most positive items returned by BPR,

but not in a completely accurate order. More advanced algorithms

should further improve recommendation accuracy, since their per-

formance bounds that of LightRec from the above. This is better

implied in Fig. 4, where LightRec+(PR) does not surpass DSSM

while LightRec+ recalls more positive items than DSSM according

to Table 3. Another interesting observation is that without side

information, LightRec benefits more from post-ranking in sparser

dataset like Amazon. This is evidenced in Fig. 3 by the largest im-

provements in the Amazon dataset due to post-ranking. In other

words, LightRec easily suffers from sparsity issue. When side infor-

mation is available, LightRec+ alleviates the sparsity issue and even

prevents it to overfit, as shown in right figure of Fig. 4 and Table 3.

4.5 Effectiveness of Recurrent Mechanisms
One key idea of LightRec is to exploit recurrent mechanisms to

ensure codebook divergence. Therefore, in this part, we study the

effect of recurrent mechanisms in LightRec, by considering the

following three recurrent modeling methods: 1) xb = xb−1 −yb−1;

2) xb = xb−1 −Wyb−1, whereW is a learnable matrix to align

codeword with residual representation; 3) xb =W 1xb−1−W 2yb−1,
whereW 1 andW 2 are learnable matrices. Note that if xb = xb−1,
then xb = x1 = q. This is a non-recurrence based method in the

state-of-the-art end-to-end composite encoding [6]. The results of

study in the CiteULike and Gowalla datasets are shown in Table 4,

and the findings are summarized as follows.

• Recurrent mechanism remarkably improves the performance of
LightRec in recalling candidate items. This can be observed by

comparing the first two rows in the table. The improvements are

more than 15% with respect to Recall@10 and more than 10%

with respect to NDCG in both datasets. This implies the signifi-

cant effect of ensuring the diversity of codebooks. Therefore, the

proposed recurrent mechanism is not only theoretically guaran-

teed, but also empirically well-performing, playing an important

role in learning LightRec.

• Three methods for modeling recurrence are not significantly dif-
ferent from each other. The main reason lies in the additive com-

position of codewords, so that only the first method is best suit-

able for recurrence modeling. However, other two methods are

useful when codewords and representation are not of the same

dimension or even not in the same type of space. For example,

LightRec: a Memory and Search-Efficient Recommender System WWW ’20, April 20–24, 2020, Taipei, Taiwan

codewords are in Hamming space while representation are in

real space. When composition is based on more complex func-

tions, such as LSTM, they should also be useful, but may require

nonlinear transformation.

Table 4: Effectiveness study of recurrent mechanisms in the
CiteULike and Gowalla datasets.

xb = ϕ(xb−1,yb−1)
Recall@100 NDCG

CiteULike Gowalla CiteULike Gowalla

xb−1 0.2718 0.2956 0.1961 0.2616

xb−1 −yb−1 0.3141 0.3423 0.2160 0.2942

xb−1 −Wyb−1 0.2911 0.3426 0.2067 0.2938

W 1xb−1 −W 2yb−1 0.2934 0.3375 0.2066 0.2910

4.6 Effectiveness of the Similarity Functions
The other key idea of LightRec is the general similarity function, to

be compatible with the relevance function. Since the proposed simi-

larity function is a variant of bilinear, it is denoted by Bilinear in this

part. To investigate its effect, we compare it with representation-

only score s(q,c) = f (q); dot product based similarity: s(q,c) =

⟨q,c⟩; scaled inner product based similarity: s(q,c) = 1/
√
D⟨q,c⟩,

where D is the dimension of q; and Euclidean distance based simi-

larity: s(q,c) = −||q − c | |2
2
. Table 5 reports the results, from which

we have the following findings.

• Codeword selector based on similarity selects better codewords than
that purely based on item representation. This is evidenced by the

inferiority of representation-only score to most of other similar-

ity. In the best case, the improvements are more than 10.4% with

respect to Recall@100 in the CiteULike dataset and more than

6.4% in the Amazon dataset. This reveals the importance of mod-

eling relationship between item representation and codewords

for selecting better codewords.

