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Abstract

Non-autoregressive translation (NAT) models remove the de-
pendence on previous target tokens and generate all target
tokens in parallel, resulting in significant inference speedup
but at the cost of inferior translation accuracy compared to
autoregressive translation (AT) models. Considering that AT
models have higher accuracy and are easier to train than
NAT models, and both of them share the same model con-
figurations, a natural idea to improve the accuracy of NAT
models is to transfer a well-trained AT model to an NAT
model through fine-tuning. However, since AT and NAT mod-
els differ greatly in training strategy, straightforward fine-
tuning does not work well. In this work, we introduce curricu-
lum learning into fine-tuning for NAT. Specifically, we de-
sign a curriculum in the fine-tuning process to progressively
switch the training from autoregressive generation to non-
autoregressive generation. Experiments on four benchmark
translation datasets show that the proposed method achieves
good improvement (more than 1 BLEU score) over previous
NAT baselines in terms of translation accuracy, and greatly
speed up (more than 10 times) the inference process over AT
baselines.

1 Introduction
Neural machine translation (NMT) (Bahdanau, Cho, and
Bengio 2014; Gehring et al. 2017; Shen et al. 2018; Vaswani
et al. 2017; He et al. 2018; Hassan et al. 2018) has made
rapid progress in recent years. The dominant approaches for
NMT are based on autoregressive translation (AT), where
the generation of the current token in the target sentence
depends on the previously generated tokens as well as the
source sentence. The conditional distribution of sentence
generation in AT models can be formulated as:

P (y|x) =

Ty∏
t=1

P (yt|y<t, x), (1)

where Ty is the length of the target sentence which is im-
plicitly decided by predicting the [EOS] token, and y<t rep-
resents all generated target tokens before yt and x represents
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the source sentence. Since AT model generates the target to-
kens sequentially, the inference speed is a natural bottleneck
for real-world machine translation systems.

Recently, non-autoregressive translation (NAT) mod-
els (Gu et al. 2017; Kaiser et al. 2018; Lee, Mansimov, and
Cho 2018; Guo et al. 2019; Wang et al. 2019; Li et al. 2019)
are proposed to reduce the inference latency by generat-
ing all target tokens independently and simultaneously. In-
stead of conditioning on previously generated target tokens,
NAT models generate target tokens by taking other target-
independent signals as the decoder input. In this way, the
generation of y can be written as:

P (y|x) = P (Ty|x) ·
Ty∏
t=1

P (yt|z, x), (2)

where P (Ty|x) is the explicit length prediction process for
NAT models, and z represents the decoder input which is
generated conditionally independent of y. As a result, the
inference speed can be significantly boosted. However, the
context dependency within the target sentence is sacrificed
at the same time, which leads to a large degradation of the
translation quality of NAT models. Therefore, improving the
accuracy of NAT models becomes a critical research prob-
lem.

Considering that 1) NAT is a harder task than AT due to
that the decoder in the NAT model has to handle the trans-
lation task conditioned on less and weaker target-side in-
formation; 2) AT models are of higher accuracy than NAT
models; 3) NAT models (Gu et al. 2017; Guo et al. 2019;
Wang et al. 2019) usually share the same encoder-decoder
framework with AT models (Vaswani et al. 2017), it is very
natural to fine-tune a well-trained AT model for NAT, in or-
der to transfer the knowledge learned in the AT model, espe-
cially the ability of target language modeling and generation
in the decoder. However, AT and NAT models differ a lot
in training, and thus directly fine-tuning a well-trained AT
model does not lead to a good NAT model in general.

To effectively transfer an AT model and obtain a good
NAT model, we first note that there are two major differ-
ences between NAT and AT models, as shown in Figure 1.
• Decoder input: The decoder in AT models leverages the

previous tokens as input while the decoder in NAT models
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Figure 1: The comparison between the decoders of AT models and NAT models. The red dashed line indicates the attention
mask, and we only draw the masks of the first three tokens for simplicity. The blue dashed box indicates the decoder input. Best
view in color.

takes target-independent signals as input. Specifically, Gu
et al. (2017) and Wang et al. (2019) take a copy of the
source sentence x as the decoder input.

• Attention mask: Each token can only attend to the tokens
in its previous positions in AT models, while each token
can attend to the tokens in all positions in NAT models.

