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Abstract—The implicit feedback based collaborative filtering (CF) has attracted much attention in recent years, mainly because users
implicitly express their preferences in many real-world scenarios. The current mainstream pairwise methods optimize the Area Under
the Curve (AUC) and are empirically proved to be helpful to exploit binary relevance data, but lead to either not address the ranking
problem, or not specifically focus on top-k recommendation. Although there exists the listwise method maximizes the Mean Reciprocal
Rank (MRR), it has low efficiency and is not particularly adequate for general implicit feedback situations. To that end, in this paper, we

propose a new framework, namely Collaborative List-and-Pairwise Filtering (CLAPF), which aims to introduce pairwise thinking into
listwise methods. Specifically, we smooth another well-known rank-biased measure called Mean Average Precision (MAP), and
respectively combine two rank-biased metrics (MAP, MRR) with the pairwise objective function to capture the performance of top-%
recommendation. Furthermore, the sampling scheme for CLAPF is discussed to accelerate the convergence speed. Our CLAPF
framework is a new hybrid model that provides an idea of utilizing rank-biased measures in a pairwise way on implicit feedback.
Empirical studies demonstrated CLAPF outperforms state-of-the-art approaches on real-world datasets.

Index Terms—Recommender Systems, Collaborative Filtering, Implicit Feedback, Top-k Recommedation.

1 INTRODUCTION

OLLABORATIVE filtering (CF) has been widely used
Ctechniques in recommender systems [1], [2], [3], [4].
It generates recommendations by leveraging the user-item
interactions derived from historical data. Previously, most
researches on collaborative filtering focus on explicit feed-
back [5], like the numerical ratings. However, in some
real-world scenarios, explicit feedback is not always avail-
able [6]. Contrarily, there are many types of data in the one-
class form [7], e.g., transactions in E-commerce platforms,
thumb-ups in online social networks, and watch records in
online video platforms. Such data do not contain the scoring
(ratings) between users and items, which are usually called
one-class [8] or implicit feedback [6]. Implicit feedback
differs from explicit feedback: the latter explicitly expresses
users’ positive and negative preferences through the rating
scores, while the former contains only positive feedback.
Therefore, huge unobserved item feedbacks cannot be sim-
ply considered as negative preferences, in views of the items
which may not be seen by users before [8].

As aforementioned, the implicit feedback problem usu-
ally poses challenges of lacking negative feedback, espe-
cially in cases of sparse data [9]. A lot of negative ex-
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amples and missing positive examples are mixed together
and cannot be distinguished, which makes many existing
classification algorithms not directly applicable to the prob-
lem [10]. In general, previous methods for dealing with
implicit feedback can be divided into two groups [11], [12],
[13]: (1) pointwise regression methods, and (2) pairwise
ranking methods. Pointwise methods take implicit feedback
as absolute preference scores and minimize a pointwise
square loss to approximate the absolute rating scores [6],
[8], while pairwise methods train recommendation models
by optimizing the Area Under the Curve (AUC) measure,
which is essentially based on pairwise comparisons between
a sample of relevant items and a sample of irrelevant items.
For example, Bayesian Personalized Ranking (BPR) [14] is
one of the most popular approaches that adopt such pair-
wise preference assumption. Given an observed user-item
interaction (u,i) and an unobserved user-item interaction
(u,7), BPR assumes that a user u has a higher preference on
item ¢ than on item j.