• Bilinear based similarity is best for codeword selector, since Bilin-
ear performs best among the four similarity functions. Notice

that Bilinear is the only parameterized similarity, whose parame-

ters can be learned from data, so the similarity function is more

compatible with the relevance function based on inner product.

This addresses performance degradation due to the inconsistency

from Euclidean distance based similarity. Moreover, inner prod-

uct and scaled inner product are special cases of Bilinear, whose

superiority and flexibility become apparent.

Table 5: Effectiveness of the similarity functions in the Ci-
teULike and Gowalla datasets.

s(q,c)
Recall@100 NDCG

CiteULike Gowalla CiteULike Gowalla

f (q) 0.2846 0.3216 0.2009 0.2851

⟨q,c⟩ 0.2851 0.3332 0.2011 0.2888

1/
√
D⟨q,c⟩ 0.3036 0.3370 0.2111 0.2895

Bilinear 0.3141 0.3423 0.2160 0.2942

−||q − c | |2
2

0.2913 0.3357 0.2061 0.2916

4.7 Effectiveness of Knowledge Distillation
We then study effect of knowledge distillation by comparing Eu-

clidean based Knowledge Distillation (E-KD), Inner Product based

Knowledge Distillation (IP-KD), and Ranking and Inner Product

based Knowledge Distillation (RIP-KD). LightRec without guidance,

denoted by “No KD”, is also included for comparison, as shown

Table 6. The observations are summarized as follows.

• Knowledge distillation improves the quality of composite represen-
tation, based on the superiority of E-KD, IP-KD and RIP-KD to

“No KD”. The main reason is that the end task can not guaran-

tee the quality of representation due to the sparsity issue and

optimization challenge. The auxiliary distillation loss can help

to guide learning better composite representation for items. This

also indicates the difficulty of learning good composite represen-

tation in an end-to-end framework.

• Preserving inner product may be more important for recommen-
dation, according to the superiority of IP-KD to E-KD. This is

because inner product is used to estimate relevance scores. Rank-
ing based knowledge is useful but difficult to preserve, since RIP-
KD is slightly better than IP-KD. It is well-known that top-k

recommendation is the ultimate goal of recommender system,

preserving relative order of top-k preferred itemswill be carefully

investigated in future work within the current framework.

Table 6: Effectiveness of knowledge distillation in the CiteU-
Like and Gowalla datasets.

Recall@100 NDCG

CiteULike Gowalla CiteULike Gowalla

No KD 0.3044 0.3309 0.2087 0.2900

E-KD 0.3187 0.3389 0.2134 0.2919

IP-KD 0.3133 0.3423 0.2151 0.2942

RIP-KD 0.3141 0.3439 0.2160 0.2939

4.8 Study of Memory and Search Efficiency
4.8.1 Settings. We vary the number of candidate items recalled by

LightRec, from 100 to 500, and evaluate DCMF, LightRec and BPR

in the the Amazon dataset, in which there is the largest number of

items. We then report the recommendation performance in Fig 5

and speedup ratio of DCMF and LightRec to BPR in Table 7. Note

that the recalled items are post-ranked by BPR and the time cost of

post-ranking is included into online inference. The compress ratio

of item representation is also reported in Table 7

4.8.2 Findings – LightRec incurs significant speedup of top-k rec-
ommendation while leads to negligible accuracy degradation, and
dramatically reduces memory consumption. In LightRec, item repre-

sentation can be compressed by 25x, and top-k recommendation

can be accelerated by 27x when the degradation of recommendation

performance in terms of both Recall and NDCG can be negligible.

In DCMF, compress ratio of item representation is larger, due to

excluding codebooks, and speedup ratio of top-k recommendation

is slightly higher than LightRec, due to saving time for comput-

ing relevance scores for codewords. However, the performance of

WWW ’20, April 20–24, 2020, Taipei, Taiwan Defu Lian1 , Haoyu Wang3 , Zheng Liu2 , Jianxun Lian2 , Enhong Chen1 , Xing Xie2

recommendation degrades much more. In order to reduce perfor-

mance degradation, more candidate items are required to recall. As

discussed before, this lies in much smaller representation capac-

ity of binary Hamming space. This finding confirms that LightRec

strikes a better balance between accuracy and efficiency of online

recommendation.