In order to handle the differences between the AT and
NAT models during the fine-tuning process, we introduce
the idea of curriculum learning (Bengio et al. 2009) to make
the transfer smooth and progressive. Specifically, we pro-
pose two kinds of curriculums for the transfer from an AT
model to an NAT model:

• Curriculum for the decoder input: We first feed the tar-
get sentence as AT models do, and then randomly substi-
tute a number of tokens by the tokens in the copied source
sentence, where the number of substituted tokens depends
on a probability that is monotonically increasing w.r.t the
training step.

• Curriculum for the attention mask: We first train the
model with the attention mask of AT models and switch
to that of NAT models entirely after a pre-defined training
step.

In this way, we first train the translation model in an
easier autoregressive generation, and gradually transfer to
a harder non-autoregressive generation. We conduct ex-
periments on four translation datasets including WMT14
English-German, WMT14 German-English and IWSLT14
German-English to verify the effectiveness of the proposed
method, and our model outperforms all non-autoregressive
baselines on these tasks. Specifically, we outperform the
best NAT baseline (Wang et al. 2019) by 1.87 BLEU on
the IWSLT14 De-En task and 1.14 BLEU on the WMT14
En-De task.

2 Related Work
2.1 Non-Autoregressive Neural Machine

Translation
As shown by Equation 2, NAT models generate target tokens
conditioned on the source sentence x and the decoder input
z, and some previous works concentrate on the design of z.
Gu et al. (2017) introduce a fertility predictor to guide how
many times a source token is copied to the decoder input.
Lee, Mansimov, and Cho (2018) define z by iteratively refin-
ing the target sentences generated by NAT. Guo et al. (2019)
enhance the decoder input with target-side information by
either utilizing auxiliary information or introducing extra pa-
rameters. Ren et al. (2019) directly use the expanded hidden
sequence from the source side as z in text to speech problem.
Besides trying different designs of z, Wang et al. (2019) and
Li et al. (2019) propose auxiliary loss functions to solve the
problem that NAT models tend to translate missing and du-
plicating words.

Another line of related works focuses on finding a tradeoff
between high inference speed and good translation perfor-
mance. Traditional AT models take O(n) iterations to gen-
erate a sentence with length n during inference. Kaiser et
al. (2018) takes intermediate discrete variables with length
m = n

8 as z, which are generated autoregressively. These
methods can result in a generation complexity of O(n

8 ),
and similar complexity also holds for Wang, Zhang, and
Chen (2018) and Stern, Shazeer, and Uszkoreit (2018). Re-
cently, some works (Stern et al. 2019; Welleck et al. 2019)
propose to change the generation order from the traditional
left-to-right manner to a tree-based manner, resulting in a
complexity of O(log n).

In this paper, we focus on NAT models with generation
complexity of O(1) and propose a new perspective of the
training paradigm. We consider the training of AT and NAT
models easier and harder tasks respectively, and utilize the



strategy of fine-tuning by curriculum learning to train the
model, i.e., smoothly transferring from the training of AT
models to the training of NAT models.

2.2 Transfer Learning
Transfer learning has been extensively studied in machine
learning and deep learning (Pan and Yang 2009). For exam-
ple, the model pre-trained on ImageNet is widely used as
the initialization in downstream tasks such as object detec-
tion (Girshick et al. 2014) and image segmentation (Long,
Shelhamer, and Darrell 2015). On NLP tasks, the pre-trained
model such as BERT (Devlin et al. 2018) and MASS (Song
et al. 2019) are fine-tuned in many language understanding
and generation tasks. In this paper, we find that the pre-
training task (AT) and fine-tuning task (NAT) are quite dif-
ferent in the training strategy, where directly fine-tuning re-
sults in sub-optimal performance. Therefore, we propose us-
ing curriculum learning in the transfer process to achieve a
soft landing of the AT models on NAT.

2.3 Curriculum Learning
Humans usually learn better when the curriculums are or-
ganized from easy to hard. Inspired by that, Bengio et
al. (2009) propose curriculum learning, a machine learning
training strategy that feeds training instances to the model
from easy to hard. Most works on curriculum learning focus
on determining the order of data (Lee and Grauman 2011;
Sachan and Xing 2016) or tasks (Pentina, Sharmanska, and
Lampert 2015; Sarafianos et al. 2017). In our setting, we
design curriculums for neither data samples nor tasks, but
the training mechanisms. This way, we make the fine-tuning
process smoother and ensure a soft landing from the AT
models to NAT models.

