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Music plays an important role in our daily life. With the development of deep learning and modern generation

techniques, researchers have done plenty of works on automatic music generation. However, due to the

special requirements of both melody and arrangement, most of these methods have limitations when applying

to multi-track music generation. Some critical factors related to the quality of music are not well addressed,

such as chord progression, rhythm pattern, and musical style. In order to tackle the problems and ensure the

harmony of multi-track music, in this article, we propose an end-to-end melody and arrangement generation

framework to generate a melody track with several accompany tracks played by some different instruments.

To be specific, we first develop a novel Chord based Rhythm and Melody Cross-Generation Model to generate

melody with a chord progression. Then, we propose a Multi-Instrument Co-Arrangement Model based on multi-

task learning for multi-track music arrangement. Furthermore, to control the musical style of arrangement,

we design a Multi-Style Multi-Instrument Co-Arrangement Model to learn the musical style with adversarial

training. Therefore, we can not only maintain the harmony of the generated music but also control the musical

style for better utilization. Extensive experiments on a real-world dataset demonstrate the superiority and

effectiveness of our proposed models.
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1 INTRODUCTION

As one of the greatest invention in human history, music can help people to release pressure,
comfort emotion, and connect with others [4], which has a vital influence on people’s daily life.
However, composing music needs plenty of professional knowledge and skills. How to generate
music automatically has become a hot topic in recent years. Many companies and research insti-
tutes have done interesting works in this area.

For instance, Conklin et al. [15] proposed a statistical model for the problem of music genera-
tion. They employed a sampling method to generate music from extant music pieces. In order to
generate creative music which is not in extant music pieces, N-gram and Markov models [12, 46]
were applied in music generation. These methods could generate novel music, but require manual
inspection of the features. Recently, Google Magenta1 [10] created piano music with Deep Recur-
rent Neural Network [24] by learning MIDI (a digital score format) data. However, most of these
works only took single track music into consideration, which is insufficient for the requirement in
real world, since music pieces in the real word are usually more complicated with the collaboration
of different musical instruments.

Indeed, generating pop music has plenty of challenges. As shown in Figure 1, pop music consists
of melody and arrangement. Whether the music is pleasant to listen depends on several critical
characteristics. Specifically,

—Chord progression generally exists in pop music, which could guide melody procession.
Thus, it is beneficial to capture chord progression as input for music generation. Besides,
pop music has several fixed rhythm patterns, which make the music more structural and
pause suitably. However, existing studies [29, 32] usually generate music note-by-note and
without considering the rhythm pattern. On the other hand, though several works [25, 45]
utilize chord for music generation, they only use a single chord as a feature of input and
without considering the progression of chords when generating melody.

—Complete music typically has multi-track arrangement2 considering chord, beats, rhythm
patterns, and the like, with accompanying background music played with other instru-
ments, such as drum, bass, string, and guitar. Recent works [23, 45, 48] could generate
melody of music. However, they failed to take into account the multi-track arrangement.
More importantly, different tracks and instruments have their own characteristics, while
they should be in harmony with each other. A few existing works tried to tackle the gen-
eration of multi-track music [13, 18], but none of them considered the harmony between
multiple tracks.

—Music usually has multiple styles, such as classic, jazz, rock, and pop. Recent generated mu-
sic without considering the musical style [13, 24, 45] sounds boring, inflexible, and unreal.
Therefore, how to control the musical style is a new problem to be solved urgently. There
are some challenges for controlling musical style. On one hand, it is difficult to control the
musical style in a supervised method without massive parallel data of musical style. On the

1https://magenta.tensorflow.org/.
2http://mnsongwriters.org/accelsite/media/1051/Elements%20of%20a%20Song.pdf.
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Fig. 1. The example of our generated music.

other hand, musical style is closely related to arrangement and is influenced by multiple
instruments [54], but previous works [9, 16, 40] did not deal with it.

In our preliminary work [63], we proposed an end-to-end melody and arrangement generation
framework for pop music generation, called XiaoIce Band [63]. To be specific, we proposed a Chord

based Rhythm and Melody Cross-Generation Model (CRMCG) to generate melody conditioned on
the given chord progression for single track music. Then, we introduced a Multi-Instrument Co-

Arrangement Model (MICA) for multi-track music. Two information-sharing strategies (i.e., Atten-

tion Cell and MLP Cell) were designed to capture the information interactions among these tasks.
The former model utilized chord progression to guide the note relationships between periods based
on music knowledge. The latter shared the information among different tracks to ensure the har-
mony of arrangement and improve the quality of music generation. Extensive experiments on
real-world dataset demonstrated the superiority of our proposed models over baselines on single-
track and multi-track music generation. In practical, our model [63] had created many pop music
and passed the Turing test in CCTV13.

However, real music usually has own style. Recent music generation models cannot satisfy the
realistic requirements without considering musical style. How to control the style of generated mu-
sic still remains an open problem. In this article, we further propose a Multi-Style Multi-Instrument

Co-Arrangement Model (MSMICA), a novel architecture of generating multi-style music. Inspired
by SeqGAN [57], we treat the MICA as the generator and develop two different discriminators (i.e.,
multi-style discriminator and harmony discriminator) for multi-style music generation. The multi-

style discriminator is helpful for MSMICA to control the musical style in an unsupervised manner.
The harmony discriminator is utilized to ensure the overall harmony of generated music. Finally,
we conduct systematic experiments on real-world dataset. Experimental results demonstrate that
our proposed model can not only generate music with different styles but also ensure the harmony
of generated music. The contributions can be summarized as follows:

—We propose an end-to-end multi-track music generation system, including both the melody
and arrangement.

—For melody generation, we utilize chord progression to guide melody procession and
rhythm pattern to learn the structure of a song. Then, we use rhythm and melody cross-
generation method for song generation. For arrangement generation, we develop a multi-
task joint generation network using other task states at every step in the decoder layer,
which improves the quality of generation and ensures the harmony of multi-track music.

3http://tv.cctv.com/2017/11/24/VIDEo7JWp0u0oWRmPbM4uCBt171124.shtml.
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—To control the musical style, we further propose a multi-style arrangement model based on
reinforcement learning with adversarial training, which includes multiple discriminators to
control style and harmony synchronously. Specifically, we utilize a multi-task arrangement
model as the generator and share reward among different tracks to improve generation
performance of musical style as well as harmony.

—Extensive experiments over real-world dataset demonstrate the superiority of effectiveness
of our proposed models compared with state-of-the-art methods.

2 BACKGROUND AND RELATED WORK

In general, the related work can be grouped into the following three categories: (1) Sequence learn-

ing; (2) Multi-task learning; and (3) Music generation.

2.1 Sequence Learning

Sequence data is widespread in real data, such as text, signal, stock trend, and so on. Over the
past century, there has been a dramatic increase in modeling the sequence problem. Traditional
method as Hidden Markov model (HMM) [19] is widely used in language model, text-to-speech,
biological sequences and so on. For example, Baldi et al. used HMM to model families of biological
with a smooth and convergent algorithm to adapt the parameters of the model. Additionally,
Tokuda et al. derived an algorithm for speech parameter generation from HMM with unobservable
vector. However, traditional methods need to design and extract massive manual features, which
consumes lots of manpower and time. Recently, deep learning shows excellent performance in
sequence modeling [55, 58], which could model sequence in an end-to-end manner [51] to avoid
massive manual features [21, 62], such as Recurrent Neural Networks (RNNs), Convolutional
Neural Networks (CNNs). However, deep neural networks need more data to train massive
parameters and sometimes there are not enough data for training. How to model sequence
problem with few data has become a new challenge and attracts plenty researches to deal with it.
For instance, Lample et al. proposed an unsupervised machine translation method using mono-
lingual corpora only. Liu et al. [35] utilized SeqGAN [57] to generate text with few unparalleled
image-text data. Previous research studies mainly focus on single-sequence model, but there are
many multi-sequence problems in real world. For example, multi-track music has many tracks,
and each track could be defined as a sequence and the whole is a multi-sequence problem. How
to handle and define this multi-sequence problem still needs to explore.

2.2 Multi-task Learning

Multi-task learning is often used to share features within related tasks, since the features learned
from one task may be useful for others. In previous works, multi-task learning has been used suc-
cessfully across all applications of machine learning, from natural language processing [14, 36, 59]
to computer vision [22, 60]. For example, Zhang et al. [61] proposed to improve generalization
performance by leveraging the information of related tasks. Hashimoto et al. [27] pre-defined a
hierarchical architecture consisting of several Natural Language Processing (NLP) tasks and de-
signed a simple regularization term to improve the performances of all tasks. Kendall et al. [31]
adjusted each task’s relative weight by deriving a multi-task loss function based on maximizing
the Gaussian likelihood. There still remains plenty of works on multi-task learning [38, 39, 42, 47].