Table 7: Speedup ratio of DCMF and LightRec to BPR in the
Amazon dataset, and compress ratio of item representation.

Speedup ratio (k=100–500)

Compress ratio

100 200 300 400 500

LightRec 31.10 28.95 27.23 26.78 25.27 25.51

DCMF 32.86 30.42 28.26 26.30 25.40 31.99

The number of top items for reranking

100 200 300 400 500

R
e

c
a

ll@
1

0
0

0.1

0.12

0.14

0.16

0.18

0.2

DCMF

LightRec

BPR

The number of top items for reranking

100 200 300 400 500

N
D

C
G

@
1

0
0

0.055

0.06

0.065

0.07

0.075

0.08

DCMF

LightRec

BPR

Figure 5: Performance comparison of DCMF and LightRec
with BPR in the Amazon dataset.

5 CONCLUSION AND FUTUREWORKS
In this paper, we propose LightRec – a lightweight recommender

system. LightRec can reduce memory consumption of item repre-

sentation bymore than 96%, making it possible to load a tremendous

pool of items into main memory once a time. The core of LightRec

is recurrent composite encoding, which can be implemented by a

custom layer and easily plugged into deep recommendation models.

The extensive experiments with four real-world datasets show that

LightRec outperforms the state-of-the-art lightweight baselines by

more than 11% in terms of recall performance. Compared to con-

ventional recommendation algorithms, LightRec only leads to neg-

ligible accuracy degradation while achieves more than 27x speedup

in top-k recommendation. Future works can include designing new

efficient methods for learning codebooks and investigating more

effective strategies of ranking preserved distillation.

ACKNOWLEDGMENTS
The work was supported by grants from the National Natural

Science Foundation of China (Grant No. 61976198, 61727809 and

61832017).

A PROOFS OF PROPOSITIONS
Proof of Proposition 1

Proof. Codedword indices of each item are represented as con-

catenation of B one-hot vectors, ei = [e1i , · · · ,e
B
i], where e

b
i is a

one-hot vector of lengthW . Codebooks are correspondingly orga-

nized as a matrixC ∈ RD×BW
. We have

∑B
b=1 c

b
wb
i
= Cei . Recalling

we approximate inner product, i.e., ⟨pu ,qi ⟩ ≈ ⟨pu ,Cei ⟩. The ap-
proximation is achieved by minimization the objective function

1/M
∑
u ∥Qpu−EC

Tpu ∥
2 = 1/M ∥QPT −ECT PT ∥2F = 1/M tr[(Q−

ECT)PT P(Q − ECT)T]. Moreover, each row of matrix E is a sparse

binary vector, since only 1/W of entries are non-zero. Following the

definition of generalized SVD, this can be considered as generalized

binarized low-rank factorization of item representation matrix. □

Proof of Proposition 2

Proof. In Gaussian mixture model, the posterior probability

γ (zw) =
πwN(qi |cw ,Σw)∑

w′ πw′N(qi |cw′ ,Σw′)
if cordwords are considered cluster

centers. Letπw = 1/W and Σw = T I/2,γ (zw) =
exp(−∥qi−cw ∥2/T)∑
w′ exp(−∥qi−cw′ ∥2/T) .

Therefore, γ (zw) = ẽi [w]. □

Proof of Proposition 3

Proof. ei = one-hot(argmaxw s(qi ,cw)). Given a scaling fac-

tor α > 0 for a codebook,

argmax

w
s(qi ,αcw)

= argmax

w
qTi Wαcw + ⟨w1,qi ⟩ + ⟨w2,αcw ⟩

= argmax

w
α(qTi Wcw + ⟨w2,cw ⟩)

= argmax

w
qTi Wcw + ⟨w2,cw ⟩

= argmax

w
s(qi ,cw)

Thus, ei is invariant to codebook scaling. ẽi [w] =
exp(s(qi ,cw)/T)∑
w′ exp(s(qi ,cw′)/T)

exp(s(qi ,αcw)/T)∑
w ′ exp(s(qi ,αcw ′)/T)