3 Fine-Tuning by Curriculum Learning for
NAT

In this section, we introduce the proposed method, Fine-
tuning by Curriculum Learning for Non-Autoregressive
Translation (FCL-NAT). We start with the problem defini-
tion, and then introduce the methodology as well as some
discussions on our proposed method.

3.1 Problem Definition
Given a source sentence x ∈ X and target sentence y ∈ Y ,
we consider autoregressive translation (AT) as the source
task TS = {Y, P (y|zAT, x)}1, and non-autoregressive trans-
lation (NAT) as the target task TT = {Y, P (y|zNAT, x)},
where zAT and zNAT are the decoder input of AT and NAT
models respectively. Given a bilingual sentence pair (x, y),
the conditional probability P (y|z, x) can be written as

P (y|z, x) =

Ty∏
t=1

P (yt|z, x) =

Ty∏
t=1

P (yt|z, x; θenc, θdec),

(3)
1We follow the task definition in Pan and Yang (2009), where

the tuple consists of a label space Y and a prediction function
P (y|zAT, x).

where Ty is the length of the target sentence, θenc and θdec
denote the parameters of the encoder and decoder. For AT
models, we denote the decoder input as zAT = (y0, ..., yt−1),
which is the left-shifted target sentence in teacher forc-
ing (Williams and Zipser 1989) training. For NAT mod-
els, we denote the decoder input as zNAT = (x̃1, ..., x̃Ty

),
which is obtained from copying the source sentence x.
Note that we do not follow (Gu et al. 2017) which in-
troduces a learnable neural network based fertility predic-
tor to guide the copying process, but utilize a simple and
efficient hard copy method which has been used in sev-
eral previous works (Wang et al. 2019; Guo et al. 2019;
Li et al. 2019).

Our objective is to learn an NAT model Θ = (θenc, θdec),
utilizing the knowledge learned in the source task TS to
facilitate learning in the target task TT , with a curriculum
learning way to fine-tune from

LAT(x, y; Θ) = −
Ty∑
t=1

logP (yt|zAT, x) (4)

to

LNAT(x, y; Θ) = −
Ty∑
t=1

logP (yt|zNAT, x). (5)

3.2 Methodology
Generally, the transfer learning procedure for our NAT
model can be divided into three stages: 1) AT training, where
the model is trained autoregressively as the traditional AT
model, and this is equivalent to initializing our model with a
pre-trained AT model; 2) Curriculum learning, which is the
main stage we focus on and will be introduced with details in
this section; 3) NAT training, where we train the model non-
autoregressively until convergence. We denote the training
steps of the corresponding stages as IAT, ICL and INAT.

As introduced in Section 1, decoder input and attention
mask are the two major differences between AT and NAT
models. We describe the curriculums on the two components
respectively.

Curriculum for the decoder input For the decoder in-
put, we implement the smooth transfer from zAT to zNAT
by progressively substituting the tokens in zAT with the to-
kens at the same positions of zNAT. Specifically, at the i-th
training step, given the AT decoder input zAT and the NAT
decoder input zNAT, we first calculate the substitution rate
αi = fsub(i) ∈ [0, 1], where fsub(i) is the substitution func-
tion which is increased monotonically from 0 to 1 w.r.t the
training step i. Then, we randomly select ni = bαi · Tyc to-
kens to substitute. We use a binary vector PT ∈ {0, 1}Ty to
represent the positions of selected tokens, where ‖PT ‖1 =
ni. If the j-th element of PT equals 1, it indicates the j-th
token will be substituted. Then, the decoder input zi after
substitution can be computed formally as:

zi = (1− PT )� zAT + PT � zNAT, (6)

where � is the element-wise multiplication.
The substitution function fsub(i) controls how fast the de-

coder input will be transfered from zAT to zNAT, and we



Pacing Functions Description

Ladder-like fladder(i) =
b i+1

K c·K
ICL

Linear flinear(i) = i+1
ICL

Logarithmic flog(i) = log(i+1)
log(ICL)

Table 1: The proposed different pacing functions and their
definitions.

0 0.2M 0.4M 0.6M 0.8M 1.0M
Curriculum Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

Pa
cin

g 
Fu

nc
tio

n 
Va

lu
e

Logarithmic
Linear
Ladder-like

Figure 2: Illustration of the proposed pacing functions. We
set ICL = 1M here, and K = 20 for the ladder-like function,
i.e., divide the training stage into 5 sub-stages.

term it as the pacing function because it works similar to
pacing strategies introduced in previous curriculum learn-
ing works (Kumar, Packer, and Koller 2010; Hacohen and
Weinshall 2019). In this paper, we define three different pac-
ing functions named as ladder-like, linear and logarithmic to
make a smooth transformation from zAT to zNAT and verify
the effectiveness of the proposed model.