2.3 Music Generation

Music generation has been a challenging task over the last decades. A variety of approaches have
been proposed [5, 8]. Typical data-driven statistical methods usually employed N-gram or Markov
models [12, 46, 53]. Besides, a unit selection methodology for music generation was used in [7]
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Table 1. Comparing Music Generation Models (G: Generation, Mt: Multi-track,
M: Melody, Cp: Chord progression, Ar: Arrangement, Sa: Singability, and Ms:

Musical style)

Methods G Mt M Cp Ar Sa Ms

Markov music [53]
√ √

Music unit selection [7]
√

Magenta [10]
√ √

Song from PI [13]
√ √ √ √

DeepBach [25]
√ √ √

GANMidi [56]
√ √

Sampling music sequences [45]
√ √

XiaoIce Band [63]
√ √ √ √ √ √

MSMICA
√ √ √ √ √ √ √

which spliced music units with ranking methods. Moreover, a similar idea was also proposed
by [45], which used chords to choose melody. However, traditional methods require massive man-
power and domain knowledge.

Recently, deep neural networks have been applied in music generation by the end-to-end
method, which solved above problems. For example, Johnson [29] combined one recurrent neural
network and one non-recurrent neural network to represent the possibility of more than one note
at the same time. An RNN-based Bach generation model was proposed in [25], which was capable
producing four-part chorales by using a Gibbs-like sampling procedure. Contrary to models based
on RNNs, Sabathé et al. [48] used VAEs [32] to learn the distribution of musical pieces. Further-
more, Yang et al. [56] and Mogren [44] adopted Generative Adversarial Networks (GANs) [23] to
generate music, which treated random noises as inputs to generate melodies from scratch. Dif-
ferent from single track music, Chu et al. [13] utilized hierarchical Recurrent Neural Network to
generate both the melody as well as accompanying effects such as chords and drums.

Although extensive research studies have been carried out on music generation, no single study
exists that considers the specificity of music, such as chord, rhythm, and instrument. For the pop
music generation, previous works do not consider the chord progression and rhythm pattern. Spe-
cially, chord progression usually guides the melody procession and the rhythm pattern decides
whether the song is suitable for singing. Besides, instrument characteristics should also be pre-
served in pop music. Lastly, harmony plays a significant role in multi-track music, but it has not
been addressed very well in previous studies.

In addition, musical style is also an important characteristic of music. Recently, researchers
have shown an increased interest in this area. Lu et al. [40] proposed an unsupervised music style
transfer method without the need for parallel data. This method suits the wave and image data,
but failed to handle sequence data, like MIDI files. To overcome the issue, Brunner et al. [9] de-
vised a neural network model based on Variational Autoencoders to achieve style transfer between
Classical and Jazz music. Though this model could handle sequence data, it needs massive parallel
music data for training. Therefore, how to learn musical styles with unparalleled music data is a
valuable problem.

To sum up, we compare our model with several related models and show the results in Table 1.

3 PRELIMINARIES AND PROBLEM DEFINITION

In this section, we first intuitively discuss the crucial influence of chord progression, rhythm pat-
tern, instrument characteristic, and musical style in music generation, based on music knowledge

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 54. Publication date: July 2020.
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Fig. 2. Melody of the song “We Don’t Talk Anymore” with chord progression labeled.

Fig. 3. Tracks, instruments and musical styles analysis of music.

with related statistical analysis to further support our motivation. Then we will present the music
generation problem with a formulated problem definition, including melody, arrangement, and
musical style.

3.1 Chord Progression

In music, chord is any harmonic set of pitches consisting of more notes that are heard as if sounding
simultaneous. An ordered series of chords is called a chord progression. Chord progressions are
frequently used in music and music often sounds harmonious and melodic if it follows certain
chords patterns. As we can see from Figure 2, every period in melody has the corresponding chord,
and “F-G-Am-Em” is the chord progression, which repeatedly appears in this music. In pop songs,
the chord progression could influence the emotional tone and melody procession. For example, “C
- G - Am - Em - F - C - F - G,” one of the chord progressions in pop music, is applied in many songs,
such as “Simple love,” “Agreement,” “Deep breath,” and “Glory days.”

3.2 Rhythm Pattern

Apart from the chords we mentioned above, rhythm pattern is another characteristic of pop music.
Rhythm pattern could be defined as the duration of notes in a period. For example, the periods
labeled by box in Figure 2, have the same rhythm pattern, which represents the duration of every
note in a period. Different from the music generated note by note, pop music is a more structural
task. However, previous works did not consider the structure of the music.

3.3 Instrument Characteristic

The another characteristic of the pop music is the arrangement, which means combing other in-
struments with the melody for making the whole music more contagious. In pop music, arrange-
ment is a necessary section, and often includes drum, bass, string, and guitar to accompany the
melody. We analyze the MIDI files, and the detailed statistics are shown in Figure 3(a), which indi-
cates that the multi-track music widely exists in pop songs. Besides, as shown in Figure 3(b), piano
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is usually used for representing melody and several other instruments, such as drum, bass, string,
and guitar, are typically used for accompanying tracks.

3.4 Musical Style

Musical style is a recurring arrangement of features in musical events which is typical of an indi-
vidual (composer and performer), a group of musicians, a genre, a place, and a period of time [20].
Music has own musical styles, such as pop, classic, jazz, and rock. It is necessary to learn the style
of music, to enhance the diversity, specificity and facility of generated music. However, there are
many challenges unsolved for music styles. For one thing, music data have been very unevenly
distributed among different styles of music. As we can see from Figure 3(c), pop music is far more
than any other styles of music. It is difficult to train the minor style music with the supervised
model. For another, how to evaluate the musical style performance of generated music is still an
open problem. But there are also valuable characteristics in musical style. For example, different
styles of music has the similar distribution in notes distribution is shown in Figure 3(d). Therefore,
we could learn the minor style of music with the help of pop music.

3.5 Problem Statement

Music generation means generating a series of notes, including pitch, duration, track, instrument,
and so on. These could be defined as a form of sequence. Melody usually has a sequence and
arrangement has multiple sequences. For different form of sequences, we divide our problem into
the following two sections: melody generation and arrangement generation.

In melody generation, since each music usually has a specific chord progression, we consider the
scenario of generating the music on the condition of given chord progression. Thus, we propose the
CRMCG to generate melody and rhythm with the given chord progressionC , showed in Section 4.1.
The input of CRMCG is the given chord progressionC = {c1, c2, . . . , clc

}. Note that ci is the one-hot
representation of the chord and lc is the length of the sequence. And outputs are suitable rhythm
Ri = {ri1, ri2, . . . , rilr

} and melody Mi = {mi1,mi2, . . . ,milm
}.

In arrangement generation, different from the single-track melody generation, we hope to gener-
ate multi-track music, which has more tracks with different instruments to accompany the melody,
such as drum, bass, string, and guitar. We define this as a multi-sequence generation problem
and devise a MICA for multi-track music in Section 4.2. The input of MICA is the melody M
and rhythm R generated by CRMCG proposed above. We hope to get multi-track music output

A = {(M ′
1,R

′
1), . . . , (M

′
i ,R

′
i )}, where M

′
i , R

′
i mean the ith track melody and rhythm in generated

arrangement. To deal with musical style, we further propose a MSMICA based on MICA to control
musical style in Section 5.

In summary, we propose CRMCG for single track music, as well as MICA and MSMICA for multi-
track music to tackle this issue. Figure 4 shows the flowchart overview of melody and arrange-
ment generation model, which can be divided into the following four parts: (1) Data processing
part; (2) CRMCG part for melody generation (single track); (3) MICA part for arrangement gener-
ation (multi-track); and (4) The display part. Figure 7 shows the multi-style arrangement model,
MSMICA. We will introduce the structures and technical details of the proposed models in the
following part, and the data processing part will be detailed in Section 6.

4 MELODY AND ARRANGEMENT GENERATION MODEL

In this section, we will introduce the structures and technical details of CRMCG for single track
music, and MICA for multi-track music. For better illustration, Table 2 lists some mathematical
notations used in this article.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 54. Publication date: July 2020.
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Fig. 4. The flowchart overview of melody and arrangement generation model.