=
exp

((
qTi Wαcw + ⟨w1,qi ⟩ + ⟨w2,αcw ⟩

)
/T

)
∑
w ′ exp

((
qTi Wαcw ′ + ⟨w1,qi ⟩ + ⟨w2,αcw ′⟩

)
/T

)
=

exp

((
qTi Wcw + ⟨w2,cw ⟩

)
α/T

)
∑
w ′ exp

((
qTi Wcw ′ + ⟨w2,cw ′⟩

)
α/T

)
=

exp(s(qi ,cw)α/T)∑
w ′ exp(s(qi ,cw ′)α/T)

Thus, codebook scaling is equivalent to inversely scaling temper-

ature T . Since T is hyper-parameter to tune, ẽi can be considered

invariant to codebook scaling. □

Proof of Proposition 4

Proof. Recurrent composite encoding is assumed to learn a

encoding function Q(x). Given reconstruction error L = 1

2
∥x −

Q(x)∥2, by treating Q(x) as a parameter, the gradient ∇Q (x)L =

−(x −Q(x)). Based on gradient descent, in the b-th iteration, the

function can be updated byQb (x) = Qb−1(x)+α(x −Qb−1(x)). Ap-

plying Q(x |Cb) for approximating x −Qb−1(x), we have Qb (x) =

Qb−1(x) +Q(x −Qb−1(x)|αC
b), where αQ(x |Cb) = Q(x |αCb) can

be deduced from Proposition 3. Let Q0(x) = 0, then Qb (x) =∑b
t=1Q(x −Qt−1(x)|C

b). □

LightRec: a Memory and Search-Efficient Recommender System WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] Artem Babenko and Victor Lempitsky. 2014. Additive quantization for extreme

vector compression. In Proceedings of CVPR’14. 931–938.
[2] Artem Babenko and Victor Lempitsky. 2014. The inverted multi-index. IEEE

transactions on pattern analysis and machine intelligence 37, 6 (2014), 1247–1260.
[3] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam

Koenigstein, Nir Nice, and Ulrich Paquet. 2014. Speeding up the xbox recom-

mender system using a euclidean transformation for inner-product spaces. In

Proceedings of RecSys’14. ACM, 257–264.

[4] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or

propagating gradients through stochastic neurons for conditional computation.

arXiv preprint arXiv:1308.3432 (2013).
[5] Z. Cao, T. Qin, T.Y. Liu, M.F. Tsai, and H. Li. 2007. Learning to rank: from pairwise

approach to listwise approach. In Proceedings of ICML’07. ACM, 129–136.

[6] Ting Chen, Martin Renqiang Min, and Yizhou Sun. 2018. Learning K-way D-

dimensional Discrete Codes for Compact Embedding Representations. In Inter-
national Conference on Machine Learning. 853–862.

[7] Xu Chen, Hanxiong Chen, Hongteng Xu, Yongfeng Zhang, Yixin Cao, Zheng

Qin, and Hongyuan Zha. 2019. Personalized Fashion Recommendation with

Visual Explanations based on Multimodal Attention Network: Towards Visually

Explainable Recommendation. In Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval. ACM, 765–774.

[8] Yongjian Chen, Tao Guan, and ChengWang. 2010. Approximate nearest neighbor

search by residual vector quantization. Sensors 10, 12 (2010), 11259–11273.
[9] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,

Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.

2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[10] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007.

Google news personalization: scalable online collaborative filtering. In Proceed-
ings of WWW’07. ACM, 271–280.

[11] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized product

quantization. IEEE Transactions on Pattern Analysis and Machine Intelligence 36,
4 (2014), 744–755.

[12] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.

DeepFM: a factorization-machine based neural network for CTR prediction. In

Proceedings of IJCAI’17. AAAI Press, 1725–1731.
[13] Ruiqi Guo, Sanjiv Kumar, Krzysztof Choromanski, and David Simcha. 2016. Quan-

tization based fast inner product search. In Artificial Intelligence and Statistics.
482–490.