The definition and illustration of these pacing functions
are shown in Table 1 and Figure 2 respectively. Correspond-
ingly, the ladder-like function divides the curriculum learn-
ing stage into ICL

K sub-stages, and the substitution rate is
fixed within each sub-stage but increased when switching
to the next sub-stage. As this is a discrete pacing strategy
w.r.t the training step i, we propose the other two continuous
functions for comparison. According to their definitions, the
difference between linear and logarithmic pacing functions
is that flinear(i) does not show any preference on easier or
harder stages but keeps a steady increasing pace, and flog(i)
concentrates more on the harder stage. As different substi-
tution functions reflect different pacing strategies in curricu-
lum learning, we compare and analyze the proposed func-
tions in experiments.

Curriculum for the attention mask The attention mask
can be formulated as a zero-one matrix M ∈ {0, 1}Ty×Ty .
For AT models, MAT is an upper triangle matrix to prevent
the model from attending to future words during training.
For NAT models, as the decoder input is the copied source
sentence and all target words are generated conditionally in-

Algorithm 1: Fine-tuning by curriculum learning for
NAT (FCL-NAT)

Input: The translation model Θ = (θenc, θdec); the
training set (X ,Y); the AT/NAT decoder input
zAT and zNAT, the attention mask MAT and
MNAT; the substitution function fsub(i) which is
chose from aforementioned functions; the
maximum curriculum training step ICL; the
mask switching rate αM.

1 Set the attention mask M = MAT ;
2 Pretrain the model autoregressively following the loss

function Equation 4 ;
3 for i = 1...ICL do
4 Draw a mini-batch of training pairs from (X ,Y) ;
5 Compute the substitution rate αi = fsub(i) and

construct the substitution mask PT ;
6 if αi > αM then
7 Set the attention mask M = MNAT ;
8 Compute the substitution result zi following

Equation 6 ;
9 Train the model with the loss

LCL(x, y; Θ) = −
∑Ty

t=1 logP (yt|zi, x) on this
mini-batch ;

10 end
11 Train the model in purely non-autoregressive manner

until convergence following Equation 5.

dependently, and thus the matrix MNAT is a matrix with all
ones. We find that there does not exist a natural intermediate
state between these two types of attention masks, therefore
we choose to directly switch the mask from AT to NAT when
the substitution rate exceeds a pre-defined threshold αM.

We summarize the whole procedure of fine-tuning by cur-
riculum learning in Algorithm 1. If we remove the curricu-
lum learning part from line 3 to line 10, it yields the tra-
ditional fine-tuning strategy, which will be compared as a
baseline in our experiments.

3.3 Discussion
Why token-level substitution? A straightforward idea of
implementing the curriculum learning procedure from AT to
NAT models is to conduct sentence-level substitution, i.e.,
we can directly replace the decoder input from zAT to zNAT
at the sentence level with probability αi at the i-th training
step. However, the sentence-level substitution is only alter-
nating between two different training strategies, without ex-
plicitly providing a transfer to sufficiently leverage the infor-
mation contained in the intermediate states between AT and
NAT models. Our preliminary experiments verify our state-
ment by showing that the performance of sentence-level sub-
stitution is inferior to that of token-level substitution under
the same setting, and detailed results are listed in the section
of experiments.
Why directly switch the attention mask? The decoder in-
put of AT models zAT is the left-shifted target sequence, e.g.,
the (i + 1)-th token is the label of the i-th token, and MAT



prevents the i-th token from seeing its label. However, the
attention mask of NAT decoder enables the i-th position to
see the tokens in all positions. Therefore, at the early stage
of curriculum learning where AT tokens are dominant in the
substituted results, if we follow the same token-level substi-
tution mechanism for the attention mask, then the substituted
position will see the next AT token which is supposed to be
the label of the current position, making the model learn to
copy instead of learning to translate. Therefore, we use the
attention mask of AT models MAT in the early stage of cur-
riculum learning, and switch to utilize MNAT when there are
enough NAT tokens in the substitution results.