Table 2. Notations Used in the Framework

Notations Description

M the melody sequence of pop music
R the rhythm sequence of pop music
C the chord progression of pop music
A the arrangement sequence of pop music
pi the i-th period of pop music
mi j the j-th note in i-th period of pop music
ri j the j-th note duration in i-th period of pop music
ci the i-th chord of chord progression
lm , lr , lc the length of melody/rhythm/chord progression sequence respectively

h̄
m
i, j , h̄

r
i, j , h̄

c
i, j the j-th hidden state in i-th period of melody/rhythm/chord

progression sequence respectively

hi
t,k the i-th task hidden state in period t at step k

4.1 Chord-based Rhythm and Melody Cross-Generation Model

As the fundamental part of music, melody is made up of a series of notes and the corresponding
duration. However, it is still challenging to generate melody in harmony. Note-level generation
methods [32, 48] have more randomness on the pause, which causes the music hard to sing. To
address this issue, we propose CRMCG to generate a suitable rhythm for singing. Figure 5 shows
the overall architecture of CRMCG.

Given a chord progressionC = {c1, c2, . . . , clc
}, we aim at generating the corresponding periods

{p1,p2, . . . ,plp
}. The generated rhythm Ri and melody Mi in period pi are closely related to the

chord ci . Since this is a sequence-to-sequence problem, we utilize encoder–decoder framework as
our basic framework, which is flexible to adopt different networks to process sequence effectively.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 54. Publication date: July 2020.
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Fig. 5. CRMCG.

To better understand the chord progression and model the interaction and relation of these
chords, we first utilize Gated Recurrent Units (GRU) [11] to process the low-dimension represen-
tation of chords. This process can be formulated as follows:

c̄i = Ecci , Ec ∈ RVc ∗d ,

¯hc
i = GRUc (c̄i , ¯h

c
i−1), i = 1, 2, . . . , lc ,

(1)

where Ec is the embedding matrix for chord, ¯hc
i,0 is the i-step hidden state of the chord progression,

and the chord embedding c̄i encodes each chord and sequence context around it. After contextual
encoding, we intend to utilize these hidden states to help generate rhythm and melody. To be
specific, our generation processing can be divided into two parts: rhythm generation and melody
generation, which shown as follows:

Rhythm generation. It is critical that the generated rhythm should be in harmony with the
existing part of music. Thus, in this part, we take the previous generation of music into consid-
eration. To be specific, we first multiply previous rhythm Rt−1 and melody Mt−1 with embedding
matrix Er and Em . Then, we get the representations of ¯Rt−1, ¯Mt−1 as follows:

¯Rt−1 = ErRt−1, Er ∈ RVr ∗d ,

¯Mt−1 = EmMt−1, Em ∈ RVm∗d ,
(2)

whereVm andVr are the vocabulary size of notes and beats. After getting the representations, we
utilize two different GRUs to encode these inputs:

¯hm
t−1,i = GRUm (m̄t−1,i , ¯h

m
t−1,i−1), i = 1, 2, . . . , lm ,

¯hr
t−1,i = GRUr (r̄ t−1,i , ¯h

r
t−1,i−1), i = 1, 2, . . . , lr .

(3)

Then, we separately concatenate the last hidden states of rhythm encoder ¯hr
t−1,lr

and melody en-

coder ¯hm
t−1,lm

, and make a linear transformation. The result is treated as the initial state of rhythm

decoder, which is made up by another GRU. The outputs of GRU are the probability of generated
rhythm in current period, which can be formalized as follows:

sr
0 = ReLu (W [h̄

m
t−1,lm

, h̄
r
t−1,lr

] + b), W ∈ Rb∗b ,

sr
i = GRUr (yr

i−1, s
r
i−1), i > 0,

yr
i = so f tmax (sr

i ),

(4)

where sr
i is the hidden state of GRU for generating the ith beat in the t th period. With this opera-

tion, we are capable of generating the rhythm for the t th period based on the previous generation.

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 54. Publication date: July 2020.
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ALGORITHM 1: CRMCG

Require: melody en-decoder GRUm , rhythm en-decoder GRUr , chord en-decoder GRUc chord progression

input C = {c1, c2, . . . , cl }
Output: generated melody M = {m1, . . .ml }, generated rhythm R = {r1, . . . rl }

1: Initialize GRUm , GRUr , GRUc with random weights.

2: repeat

3: for l-steps do

4: Rhythm section training

5: Generate rhythm sequence R
p
1:T
= (r1, . . . , rT ) with previous melody M

p−1
1:T

and rhythm R
p−1
1:T

6: Train GRUr via minimizing the cross-entropy loss Lr

7: Melody section training

8: Generate melody sequence M
p
1:T
= (m1, . . . ,mT ) with previous melody M

p−1
1:T

, generated

rhythm R
p
1:T

and corresponding cp

9: Train GRUm via minimizing the overall cross-entropy loss Lr + Lm

10: end for

11: until CRMCG converges

Melody Generation. After generating the current rhythm, we can take advantage of this infor-
mation to generate the corresponding melody. Similar to rhythm generation, we first concatenate
previous melody Mt−1, currently generated rhythm Rt , and corresponding chords ct . Then, we
make a linear transformation in the concatenation. This process can be formulated as follows:

sm
0 = ReLu (W [ ¯hm

t−1,lm
, ¯hr

t,lr
, ¯hc

t ] + b), W ∈ Rb∗b . (5)

With the help of this operation, we get the initial hidden state of melody decoder sm
i−1. Then, we

utilize GRU to process the result and generate the current melody for the whole generation:

sm
i = GRUm (ym

i−1, s
m
i−1), i > 0,

ym
i = so f tmax (sm

i ).
(6)

Loss Function. Since the generating process can be divided into two parts, we design two loss
functions, respectively. Both of them are softmax cross-entropy functions. Based on the character-
istic of the model, we can update the parameters alternately by parameter correlation. In rhythm
section, we only update parameters related with rhythm loss Lr :

Lr = − 1

n

n∑
i=0

(p · loд (p (yr |x ,θr ))) + (1 − p) loд (1 − p (yr |x ,θr )). (7)

In melody section, considering rhythm is closely related to melody, every item in rhythm is
corresponding duration of notes in melody. To better learn this relationship, we update all the
parameters by melody loss Lm :

Lm = − 1

n

n∑
i=0

(p · loд (p (yr |x ,θr ))) + (1 − p) loд (1 − p (yr |x ,θr ))

− 1

n

n∑
i=0

(p · loд (p (ym |x ,θm ))) + (1 − p) loд (1 − p (ym |x ,θm )).

(8)

4.2 Multi-task Arrangement Model

4.2.1 Multi-Instrument Co-Arrangement Model. In real-world applications, music contains
more than one track, such as drum, bass, string, and guitar. However, most of existing methods
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Fig. 6. (a): MICA; (b): Attention Cell; and (c): MLP Cell.

did not take this phenomenon into consideration [10, 56]. To this end, we formulate a One-to-

Many Sequences Generation (OMSG) task. Different from conventional multiple sequences learning,
the generated sequences in OMSG are closely related. When generating one of the sequences, we
should take into account its harmony, rhythm matching, and instrument characteristic with other
sequences. Previous works, such as hierarchical Recurrent Neural Network [13], did not consider
the correlation between tracks. Therefore, they achieved good performance in single-track music
generation, but failed in multi-track music generation. Encouraged by this evidence, we aim to
model the information flow between different tracks during music generation and extend CRMCG

to a novel MICA.
Given a melody, we focus on generating more tracks to accompany melody with different in-

struments. Different from usual encoder–decoder structure, the melody sequence is the input of
the encoder, but the decoder outputs multiple sequences. As shown in Figure 6(a), the hidden sm

0 of
decoder contains the melody information. MICA uses sm

0 as the initial state of decoder to generate
more sequences of different instruments, where hT ,i represents the hidden state of GRU for task
T in step i . However, how to better learn relationships and keep the harmony between different
tracks is still a challenge. To this end, we designed two cooperate cells between the hidden layers
of decoder to tackle this issue. These cooperate cells could improve generation performance of
multiple sequences with other task information. The details of these two cells will be introduced
in the following parts.

4.2.2 Attention Cell. Usually in single sequence generation model, such as GRU, the next hid-
den state is regard to the last hidden state and current input. As shown in Formula (9), x t,k andht,k

separately represents the input and hidden state at step k in the period t , where rt,k , zt,k and h̃t,k

are the reset gate, update gate, and state update in the GRU. However, in multiple sequence gen-
eration, the next hidden state need consider hidden states of other sequences to learn relationship
of multiple sequences.

r t,k = σ
(
W rx t,k +U rht,k−1 + br

)
,

zt,k = σ
(
W zx t,k +U zht,k−1 + bz

)
,

h̃t,k = σ
(
Wx t,k +U

[
r t,k · ht,k−1

]
+ b
)
,

ht,k =
(
1 − zt,k

) · ht,k−1 + zt,k · h̃t,k .