[14] Ruining He and Julian McAuley. 2016. VBPR: visual Bayesian Personalized

Ranking from implicit feedback. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence. AAAI Press, 144–150.

[15] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse

predictive analytics. In Proceedings of SIGIR’17. ACM, 355–364.

[16] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of WWW’17. 173–182.
[17] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in

a neural network. arXiv preprint arXiv:1503.02531 (2015).
[18] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and

Deborah Estrin. 2017. Collaborative metric learning. In Proceedings of WWW’17.
International World Wide Web Conferences Steering Committee, 193–201.

[19] Binbin Hu, Chuan Shi, Wayne Xin Zhao, and Philip S Yu. 2018. Leveraging meta-

path based context for top-n recommendation with a neural co-attention model.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 1531–1540.

[20] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry

Heck. 2013. Learning deep structured semantic models for web search using

clickthrough data. In Proceedings of CIKM’13. ACM, 2333–2338.

[21] Qiang Huang, Guihong Ma, Jianlin Feng, Qiong Fang, and Anthony KH Tung.

2018. Accurate and Fast Asymmetric Locality-Sensitive Hashing Scheme for

Maximum Inner Product Search. In Proceedings of KDD’18. ACM, 1561–1570.

[22] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization

with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).
[23] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2011. Product quantization

for nearest neighbor search. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33, 1 (2011), 117–128.

[24] Noam Koenigstein, Parikshit Ram, and Yuval Shavitt. 2012. Efficient retrieval of

recommendations in a matrix factorization framework. In Proceedings of CIKM’12.
ACM, 535–544.

[25] Walid Krichene, Nicolas Mayoraz, Steffen Rendle, Li Zhang, Xinyang Yi, Lichan

Hong, Ed Chi, and John Anderson. 2018. Efficient training on very large corpora

via gramian estimation. arXiv preprint arXiv:1807.07187 (2018).

[26] Defu Lian, Rui Liu, Yong Ge, Kai Zheng, Xing Xie, and Longbing Cao. 2017.

Discrete Content-aware Matrix Factorization. In Proceedings of KDD’17. 325–334.
[27] Defu Lian, Xing Xie, and Enhong Chen. 2019. Discrete Matrix Factorization and

Extension for Fast Item Recommendation. IEEE Transactions on Knowledge and

Data Engineering (2019). https://doi.org/10.1109/TKDE.2019.2951386

[28] Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and

Guangzhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature

Interactions for Recommender Systems. In Proceedings of KDD’18. ACM, 1754–

1763.

[29] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. 2016. The concrete distri-

bution: A continuous relaxation of discrete random variables. arXiv preprint
arXiv:1611.00712 (2016).

[30] Behnam Neyshabur and Nathan Srebro. 2015. On Symmetric and Asymmetric

LSHs for Inner Product Search. In Proceedings of ICML’15. 1926–1934.
[31] Mohammad Norouzi, Ali Punjani, and David J Fleet. 2012. Fast search in hamming

space with multi-index hashing. In Proceedings of CVPR’12. IEEE, 3108–3115.
[32] Yanru Qu, Han Cai, Kan Ren, Weinan Zhang, Yong Yu, Ying Wen, and Jun Wang.

2016. Product-based neural networks for user response prediction. In Proceedings
of ICDM’16. IEEE, 1149–1154.

[33] Parikshit Ram and Alexander G Gray. 2012. Maximum inner-product search

using cone trees. In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 931–939.

[34] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. 2009. BPR:

Bayesian personalized ranking from implicit feedback. In Proceedings of UAI’09.
AUAI Press, 452–461.

[35] Anshumali Shrivastava and Ping Li. 2014. Improved asymmetric locality sensitive

hashing (ALSH) for maximum inner product search (MIPS). arXiv preprint
arXiv:1410.5410 (2014).

[36] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative Deep Learning

for Recommender Systems. In Proceedings of KDD’15. ACM, 1235–1244.

[37] Hao Wang, Tong Xu, Qi Liu, Defu Lian, Enhong Chen, Dongfang Du, Han Wu,

and Wen Su. 2019. MCNE: An End-to-End Framework for Learning Multiple

Conditional Network Representations of Social Network. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 1064–1072.