4 Experiments and Results
4.1 Experimental Setup
Datasets We evaluate our method on four widely used
benchmark datasets: IWSLT14 German to English trans-
lation (IWSLT14 De-En) and WMT14 English to Ger-
man/German to English translation (WMT14 En-De/De-
En)2. We strictly follow the dataset configurations of pre-
vious works (Gu et al. 2017; Guo et al. 2019). Specifically,
for the IWSLT14 De-En task, we have 153k/7k/7k parallel
bilingual sentences in the training/dev/test sets respectively.
WMT14 En-De/De-En has a much larger dataset which
contains 4.5M training pairs, where newstest2013 and
newstest2014 are used as the validation and test set re-
spectively. For each dataset, we tokenize the sentences by
Moses (Koehn et al. 2007) and segment each word into sub-
words using Byte-Pair Encoding (BPE) (Sennrich, Haddow,
and Birch 2015), resulting in a 32k vocabulary shared by
source and target languages.

Model Configurations We follow (Gu et al. 2017; Guo
et al. 2019) for the basic configuration of our model, which
is based on the Transformer (Vaswani et al. 2017) architec-
ture that consists of multi-head attention and feed-forward
networks. We also utilize the multi-head positional atten-
tion proposed by (Gu et al. 2017). For WMT14 datasets, we
use the hyperparameters of a base transformer (dmodel =
dhidden = 512, nlayer = 6, nhead = 8). For IWSLT14 datasets,
we utilize smaller architectures (dmodel = dhidden = 256,
nlayer = 5, nhead = 4) for IWSLT14. Please refer to (Vaswani
et al. 2017; Gu et al. 2017) for more detailed settings.

Training and Inference Following previous works (Gu et
al. 2017; Lee, Mansimov, and Cho 2018; Guo et al. 2019),
we also utilize sequence-level knowledge distillation (Kim
and Rush 2016) during training. We first train an AT teacher
model which has the same architecture as the NAT student
model, then we use the translation results of each source sen-
tence generated by the teacher model as the new ground truth
to formulate a new training set. The distilled training set is
more deterministic and less noisy, and thus makes the train-
ing of NAT models much easier (Gu et al. 2017). We set the
beam size to be 4 for the teacher model. While the perfor-
mance of the AT teacher may influence the performance of

2https://www.statmt.org/wmt14/translation-task

WMT14 IWSLT14
En−De De−En De−En

IAT 119k 138k 55k

ICL 0.5M 0.5M 1.0M

INAT 1.5M 1.5M 2.0M

Table 2: Training steps for the three training stages.

the NAT student (Wang et al. 2019), to ensure a fair compar-
ison, we use the autoregressive models of the same perfor-
mance with that in (Wang et al. 2019) as our teacher models
for all datasets. We train the NAT model on 8/1 Nvidia M40
GPUs for WMT/IWSLT datasets respectively, and follow
the optimizer setting in Transformer (Vaswani et al. 2017).
We adopt the logarithmic pacing function for the main re-
sults. For the three training stages introduced in Section 3.2,
we list their settings in Table 2, which are determined by the
model performance on the validation sets. We set αM = 0.6
for all tasks. We implement our model on Tensorflow3, and
we have released our code4.

During inference, we utilize Noisy Parallel Decod-
ing (NPD) to generate multiple samples and select the best
translation from them, which is also a common practice in
previous NAT models (Wang et al. 2019; Guo et al. 2019;
Li et al. 2019). Specifically, as we do not know the lengths
of target sentences during inference, we generate multiple
translation candidates with different target lengths in Ty ∈[
bβ · Tx − Bc, bβ · Tx + Bc

]
where β is the average ratio

between target and source sentence lengths calculated in the
training set, and B is half of the searching window of the
target length. For example, B = 0 represents greedy search.
For B ≥ 1, we first generate 2B + 1 translation candidates,
and then utilize the AT teacher model to score and select the
best translation as our final result. As this scoring procedure
is fully parallelizable, it will not hurt the non-autoregressive
property of the model. In our experiments, we set β = 1.1
for all English to German tasks, and β = 0.9 for all Ger-
man to English tasks. We test with B = 0 and B = 4 to
keep consistent with our baselines (Wang et al. 2019; Guo
et al. 2019). We use tokenized case-sensitive BLEU (Pap-
ineni et al. 2002) for the WMT14 datasets, and tokenized
case-insensitive BLEU for the IWSLT14 dataset, which are
all common practices in the literature (Gu et al. 2017;
Wang et al. 2019; Guo et al. 2019). For the inference la-
tency, we report the per-sentence decoding latency on the
newstest2014 test set of the WMT14 En-De task, i.e.,
set the batch size to 1 and calculate the average transla-
tion time over all sentences in the test set, which is con-
ducted on a single Nvidia P100 GPU to ensure a fair com-
parison with baselines (Gu et al. 2017; Wang et al. 2019;
Guo et al. 2019).