(9)

Motivated by attention mechanism [2], which can help the model focus on the most relevant parts
of the input for the output, we design a creative attention cell to capture the relevant parts of other
tasks for current task. Figure 6(b) shows the architecture of this attention cell. It can be formalized
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as follows:

ai
t,k =

T∑
j=1

αt,i jh
j

t,k−1
,

et,i j = v
T tanh(Whi

t,k−1 +Uhj

t,k−1
), W ,U ∈ Rb∗b ,

αt,i j =
exp (et,i j )∑T

s=1 exp (et,is )
,

(10)

where ai
t,k

represents the cooperate vector for task i at step k in the period t , hj

t,k−1
represents the

hidden state of the ith task at step k − 1 in the period t , and αt,i j represents the weight of jth task

information captured by ith task. The cooperate vector ai
t,k

means ith task capture the relevant

parts of other tasks. Specially, we define the et,i j the correlation value between ith task and jth

task and use a multilayer perceptron to reduce computation rather than calculatinghi
t,k−1

× hj

t,k−1
.

After getting the cooperation vector, we modify the cell of GRU to allow the current track gener-
ation to take full account of the impacts of the information from other tracks. The modifications
are formulated as follows:

r i
t,k = σ (W i

rx
i
t,k +U

i
rh

i
t,k−1 +A

i
ra

i
t,k + b

i
r ),

zi
t,k = σ (W i

zx
i
t,k +U

i
zh

i
t,k−1 +A

i
za

i
t,k + b

i
z ),

h̃i
t,k
= σ (W ix i

t,k +U
i
[
r i

t,k · h
i
t,k−1

]
+Aiai

t,k + b
i ),

hi
t,k = (1 − zi

t,k ) · hi
t,k−1 + z

i
t,k · h̃

i
t,k
,

(11)

where σ is the activate function and W i
r , U i

r , Ai
r , W i

z , U i
z , Ai

z , W i , U i , Ai , bi is corresponding
weights of task i . To learn relationships between different tasks, we modify the structure of GRU,
adding cooperation vectorai

t,k
into state updatehi

t,k
, update gate zi

t,k
, and reset gate r i

t,k
, to capture

other tasks information in decoder procession. With the help of this operation, our model can
generate every track for one instrument with the consideration of other instruments.

4.2.3 MLP Cell. Different from the above cell for sharing task information through input x i
t,k

,

we consider the individual hidden state of each instrument and integrate them by their importance
for the whole music. Therefore, our model is capable of choosing the most relevant parts of each
instrument to improve the overall performance. Figure 6(c) shows the structure of this cell, which
can be formalized as follows:

r i
t,k = σ (W i

rx
i
t,k +U

i
rH

i
t,k−1 + b

i
r ),

zi
t,k = σ (W i

zx
i
t,k +U

i
zH

i
t,k−1 + b

i
z ),

h̃i
t,k
= σ (W i

hx
i
t,k +U

i
h

[
r i

t,k ·H
i
t,k−1

]
),

hi
t,k = (1 − zi

t,k ) ·H i
t,k−1 + z

i
t,k · h̃

i
t,k
,

H i
t,k−1 = σ (W i

[
h1

t,k−1, . . . ,h
N
t,k−1

]
+ bi ),

(12)

where H i
t,k−1

is the ith task hidden state in period t at k − 1 step which contains all tasks current

information h1
t,k−1
, . . . ,hN

t,k−1
by gate units. σ is the sigmoid activate function.W i

r , U i
r ,W i

z , U i
z ,

W i
h

,U i
h

,W i , bi is corresponding weights of task i . Since our model shares each track information
at decoding step, it can obtain the overall music information and generate music in harmony.
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4.2.4 Loss Function. Motivated by [17], we optimize the summation of several conditional prob-
ability terms conditioned on representation generated from the same encoder.

L(θ ) = arдmax
θ

��
�
∑
Tk

��
�

1

Np

Np∑
i

loдp
(
YTk

i |X
Tk

i ;θ
)��
	
��
	 ,

where θ = {θsrc ,θtrдTk
|Tk = 1, 2, . . . ,Tm }, and m is the number of tasks. θsrc is collection of pa-

rameters for source encoder, and θtrдTk
is the parameter set of theTk

th target track. Np is the size

of parallel training corpus of the pth sequence pair.

4.2.5 Generation. In generation part, we arrange for melody generated by CRMCG. With the
help of CRMCG, we get a melody sequence M = {m1,m2, . . . ,mlm

}, and the next step is to generate
other instrument tracks to accompany it. Similarly, we utilize GRU to process the sequence and
get the initial state sm

lm
of multi-sequences decoder. They can be formulated as follows:

m̄i = Emmi , Em ∈ RVm∗d ,

sm
lm
= GRUm

(
m̄lm
, sm

lm−1

)
,

(13)

the outputs of multi-sequences decoder correspond other instrument tracks, considering both
melody and other accompanying tracks. They can be formalized as follows:

si
t = CellOperation(yi

t−1, s
i
t−1), CellOperation ∈ {AttentionCell,MLPCell}, t > 0,

yi
t = so f tmax (si

t ),
(14)

where si
t is the ith task hidden state at step t . We utilize si

t as input to generate the ith instrument
sequence through so f tmax layer. The proposed Attention Cell and MLP Cell are used to get a
cooperation state, which contains self-instrument state as well as other instrument states, to keep
all instruments in harmony.

5 MULTI-STYLE ARRANGEMENT MODEL

In the previous section, we utilize CRMCG to generate single track music, and MICA to gener-
ate multi-track music. However, the generated music belongs to the same musical style, which is
insufficient for diversification requirements of music generation. How to control the style of gen-
erated music remains an open problem that needs to be solved urgently. Based on our MICA model
proposed in Section 4.2, we propose a newly designed MSMICA to generate multi-track music with
musical style. The input of MSMICA is rhythm R and melody M generated by CRMCG, and output
is the arrangement sequence As = {(Ms

1 ,R
s
1 ), . . . , (Ms

i ,R
s
i )}, where Ms

i , Rs
i denotes the ith track

melody and rhythm in multi-track music with a style s . Figure 7 shows the flowchart overview of
multi-style melody and arrangement generation model.

In the next part, we will introduce the structure and technical details of our newly designed
MSMICA model.

5.1 Multi-Style Multi-Instrument Co-Arrangement Model

Though MICA could generate harmonious multi-track music, it fails to control the musical style.
How to control the style of the generated music is still unsolved. As previously mentioned, there
are the following two characteristics in music: (1) Music data has been very unevenly distributed
among different styles of music. We could train a pop music generation model with massive pop
music data, but could not get enough minor style music data, such as jazz, rock, and classic. (2) Dif-
ferent style of music has similar notes distributions, proving they have commonness in melody and
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Fig. 7. The flowchart overview of multi-style melody and arrangement generation model.

arrangement. Therefore, we could learn the minor style of music from the major style of music.
Motivated by [35, 50], we propose a new MSMICA, to control the style of the generated music.
We first generate the harmonious multi-track music with MICA. Then, we devise Multi-Style Dis-

criminator and Harmony Discriminator to control musical style. The Multi-Style Discriminator is
designed to learn the style of the generated music, and Harmony Discriminator is used to keep the
harmony of music. The technical details of the MSMICA will be introduced in the following parts.

5.2 Multi-SeqGAN

In order to learn the musical style with little unpaired data, we utilize an unsupervised (GAN [23]
to deal with it. GAN usually utilizes a discriminative model to guide the training of generative
model, which lets the generator constantly approach the real data. To be specific, we train a music
generator G for musical style s by discriminative model D as follows:

min
G

max
D

V (D,G ) = Es∼pdat a (s ) [loдD (s )] + Ex∼px (x )[loд(1 − D (G (x )))], (15)

px (x ) denotes music x generated byG, we compare it with real music pdata (s ) based on the style
s . We define it as a two-player minimax game with value functionV (D,G ). However, the sequence
is discrete, which is difficult for model to pass the gradient from the discriminative model to the
generative model.