[38] Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao Zhao, Wenjie Li, Xing Xie,

and Minyi Guo. 2018. Ripplenet: Propagating user preferences on the knowledge

graph for recommender systems. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management. ACM, 417–426.

[39] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network

for ad click predictions. In Proceedings of the ADKDD’17. ACM, 12.

[40] ChuhanWu, FangzhaoWu,Mingxiao An, Jianqiang Huang, Yongfeng Huang, and

Xing Xie. 2019. Npa: Neural news recommendation with personalized attention.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 2576–2584.

[41] Chao-YuanWu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing. 2017.

Recurrent recommender networks. In Proceedings of the tenth ACM international
conference on web search and data mining. ACM, 495–503.

[42] Pengtao Xie, Wei Wu, Yichen Zhu, and Eric P Xing. 2018. Orthogonality-

Promoting Distance Metric Learning: Convex Relaxation and Theoretical Analy-

sis. In International Conference on Machine Learning. 5399–5408.
[43] Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, and James Cheng. 2018. Norm-

ranging lsh for maximum inner product search. InAdvances in Neural Information
Processing Systems. 2952–2961.

[44] Yang Yu, Yu-Feng Li, and Zhi-Hua Zhou. 2011. Diversity regularized machine. In

Twenty-Second International Joint Conference on Artificial Intelligence.
[45] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma.

2016. Collaborative knowledge base embedding for recommender systems. In

Proceedings of KDD’16. ACM, 353–362.

[46] Hanwang Zhang, Fumin Shen, Wei Liu, Xiangnan He, Huanbo Luan, and Tat-

Seng Chua. 2016. Discrete collaborative filtering. In Proceedings of SIGIR’16. ACM,

325–334.

[47] Ting Zhang, Chao Du, and Jingdong Wang. 2014. Composite Quantization for

Approximate Nearest Neighbor Search. In Proceedings of ICML’14. 838–846.
[48] Yan Zhang, Defu Lian, and Guowu Yang. 2017. Discrete Personalized Ranking for

Fast Collaborative Filtering from Implicit Feedback. In Proceedings of AAAI’17.
1669–1675.

[49] Zhiwei Zhang, Qifan Wang, Lingyun Ruan, and Luo Si. 2014. Preference pre-

serving hashing for efficient recommendation. In Proceedings of SIGIR’14. ACM,

183–192.

[50] Guorui Zhou, Xiaoqiang Zhu, Chenru Song, Ying Fan, Han Zhu, XiaoMa, Yanghui

Yan, Junqi Jin, Han Li, and Kun Gai. 2018. Deep interest network for click-through

rate prediction. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. ACM, 1059–1068.

[51] Ke Zhou and Hongyuan Zha. 2012. Learning binary codes for collaborative

filtering. In Proceedings of KDD’12. ACM, 498–506.

[52] Han Zhu, Xiang Li, Pengye Zhang, Guozheng Li, Jie He, Han Li, and Kun Gai.

2018. Learning Tree-based Deep Model for Recommender Systems. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, 1079–1088.

https://doi.org/10.1109/TKDE.2019.2951386

	Abstract
	1 Introduction
	2 Related Work
	2.1 Search-Efficient Recommendation
	2.2 Deep Learning-based Recommendation

	3 Memory and Search-Efficient Recommender Systems
	3.1 Preliminaries and Analysis
	3.2 Continuous Relaxation
	3.3 Recurrent Composite Encoding
	3.4 Knowledge Distillation

	4 Experiments
	4.1 Experiment Settings
	4.2 Comparison with Baselines
	4.3 Effectiveness of Side Textual Information
	4.4 Study of Post-Ranking
	4.5 Effectiveness of Recurrent Mechanisms
	4.6 Effectiveness of the Similarity Functions
	4.7 Effectiveness of Knowledge Distillation
	4.8 Study of Memory and Search Efficiency

	5 Conclusion and Future works
	Acknowledgments
	A Proofs of Propositions
	References