3https://github.com/tensorflow/tensor2tensor
4https://github.com/lemmonation/fcl-nat



WMT14 IWSLT14
Models En−De De−En De−En Latency / Speedup

Transformer (Vaswani et al. 2017) 27.30 31.29 33.52 607 ms 1.00×
NAT-FT (Gu et al. 2017) 17.69 21.47 20.32† 39 ms 15.6×
NAT-FT (NPD 10) 18.66 22.41 21.39† 79 ms 7.68×
NAT-FT (NPD 100) 19.17 23.20 24.21† 257 ms 2.36×
NAT-IR (Lee, Mansimov, and Cho 2018) 21.61 25.48 23.94† 404† ms 1.50×
ENAT (Guo et al. 2019) 20.65 23.23 25.09 24 ms 25.3×
ENAT (NPD 9) 24.28 26.67 28.60 49 ms 12.4×
NAT-Reg (Wang et al. 2019) 20.65 24.77 23.89 22 ms 27.6×
NAT-Reg (NPD 9) 24.61 28.90 28.04 40 ms 15.1×
Direct Transfer 20.23 23.16 23.05 21 ms 28.9×
FCL-NAT 21.70 25.32 26.62 21 ms 28.9×
FCL-NAT (NPD 9) 25.75 29.50 29.91 38 ms 16.0×

Table 3: The BLEU scores of our proposed FCL-NAT and the baseline methods on the WMT14 En-De, WMT14 De-En and
IWSLT14 De-En tasks. “†” indicates that the result is provided by Wang et al. (2019), and “/” indicates the corresponding result
is not reported in the original paper. We report the best results for baseline methods and also list the inference latency as well
as the speedup w.r.t autoregressive models. NPD 9 indicates results of noisy parallel decoding with 9 candidates, i.e., B = 4,
otherwise B = 0.

4.2 Results
We compare our model with non-autoregressive baselines
including NAT with Fertility (NAT-FT) (Gu et al. 2017),
NAT with Iterative Refinement (NAT-IR) (Lee, Mansi-
mov, and Cho 2018), NAT with Enhanced Decoder In-
put (ENAT) (Guo et al. 2019) and NAT with Auxiliary
Regularization (NAT-Reg) (Wang et al. 2019). For NAT-IR,
we report their best results with 10 refinement iterations.
For ENAT and NAT-Reg, we report their best results when
B = 0 and B = 4 correspondingly. We take Direct Trans-
fer (DT) as another baseline, where we omit the curriculum
learning strategy from line 3 to line 10 in Algorithm 1, and
train the model in a non-autoregressive manner for extra ICL
steps to ensure a fair comparison.

The main results of this paper are listed in Table 3. Our
method FCL-NAT achieves significant improvements over
all NAT baselines on different tasks. Specifically, note that
although we do not introduce any auxiliary loss functions or
new parameters, we outperform NAT-Reg and ENAT with
a large margin, which demonstrates the superiority of the
proposed fine-tuning by curriculum learning method. Com-
pared with Direct Transfer, FCL-NAT brings a large im-
provement on translation accuracy, demonstrating the im-
portance of the progressive transfer between two tasks with
curriculum learning. As for the inference efficiency, we
achieve a 16.0 times speedup, which is comparable with
NAT-Reg and ENAT.

4.3 Analyses
Comparison with Direct Transfer We compare the train-
ing curve of our proposed FCL-NAT with Direct Transfer
(DT). We evaluate FCL-NAT with different pacing func-
tions proposed in Table 1, as well as DT on the valida-
tion set of the IWSLT14 German-to-Engish task, and plot
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Figure 3: The comparison of BLEU scores on the validation
set of IWSLT14 De-En task among different pacing func-
tions proposed in Table 1 as well as the direct transfer (DT)
baseline. We set B = 0 here. The two red dashed vertical
lines indicate the boundary of three training stages, i.e., AT
training, curriculum learning, and NAT training from left to
right.

the training curves in Figure 3. We can find that the NAT
models trained with different curriculum mechanisms (pac-
ing functions) achieve better translation accuracy than the
model trained with DT.