Inspired by SeqGAN [57], we utilize reinforcement learning [43] to train the model. Different
from the original SeqGAN that usually handles single-sequence problems, multi-track music gen-
eration is a multiple sequences problem, which has more challenges. On the one hand, considering
multi-track sequences are related to each other, we need to keep the harmony of music in the fine-
tuning procession. On the other hand, how to design the reward for different sequences is a new
problem. To solve above problems, we first develop a variant of SeqGAN (i.e., Multi-SeqGAN) to
simultaneously deal with multiple sequences with a new sampling and reward method. Then, we
devised multiple discriminators to control musical style as well as harmony. We will discuss these
in the next sections.
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5.3 Generator

Traditionally, sequence generation problems could be defined as follows: training a θ -
parameterized generative model Gθ to produce a sequence Y1:T = (y1,y2, . . . ,yT ). Different
from previous work [50], our arrangement generation model has multi-sequence output A =
{(M ′

1,R
′
1), . . . , (M

′
i ,R

′
i )}, where M

′
i ,R

′
i denote melody and rhythm of the ith track. Thus, we op-

timize the generative model Gθ to output multi-sequence {Y1:T
1,Y1:T

2, . . . ,Y1:T
I }, where Y i

1:T =

(y1
i ,y2

i , . . . ,yT
i ) and i denotes the ith track. Similar to SeqGAN, we first use reward from dis-

criminator to train the generator based on reinforcement learning. Then, we update parameters
of generator and discriminator with adversarial training. We divide the model procession as three
sections as follows:

5.3.1 Sampling. Considering discriminators only provide a reward after a finished sequence,
we utilize Monte Carlo search with a roll-out policy Gβ to sample the unknown last T − t tokens:

{
Y 1

1:T , . . . ,Y
N
1:T

}
= MCGβ (Y1:t ;N ). (16)

Motivated by this, the sampling matrix of multiple sequences could be defined as:

Y s =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y 1
1:1 Y 1

1:2 · · · Y 1
1:T

Y 2
1:1 Y 2

1:2 · · · Y 2
1:T

...
...

...
Y i

1:1 Y i
1:2 · · · Y i

1:T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, St = Y

1
1:t ⊕ Y 2

1:t ⊕ · · · ⊕ Y i
1:t , (17)

where Y i
1:t is sampling result of the ith sequence at step t , which denotes sampling unknown

T − t tokens based on existing t-tokens sequence. Considering the relationships among tracks, we
concatenate multiple sequences as St , where t represents the t th sampling step.

5.3.2 Reward. Similar with SeqGAN, we use discriminator Dϕ (S i
t ) as the reward of the gener-

ative model. Due to the reward of policy gradient can be computed as the sum over all sequences
of valid actions and treated as the expected future reward, we have:

QGθ

Dϕ
(s = St−1,a = at ) =

{
1
N

∑N
n=1 Dϕ

(
Sn

T

)
, Sn

T
∈ MCGβ (St ;N ) for t < T

Dϕ (St ) for t = T
,

at = y
1
t ⊕ y2

t ⊕ · · · ⊕ yi
t ,

(18)

whereQGθ

Dϕ
is the reward from discriminatorDϕ at the t th step time. St−1 includes existing multiple

sequences at t − 1 step and at is the t th step action, which has multiple actions of sequences.
Considering the relationships among tracks, we define multiple unknown tokens as actions and
share the reward between them at the same step. The reward matrix could be defined as follows:

G (Y s ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G
(
Y 1

1:1

)
G
(
Y 1

1:2

)
· · · G

(
Y 1

1:T

)
G
(
Y 2

1:1

)
G
(
Y 2

1:2

)
· · · G

(
Y 2

1:T

)
...

...
...

G
(
Y i

1:1

)
G
(
Y i

1:2

)
· · · G

(
Y i

1:T

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

QGθ

Dϕ
(S0,a1) QGθ

Dϕ
(S1,a2) · · · QGθ

Dϕ
(ST−1,aT )

QGθ

Dϕ
(S0,a1) QGθ

Dϕ
(S1,a2) · · · QGθ

Dϕ
(ST−1,aT )

...
...

...

QGθ

Dϕ
(S0,a1) QGθ

Dϕ
(S1,a2) · · · QGθ

Dϕ
(ST−1,aT )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)
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5.3.3 Loss Function. We set the generator as the environment, expected token is action and
reward is the result from discriminator. To improve all reward of the environment, we maximize
all samplings reward as follows:

J (θ ) =
∑
i ∈I

∑
yi

1:T ∈Y

Pθ

(
yi

1:T

)
R
(
yi

1:T

)
=
∑
i ∈I

�
�Eyi

1:T ∼pθ

T∑
t=1

r
(
yi

1:t

)�
	 , (20)

where i denotes the ith sequence, r (yi
1:t ) represents the reward achieved at time t , and R (yi

1:T ) is

the cumulative reward. Let pθ (yi
t |yi

1:(t−1)
) be a parametric conditional probability of selecting yi

t at

time step t given all the previous tokens yi
1:(t−1)

. pθ is defined as a parametric function of policy θ .

5.4 Discriminators

To generate multi-track music with a specific style, the following two important requirements
should be satisfied: (1) the specific musical style should be controlled, such as pop, classic, and
jazz; and (2) the harmony of the generated multi-style music should be kept. To meet these require-
ments, we propose two discriminators, i.e., Multi-Style Discriminator and Harmony Discriminator.
The Multi-Style Discriminator is designed to learn the musical style and Harmony Discriminator is
used to maintaining the harmony of different tracks. Two discriminators both utilize classifiers as
base models with different training data. The details of these two discriminators will be introduced
in the following parts.

5.4.1 Multi-Style Discriminator. This discriminator is designed to control the style of generated
music. We utilize this module to recognize music with three different categories: pop, jazz, and
classic. For example, we define jazz as positive examples, and pop and classic as negative examples
when to generate jazz music. In order to achieve this goal, we first use GRU to get the hidden state
c of the multi-track music sequence y. Then, we use multi-layer perception and softmax function
to get the classification result. This process can be formulated as follows:

c = GRU (y),

f = tanh (W c � c + bc ),

Cm = so f tmax (Wm · f + bm ),

(21)

whereW c ,bc ,Wm ,bm are trainable parameters, � is element-wise multiplication, andCm denotes
the probabilities over three classes of the multi-modal discriminator. We utilize GRU encoder as a
discriminator to generate the probability Cm (c |x ,y) where c ∈ {pop, jazz, classic}.

5.4.2 Harmony Discriminator. With multi-style discriminator, we are capable of controlling the
style of the generated music after fine-tuning with policy gradient. However, the harmony of gen-
erated music may not be kept. In order to achieve musical style controlling while giving consid-
eration to harmony, we propose another discriminator to keep the harmony of generated music,
called Harmony Discriminator. In concrete details, we prepare harmony and discordant music data.
Harmony music is the real data, melody with corresponding arrangement. Additionally, we choose
other music track to replace the original music to disorder the harmony of music for making discor-
dant music data. Then, we propose a harmony discriminator Dh to guide generated music towards
harmony music. Generated music will be classified into the following three classes: harmony, gen-
erated, and discordant. Additionally, harmony music is addressed as positive examples and other
music are defined as negative examples. Similar as above discriminator, we also utilize GRU and
fully connected layer to get the hidden state of music sequence y:

Ch = so f tmax (W h � GRU (y) + bh ), (22)
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ALGORITHM 2: MSMICA

Require: A generator Gθ , discriminator Dϕ , policy Gβ , rhythm input R = {r1, r2, . . . , rl } and melody input

M = {m1,m2, . . . ,ml }, style s

Output: As =
{(
Ms

1 ,R
s
1

)
, . . . ,

(
Ms

i ,R
s
i

)}
, where Ms

i , Rs
i mean the ith track melody and rhythm

1: Initialize Gθ , Dϕ with random weights θ ,ϕ.

2: Pre-train Gθ using MLE on R and M .

3: Generate negative samples using Gθ for training Dϕ .

4: Pre-train Dϕ via minimizing the cross entropy

5: repeat

6: for g-steps do

7: Generate multiple sequences Y s ∼ Gθ

8: for t in 1:T do

9: Compute Q (a = at ; s = St−1) by Equation (18)

10: end for

11: Update generator parameters via policy gradient Equation (20)

12: end for

13: for d-steps do

14: Use current Gθ to generate negative examples and combine with real data given as positive

examples

15: Train discriminator Dϕ for k epochs

16: end for

17: until MSMICA converges

whereW h , bh are parameters to be learned. The probability of classifying generated music y to a
class c is formulated as Ch (c |y) where c ∈ {harmony,дenerated,discordant }.

5.5 Model Learning

In this section, we will introduce the training details of our MSMICA model. As previously men-
tioned, we propose two discriminators to get rewards of style and harmony. Therefore, we utilize
rewards as policy gradients to train our MSMICA model. Here, we define the reward function for
policy gradient as a linear combination of probability of classifying generated music y weighted
by parameter λ:

R (y |·) = λCs (c = style |y) + (1 − λ)Ch (c = harmony |y). (23)

Since our method also belongs to adversarial methods, we train our model as a minimax game
between a generator G and a discriminator D with value function V (G,D). Motivated by [35], we
use multiple discriminators as D:

min
G

maxF (V (D1,G ) , . . . ,V (Dn ,G )) , (24)

where n = 2, and F denotes linear combination of discriminators as shown in Equation (23). Before
we train our generation model with policy gradients from discriminators, we need pre-train our
generator G based on maximum likelihood estimation (MLE). As mentioned in [50], we also pre-
train our discriminators, which could help adjust the generator efficiently. After the pre-training,
we train the generator and discriminators alternately. The generator aims to fool discriminators
until they can’t distinguish generated and real music. The overall flow is shown in Algorithm 2.
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Table 3. Dataset Description

Statistics Pop music Classic music Jazz music

# of music 28,772 4,593 1,730
# of all tracks 327,908 27,697 16,156
# of drum tracks 37,964 1,249 2,872
# of bass tracks 33,164 1,115 1,756
# of string tracks 46,602 3,848 896
# of guitar tracks 58,266 1,178 2,344
# of piano tracks 34,926 8,560 2,665
# of other instruments tracks 116,986 14,747 5,713
# Time of all tracks (hours) 21,282 3,186 1,552

Table 4. Musical Style Analysis

Music Style Instrument Track Tone Note Range

Pop Piano, Guitar, String,
Drum, Bass

9,8,7,10,1 C major, A minor, C
minor, G major, F major

C6-B, C4-B, C5-B,
C7-B, C3-B

Classic Piano, String, Violin,
Bass, Drum

4,3,5,9,8 C major, G major, D
major, F major, D minor

C6-B, C5-B, C7-B,
C4-B, C8-B

Jazz Piano, Bass, Guitar,
Trumpet, Sax

7,8,9,6,5 C major, A minor, C
minor, G major, F major

C6-B, C5-B, C4-B,
C3-B, C7-B

6 EXPERIMENT

In this section, we first introduce the dataset and training details. Then, we evaluate the effective-
ness of CRMCG on the Melody Generation task, MICA on Arrangement Generation task, and
MSMICA on Musical Style Evaluation task, respectively.

6.1 Data Description

In this subsection, we introduce a real-world dataset that we conducted our experiments on. This
dataset consists of more than 94,770 MIDI (a digital score format) files downloaded from midi
music website. MIDI file is a digital score format of music, which records the pitch, duration, tempo,
style, instrument, and so on. To avoid biases, those incomplete MIDI files, e.g., music without vocal
track was removed. Finally, 28,772 MIDI files were kept in our dataset. Specifically, each MIDI file
contains various categories of audio tracks, such as melody, drum, bass, and string. Some basic
statistics of the pruned dataset are summarized in Table 3. We exposed our dataset online.4

To explore the characteristic of musical style, we analyzed commonness and differentia among
pop, classic, and jazz music from the following four aspects: Instrument, Track, Tone, and Note
Range:

—Instrument. Different style of music usually uses different instruments to perform, but they
have common instruments, such as Piano, String, Bass, and Guitar, which can be observed
from Table 4. We use these common instruments to learn the change of musical style.

4https://data.bdaa.pro/datasets/KDD18-Zhu/.
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—Track. Table 4 shows that different style of music usually has multiple tracks. In this way,
we choose to learn the musical style in arrangement.

—Tone. Music has different tones and will cause chaos with different tones. Thus, we will
convert all music to the same tone, and C major is the best choice as shown in Table 4.

—Note Range. From the note range of different style of music, we found different music has
similar notes distribution of pop, jazz, and classic. Thus, we could learn minor music with
massive major music.

Motivated by the data analysis, in our work, we choose several common instruments to do
experiment, such as piano, drum, bass, string, and guitar. Besides, we also analyze track numbers,
tone, note range and duration of different style music, which show similar distribution between
them, proving that we could learn minor style music from major style music.

Additionally, we make massive pretreatment of MIDI files, including Tone correction, BPM nor-

malization, Track extraction, and Period division as follows:

—Tone correction. Music has different tones. We converted all MiDI files to C major or A
minor to keep all the music in the same tune.

—BPM normalization. We set BPM (Beats Per Minute) as 60 to control duration of one beat
could be 1 second, ensuring all notes correspond to an integer beat.

—Track extraction. Multi-track music has different tracks in different instruments. We ex-
tract melody and other instrument tracks to make arrangement data.

—Period division. We merged every two bars into a period as sequence data to train our
model.

—Chord progression extraction. We extract serial chords from period music by detecting
chord for every bar and define this as the chord progression in the training part of CRMCG.
In the generation part, we choose more than one hundred existing chord progression widely
used in real music as the model input to improve generation performance.

6.2 Training Details

In the melody and arrangement generation section, we randomly select 17,263 instances from the
dataset as the training data, another 5,754 for tuning the parameters, and the rest 5,755 as test data
to validate the performance. In our model, the number of recurrent hidden units are set to 256
for each GRU layer in encoder and decoder. The dimensions of parameters to calculate the hidden
vector in Attention Cell and MLP Cell are set as 256. The model is updated with the Stochastic
Gradient Descent [6] algorithm where batch size set is 64, and the final model is selected according
to the cross-entropy loss on the validation set. To better learn the relationship between rhythm and
melody, CRMCG trains rhythm section and melody section crosswise. Specially, the model updates
rhythm part only with rhythm parameters, while updating melody part with all parameters.

In musical style generation section, we firstly pre-train generator and discriminators, which can
provide a better policy initialization. In detail, we set the MICA as base model of generator and
GRU as discriminator. For discriminators, we utilize different style music as positive samples and
generated music as negative samples for style discriminator, while we use real music as positive
samples and disordered multi-track music as negative samples to train harmony discriminator. We
set hidden state size of GRU as 512 and use Stochastic Gradient Descent to update discriminators.
After pre-training procession, we train the generator and discriminators crosswise with times of 1
to 5 in adversarial training. Discriminators first use generated music as negative data to train model
parameters. Then generator uses the reward from discriminators to update the generator model.
We use Adam optimizer with learning rate 10−3 to fine-tuning generator as suggested by [57]. In
order to balance the weight of reward from two discriminators, we do experiments to find the λ of

ACM Transactions on Knowledge Discovery from Data, Vol. 14, No. 5, Article 54. Publication date: July 2020.



54:20 H. Zhu et al.

Table 5. Human Evaluation of Melody Generation

Methods Rhythm Melody Integrity Singability Average

Magenta (RNN) [10] 3.1875 2.8125 2.8000 2.6000 2.8500
GANMidi (GAN) [23] 1.7125 1.7625 1.3500 1.4250 1.5625
CRMCG (full) 3.7125 3.8125 3.7125 3.9000 3.7844

CRMCG (w/o chord progression) 3.7000 3.5875 3.4375 3.8000 3.6312
CRMCG (w/o cross-training) 3.6375 3.5500 3.3500 3.6250 3.5406

linear combination parameter is set 0.2, which could improve performance of style and harmony
better.

6.3 Melody Generation

In this subsection, we conduct Melody Generation Task to validate the performance of our CRMCG

model. That is, we only use the melody track extracted from the original MIDI music to train the
models and evaluate the aesthetic quality of the melody track generation results.

6.3.1 Baseline Methods. We select two state-of-the-art models for music generation as base-
lines:

—Magenta (RNN). A RNN-based model [10], which is designed to model polyphonic music
with expressive timing and dynamics.

—GANMidi (GAN). A novel GAN-based model [56], which uses conditional mechanism to
exploit versatile prior knowledge of music.

In addition to the proposed CRMCG model, we evaluate two variants of the model to validate
the importance of chord progression and cross-training methods on melody generation:

—CRMCG (full). Proposed model, which generates melody and rhythm crosswise with chord
progression information.

—CRMCG (w/o chord progression). Based on CRMCG (full), without chord information.
—CRMCG (w/o cross-training). Based on CRMCG (full), we train melody and rhythm pat-

terns respectively based on Lm and Lr during the training processing.

6.3.2 Overall Performance. Considering the uniqueness of the music generation, there is not a
suitable quantitative metric to evaluate the melody generation result. Thus, we validate the per-
formance of models based on human study. Following some point concepts in [49], we use the
metrics listed below:

—Rhythm. Does the music sounds fluent and pause suitably?
—Melody. Are the music notes relationships natural and harmonious?
—Integrity. Is the music structure complete and not interrupted suddenly?
—Singability. Is the music suitable for singing with lyrics?

We invited eight volunteers, who are experts in music appreciation, to evaluate the results of
various methods. Volunteers rated every generated music with a score from 1 to 5 based on above
evaluation metrics. The performance is shown in Table 5. According to the results, we realize
that our CRMCG model outperforms all the baselines with a significant margin on all the metrics,
demonstrating the effectiveness of our CRMCG model on Melody Generation. Especially, CRMCG

(full) performs better than CRMCG (w/o chord), which verifies that the chord information can
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Fig. 8. Chord progression analysis compared with human study.

enhance the quality of melody. In addition, we also observe that cross-training can improve the
quality of 6.9% on average, which proves effectiveness of our cross-training algorithm. At the
same time, we find that the RNN-based baseline outperforms the GAN-based model which uses
convolutional neural networks to generate melody. This phenomenon indicates that RNN-based
model is more suitable for Melody Generation, which is the reason why we design CRMCG based
on RNN.