As described in Section 3.2, the training process of the
proposed method can be divided into three stages: AT train-
ing, curriculum learning and NAT training. An interesting
finding from Figure 3 is that although the accuracy of our
method is worse than DT in the first two stages, it finally be-
comes higher than DT in the NAT training stage. The worse
performance in the first two stages is due to that the train-
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Figure 4: The comparison of BLEU scores on the valida-
tion set of the IWSLT14 De-En task between token-level
and sentence-level substitution strategy as well as the direct
transfer (DT) baseline. We choose the logarithmic pacing
function for both substitution strategies and term them as
Token-Log and Sentence-Log. The two red dashed vertical
lines indicate the boundary of the three training stages, and
we set B = 0 here.

ing in the first two stages of our method is not consistent
with the NAT inference, while there is no such issue for DT.
However, our method has a higher increasing rate in the final
NAT training stage and eventually outperforms DT. Clearly,
the proposed transfer learning by curriculum learning strat-
egy helps the model find a better initial point for NAT train-
ing. Due to the difference between AT and NAT models, di-
rect initializing by AT model is far from enough for an NAT
model. Our method is able to achieve a smooth transfer be-
tween AT and NAT models.

Comparison of Different Pacing Functions The perfor-
mance of different pacing functions can also be found in Fig-
ure 3. For the ladder-like pacing function, we set K = 10
to divide the curriculum learning stage to 10 substages. We
have two observations: 1) the ladder-like and linear pacing
functions result in similar accuracy curves, and 2) the log-
arithmic pacing function outperforms the above two func-
tions. These observations indicate that 1) whether the pac-
ing function is discrete or continuous does not influence the
performance much in a constant pacing strategy, and 2) the
logarithmic pacing function results in more training steps
with larger substitution rates, which achieves a good trade-
off between leveraging the information of AT models and
training non-autoregressively, and thus demonstrates better
performance.

Study on Sentence-Level Substitution As stated in Sec-
tion 3.3, a straightforward way to implement our idea is to
directly replace the decoder input from zAT to zNAT when
conducting substitution, termed as sentence-level substitu-
tion. We compare token-level and sentence-level substitu-
tion strategies on the validation set of the IWSLT14 De-En
task, and keep other settings aligned, i.e., we choose the log-
arithmic pacing function and set IAT = 55k, ICL = 1.0M,
INAT = 0.5M in both settings. The results are shown in

NAT-FT NAT-Reg FCL-NAT

2.30 0.90 0.57

Table 4: The comparison on the average number of per-
sentence repetitive tokens on the validation set of the
IWSLT14 De-En task.

Figure 4. Both token-level and sentence-level substitution
strategies outperform the direct transfer baseline, which fur-
ther demonstrates the efficacy of the proposed fine-tuning
by curriculum learning methodology. In addition, the token-
level substitution outperforms the sentence-level substitu-
tion by a large margin, showing that it is crucial to leverage
the information provided by the intermediate states during
transferring from a task to another.

Study on Repetitive Tokens As pointed out by Wang et
al. (2019), a typical translation error of the basic NAT model
is translating repetitive tokens, and they propose an auxil-
iary regularization function to explicitly address the prob-
lem. While our proposed FCL-NAT is not specifically de-
signed to deal with this issue, we find it also alleviates this
problem as a byproduct. We calculate the average number
of consecutive repetitive tokens in a sentence on the vali-
dation set of IWSLT14 De-En, and the results are listed in
Table 4. We observe that without an explicit regularization,
our model is still able to reduce repetitive tokens more ef-
fectively.

5 Conclusion
In this paper, we propose a novel fine-tuning by curricu-
lum learning method for non-autoregressive neural machine
translation, which progressively transfers the knowledge
learned in AT models into NAT models. We consider AT
training as a source and easier task and NAT training as a
target and harder task, and designed a curriculum to grad-
ually substitute the decoder input and attention mask in an
AT decoder with that in an NAT decoder. Experiments on
four benchmark datasets demonstrate the effectiveness of
our proposed method for non-autoregressive translation.

In the future, we will extend our idea to other tasks such
as text-to-speech and image-to-image translation. As long as
there exists a smooth transformation between the source task
and the target task, similar ideas can be applied to leverage
the intermediate states between the two tasks. In addition, it
is also interesting to explore the theoretical explanation of
the proposed model.
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