6.3.3 Chord Progression Analysis. Here we further analyze the performance of chord progres-
sion in our CRMCG model. We define Chord Accuracy to evaluate whether chords of generated
melodies match the input chord sequence:

Chord Accuracy =
P∑

i=1

e (yi , ỹi )/P ,

e (yi , ỹi ) =

{
1, i f yi = ỹi

0, i f yi � ỹi
,

where P is the number of the periods, yi is the ith chord of generated melody detected through
[28], and ỹi is the ith corresponding chord in given chord progression.

The performance is shown in Figure 8(a). Specially, the average Chord Accuracy of our generated
melody is 82.25%. Moreover, we show the impact of Chord Accuracy of generated melody on dif-
ferent metrics in Figure 8(b)–(e). From the results, we realize that as the chord accuracy increases,
the quality of melody generation improves significantly, which also confirms the importance of
using the chord information on Melody Generation.

6.3.4 Rest Analysis. Rests are intervals of silence in pieces of music, and divide a melody se-
quence into music segments of different lengths. It is important to provide spaces to allow listeners
to absorb each musical phrase before the next one starts. To create satisfying music, it is necessary
to keep a good dynamic balance between musical activity and rest. Therefore, we evaluate the per-
formance of rests in our generated music by contrasting the differences between distributions of
the length of the music segments in generated music and original ones. Figure 9 shows the length
distributions of the music segments, where minimum, average and maximum represent the differ-
ent length distributions of real music and minimum_g, average_g and maximum_g represent the
different length distributions of generated music. From the figure, our generated music has similar
distributions on music segment lengths with original ones, which verifies that our CRMCG model
can learn the appropriate rests in pieces of music and ensure the rhythm of generated music is
suitable to listen.

6.4 Arrangement Generation

In this subsection, we conduct Multi-track Music Generation to validate the performance of our
MICA model. We select five most important tasks in Multi-track Music Generation, i.e., melody,
drum, bass, string, and guitar, shown in Figure 3(b).
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Fig. 9. Rhythm distribution.

Table 6. Human Evaluation of Arrangement Generation

Methods Overall Drum Bass String Guitar

HRNN[13] 3.2500 2.9875 3.0875 2.8000 2.8625
MICA (w/ att) 3.6625 3.0750 2.8000 3.2125 3.0000
MICA (w/ mlp) 3.8125 3.1000 3.4625 3.3125 3.3500

6.4.1 Baseline Methods. To validate the performance of our two MICA models, a relevant model
HRNN [13] is selected as baseline method. Specifically, we set the comparison methods as follows:

—HRNN. A hierarchical RNN-based model [13], which is designed to generate multi-track
music. In particular, it uses a low-level structure to generate melody and higher-level struc-
tures to produce the tracks of different instruments.

—MICA w/ Attention Cell. The proposed model, which uses Attention Cell to share infor-
mation between different tracks.

—MICA w/ MLP Cell. The proposed model, which uses MLP Cell to share information be-
tween different tracks.

6.4.2 Overall Performance. Different from the Melody Generation task, we ask volunteers to
evaluate the quality of generated music in a holistic dimension. They score the performance of
different instruments in music as well as the overall performance, which music is played with
all instruments. The performance is shown in Table 6. According to the results, we observe that
our MICA model performs better than current method HRNN both on single-track and multi-track,
which means MICA has a significant improvement on Multi-track Music Generation task. Specially,
we find that multi-track has higher score than single track score, which indicates that multi-track
music sounds better than single-track music and confirms the importance of the arrangement.
Meanwhile, we also observe that the drum track has the worst performance compared to other
single-track, which is because the drum track only plays an accessorial role in a piece of multi-
track music. Furthermore, our MLP Cell-based MICA model performs better than Attention Cell-
based MICA model, and it seems that our MLP Cell mechanism can better utilize the information
from other tracks.
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Fig. 10. The harmony analysis of arrangement (G: Guitar, S: String, and B: Bass).

6.4.3 Harmony Analysis. Besides human study on Multi-track Music Generation, we further
evaluate whether melodies between different tracks are harmonious. Here we consider that two
tracks are harmonious if they have similar chord progression [26]. Thus, we use chord similarity
to represent harmony among multi-tracks. Formally, we define Harmony Score as:

Harmony Score =
P∑

p=1

δ ��
K⋂

k=1

Ck
p
�
	 ,

δ (a) =

{
1, i f a � ∅

0, i f a = ∅
,

where P and K denote the number of periods and tracks of generated music respectively, and Ck
p

denotes the kth track pth corresponding chord.
As shown in Figure 10, we evaluate the harmony of multi-track music on different models. Every

model generates several music given the same chord progression, and then we calculate the har-
mony score of these generated music. We observe that our MLP Cell-based MICA model achieves
the best performance, with an improvement by up to 24.4% compared to HRNN. It indicates that
MICA model improves the harmony of multi-track music through utilizing the useful information
of other tasks. Besides, three models all achieve better score on four tracks task without guitar or
string track, means guitar and string tracks are harder to learn. Specially, we find that harmony of
music with fewer tracks is higher than music with more tracks. For this result, we specular that
more tracks music have higher harmony requirements.

6.4.4 Arrangement Analysis. To observe our model performs at multi-track music arrangement,
we generate each track while fixing melody track as source melody sequence. Here we validate
the performance based on four metrics as follows:

—Note accuracy. Note accuracy is the fraction of matched generated notes and source notes
over the total amount of source notes in a piece of music, that is:

Notes Accuracy =
N∑

i=1

e (yi , ỹi )/N ,

where yi , ỹi denote the ith source note and generated note, respectively. As sequence gen-
eration, the higher accuracy of note prediction means better generation performance. To
this end, we utilize note accuracy to evaluate multi-track generation.
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Fig. 11. The analysis of arrangement from four parts.

—Levenshtein similarity. We define the music generation as a sequence generation prob-
lem. It is necessary to evaluate the sequence similarity between real music and generated
music. Compared with other sequence similar metrics, such as Mahalanobis distance [41]
and Euclidean distance [1], Levenshtein distance [34] could handle unequal length se-
quences. Levenshtein distance is calculated by counting the minimum number of single-
character edits (insertions, deletions or substitutions) required to change one sequence into
the other. Therefore, we calculate the Levenshtein similarity by Levenshtein distance, and
evaluate the similarity of generated musical notes sequences and original ones as follows:

Levenshtein similarity = 1 − Levenshtein distance

N + Ñ
,

where N , Ñ denote the length of generated musical notes sequences and original musical
notes sequences, respectively. The greater value of Levenshtein distance, the higher the
coincidence of sequence.

—Notes distribution MSE. Notes distribution MSE is used to analyze the notes distribution
between generated and original ones, which can be formulated by:

Notes distribution MSE =

∑M
i=1

∑N
j=1

(
yi

N
− ỹi

N

)2
MN

,

where M,N denote the number of pieces of music and note categories, respectively. Actu-
ally, every instrument has its own characteristic in terms of note range. For example, bass
usually uses low notes and drum has fixed notes.

—Empty. It is bad for generation results to be empty while a real result has notes. We use it
to evaluate generation results and a lower score indicates better performance.

The performance is shown in Figure 11. According to the results, our MLP Cell-based MICA

model achieves best performance across all metrics. Specially, from Figure 11(a), it can be con-
cluded that the drum task has the greatest note accuracy, which confirms that drum is easier to
learn than other instruments. Moreover, as shown in Figure 11(b), our MLP Cell-based MICA model
could improve the quality of 6.9% on average compared with HRNN. Meanwhile, from Figure 11(c),
we observe that our MLP Cell-based MICA model has the most stable effect on Notes distribution
MSE, which proves our model can learn instrument characteristics better. At last, Figure 11(d) il-
lustrates the robustness of our MLP Cell-based MICA model, which can maintain a high level of
generation result.

6.4.5 Multi-task Performance Analysis. We also found the multi-task learning could accelerate
the training procession in multi-sequence generation. Here we compared base model HRNN and
two multi-task learning models, including Attention Cell and MLP Cell-based MICA. Figure 12(a)–
12(d) separately represent different arrangement models’ training procession in drum, bass, string,
and guitar, where MLP and Attention achieve convergence faster and better, compared with model
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Fig. 12. Instrument loss analysis of arrangement.

without multi-task learning. Besides, Figure 12(b)–12(d) show that the model with multi-task learn-
ing could handle more complex task better. For example, in bass, string, and guitar generation
tasks, which are more complexed than drum task, the multi-task learning model has a significant
improvement compared with HRNN without multi-task learning. To further evaluate the robust-
ness of our model, we experimented on longer music sequences. As showed in Figure 12(e)–12(h),
generation models with multi-task learning still perform better than model without multi-task
learning. Similarly, multi-task learning model has a higher improvement in complex tasks, such as
bass, string, and guitar.

6.5 Musical Style Generation

In this subsection, we will analyze the musical style generation performance in our MSMICA model
compared with other baselines. Meanwhile, we will discuss the fine-tuning method and how to
control the style of generated multi-track music. Besides, to evaluate the influence of discrimina-
tors for controlling music generation, we analyze in detail the single and multiple discriminators
in aspects of musical style and harmony.

6.5.1 Baseline Methods. To validate the performance of musical style generation model, we
utilize MSMICA and several variations of model as baseline methods. Specifically, we set the com-
parison methods as follows:

—MSMICA. Proposed model, which controls musical style by both harmony and style dis-
criminators with MICA as generator.

In addition to analyze the influence of different generators, we evaluate two variants of the
model to validate the importance of style and harmony discriminators on music generation:

—MSMICA w/o Style Discriminator. Based on MSMICA, model controls musical style with-
out style discriminator.

—MSMICA w/o Harmony Discriminator. Based on MSMICA, model controls musical style
without harmony discriminator.
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Table 7. Human Evaluation of Musical Style

Methods Overall Rhythm Integrity Harmony Style

HRNN[13] 3.2500 2.9875 3.0875 2.8000 2.0625
MICA[63] 3.4625 3.0750 2.8000 2.9125 2.2500
MSMICA 3.7125 3.0750 3.1250 3.2625 3.3500

MSMICA (w/o style) 3.5625 3.1750 3.2000 3.0125 2.8125
MSMICA (w/o harmony) 3.6125 3.1000 3.0625 2.9750 3.1500

6.5.2 Musical Style Analysis. We evaluate the performance by inviting human with music
knowledge to validate the style of generated music. Similar in previous work [63], we utilize sev-
eral metrics, including Overall, Rhythm, Integrity, and Harmony. Besides, we proposed a new Style

to evaluate the performance of musical style:

—Style. We choose music data with a musical stye s as the training data for above models.
After getting generated music, we let human with music knowledge to choose music best
related to the style s with a rank score from one-to-five, which the score of five means
corresponding music is highest related to style s .

Table 7 shows the results on above metrics with different models. HRNN and MICA are our
baselines, while MSMICA and two variants are proposed model with fine-tuning method. From
the table, we found the MSMICA performances better than HRNN and MICA in Overall, proving
that the fine-tuning method could improve the generation performance. Besides, for the score of
style, MSMICA has a best score and MSMICA(w/o style) has lowest score in variants of MSMICA.
This evaluates that the style discriminator could guide the generator to output specific music with
corresponding style. Specially, the model without harmony discriminator achieves the worst result
on Integrity, Harmony and Style metrics. This supports our argument that when we try to fine-
tuning the generator to control the musical style, fine-tuning will destroy the harmony among the
multi-track music.

6.5.3 Harmony Analysis. As we proposed above, we specular the procession of the fine-tuning
of generator will make generated music approaches constantly to the specific music, but also
change the characteristics learned of music, such as harmony. In order to learn the style and har-
mony simultaneously, we utilize the harmony discriminator to ensure the harmony of generated
music after fine-tuning with multi-style discriminator. To validate this idea, we compared the mu-
sic harmony both before and after fine-tuning with harmony discriminator in multi-track music.
MICA and MICA with harmony discriminator are used to experiment on different tracks music.
Additionally, HRNN, Attention Cell, and MLP Cell are used to validate multi-task learning whether
influence the fine-tuning performance. From Figure 13, we found the harmony score of gener-
ated music improved after fine-tuning, which means the discriminator could guide the generator
achieve a more harmonious state. Besides, for different track music tasks, Attention Cell and MLP
Cell performance are always better than HRNN, which shows the robustness of multi-task learning
and significant importance for multiple sequence generation. We showed the Harmony Score in
Table 8. From the experiment results, fine-tuning of discriminator improved the harmony score of
generated music, proving the effectiveness of adversarial training. We also found the MLP cell has
the best harmony score on every task, which also validates the effectiveness of this information
exchange strategy compared with HRNN and Attention Cell. Specially, multi-task learning model
has higher improvement, where Attention Cell achieves 2.90% score and MLP Cell achieves 2.45%.
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Fig. 13. Harmony analysis in fine tuning (G: Guitar, S: String, B: Bass).

Table 8. Harmony Score of Arrangement After Fine Tuning

Methods
MICA MICA w/ Harmony Discriminator Improvement

5 w/o B w/o S w/o G 5 w/o B w/o S w/o G 5 w/o B w/o S w/o G

HRNN 1.779 1.859 1.839 2.004 1.794 1.876 1.858 2.03 0.84% 0.91% 1.03% 1.30%

Attention 1.934 1.990 1.982 2.104 1.979 2.023 2.027 2.165 4.60% 1.66% 2.27% 2.90%

MLP 2.003 2.081 2.042 2.201 2.036 2.109 2.092 2.211 1.64% 1.35% 2.45% 0.45%

Table 9. Parameter Experiment of Multiple Discriminators

Methods
HRNN MICA w/ Attention Cell MICA w/ MLP Cell

5 w/o B w/o S w/o G 5 w/o B w/o S w/o G 5 w/o B w/o S w/o G

λ = 1.0 1.759 1.758 1.779 1.951 1.902 1.942 1.923 1.962 1.780 1.830 1.810 1.980

λ = 0.8 1.752 1.826 1.835 1.999 1.939 2.019 1.985 2.084 1.810 1.870 1.900 2.020

λ = 0.5 1.761 1.786 1.828 1.972 2.006 2.083 2.061 2.118 1.870 1.940 1.940 2.030

λ = 0.2 1.982 2.068 2.045 2.097 2.032 2.103 2.089 2.147 1.984 2.093 2.094 2.107

λ = 0.0 1.782 1.872 1.847 2.002 1.993 2.086 2.047 2.106 1.830 1.910 1.920 2.000

6.5.4 Multiple Discriminator Analysis. As we mentioned in Section 5.5, we define the reward
function for policy gradient as a linear combination of probability of classifying generated music
y weighted by parameter λ:

R (y |·) = λCs (c = style |y) + (1 − λ)Ch (c = harmony |y). (25)

However, how to define a suitable value of λ to balance performance of musical style and harmony
is a problem. In this section, we conduct experiments on different parameters of λ. Besides, we also
analyze influence of the policy reward on different generators.

We set five different parameters of λ, including 1.0, 0.8, 0.5, 0.2, 0.0. From Table 9, we compared
harmony score of different generators, including HRNN, MICA w/ Attention Cell, and MICA w/
MLP Cell in different parameters of λ. When λ set as 1.0, all models only use style discrimina-
tor to guide music generation. We found all models achieve worst harmony score compared with
other values of λ. This indicates harmony discriminator has an important influence on music har-
mony. Besides, the model only with harmony discriminator does not get the best performance,
while the model with multiple discriminators gets higher harmony score. This might be due to the
model could capture more training data with different musical styles, which have commonness
on harmony. Specially, the experiment results show that the generator with multi-task learning
method has better performance, proving that the multi-task learning method could help share
reward among different tasks when computing policy rewards.
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7 DISCUSSION

From the experimental results of the music generation, we can observe that CRMCG, MICA, and
MSMICA outperform the baselines on multi-track music generation and musical style generation
problems. Harmony and musical style analysis demonstrated that our model could generate har-
monious multi-track music with different musical styles.

Nevertheless, there is still some room for improvement. First, our data currently suffers from
the limit of musical style numbers, and we will try to collect more music data in the future. Second,
We can design a model to choose the instruments automatically. Third, there may be some other
problems in music generation, like longer music generation and emotions in music, that will be
considered in future work.

8 CONCLUSIONS

In this article, we proposed an end-to-end melody and arrangement generation framework to gen-
erate a melody with several instruments accompanying simultaneously. To be specific, we first
developed a novel CRMCG, which utilized chord progression to guide the melody and rhythm
generation. Then, in order to enrich the music content and improve the quality of generation, we
proposed MICA for multi-track music arrangement, which used other task states at each step in
the decoder layer to improve the whole generation performance and ensure the harmony of multi-
track music. One step further, we proposed to control the musical style and meet the diversified
demand in the real world, we designed MSMICA to learn the musical style with adversarial train-
ing. Therefore, we can not only maintain the harmony of the generated music but also control the
musical style for better utilization. By massive experiments provided, our system showed better
performance compared with other models in human evaluation and we have completed the Tur-
ing test and achieved good results. Since there has been the relatively little work on pop music
generation, we hope our work could inspire the relative research studies and lead many future
works.
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