Research shows that the pairwise methods are signifi-
cantly preferable to the pointwise ones [15], and have been
the preferred solutions for implicit feedback problem. Many
pairwise methods improve over BPR, e.g., Multiple Pairwise
Ranking (MPR) [16] further taps the connections among
items with multiple pairwise ranking criteria. However, the
AUC measure optimized by these pairwise methods does
not well reflect the quality of recommendation lists because
it is not a rank-biased measure [17]. That means most of the
pairwise methods may not perform well in terms of top-k
recommendation, which is becoming more critical in per-
sonalized recommendation [18]. Although there exists some
work that generalizes pairwise ranking to listwise ranking
via direct optimization of rank-biased measure, it is difficult
to model the inter list loss and has low efficiency [10],
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e.g., Collaborative Less-is-More Filtering (CLiMF) [17] max-
imizes a rank-biased metric called Mean Reciprocal Rank
(MRR) [20] for a few historical items given to the indi-
vidual user. In addition, research shows that such listwise
methods can commonly improve the performance based on
multi-classification datasets significantly, like explicit data,
but not adequate for accurate characterization of binary-
classification datasets, like implicit data [19].

In this paper, we propose a new hybrid CF framework,
namely Collaborative List-and-Pairwise Filtering (CLAPF),
to solve the problem. We first summarize and categorize
the existing work on collaborative filtering from implicit
feedback. Then we optimize another well-known rank-
biased measure called Mean Average Precision (MAP) [21],
which calculates the precision at the position of every cor-
rect item in the ranked resulting lists of the recommender.
Compared with the AUC, MAP is a listwise measure and
usually provides users with the more valuable top-ranked
recommendation; Compared with the MRR, MAP is more
applicable to multiple correct responses (hits) in the result-
ing lists [22]. After that, we combine the objective functions
of optimizing the above two rank-biased metrics (MAP,
MRR) with the pairwise objective function and propose our
CLAPEF. CLAPF framework can be regarded as a new hybrid
model that presents a new perspective to utilizing rank-
biased measures in a pairwise way on implicit feedback.
As many negative sampling strategies used by pairwise
methods sampling from the unobserved items of each user
are not suitable for CLAPF, we design a new sampling strat-
egy, namely Double Sampling Strategies (DSS), which places
more emphasis on both the rank information of positive and
negative items for each gradient step, to further focus on
the model convergence. Experiments on real-world datasets
clearly validate the effectiveness of our CLAPF framework
and DSS sampler compared with several baselines. Three
contributions of the paper include:

e We propose an approach for smoothing MAP. As
MAP is an important rank-biased measure, studying
the smooth form of MAP is of great significance for
understanding item ranking in recommendations.

o For implicit feedback problem, we provide a novel
idea of combining the listwise and pairwise objective
functions, which not only digs users implied pref-
erences on items from huge unobserved data, but
also achieves an efficient method of addressing the
ranking problem.

e We propose a sampling strategy, which involves the
rank information of both positive and negative items.
Experiments demonstrate the sampling strategy ac-
celerates the convergence speed of CLAPF.

Overview. The rest of this paper is organized as follows.
In Section 2, we will summarize some related work of our
study. Section 3 will introduce the notations, problem defi-
nition, and briefly give some previous optimization criteria,
which will be used later. Then, the formulation of our pro-
posed CLAPF and the learning process will be detailed in
Section 4. Afterward, we will discuss the sampling problem
and propose a new sampler in Section 5. Section 6 compre-
hensively evaluates the model performance in real-world
datasets. Finally, conclusions will be drawn in Section 7.

2 RELATED WORK

The related work of our study can be grouped into two cate-
gories, namely Pairwise Methods and Ranking-oriented CF.

2.1 Pairwise Methods

For solving implicit feedback problem, pairwise methods
have been the mainstream solutions. Most pairwise methods
are the improvement of BPR algorithm and can be catego-
rized into six classes which will be respectively introduced
below. (1) Relaxing the two fundamental assumptions in
BPR. Some studies argue that the two fundamental assump-
tions made in BPR, namely individual preference assump-
tion over two items and independence assumption between
two users, may not always hold in practice [23], [24]. MPR
relaxes the individual preference assumption by tapping the
connections among items with multiple pairwise ranking
criteria [16], while Group Bayesian Personalized Ranking
(GBPR) relaxes the independence assumption among users
by considering that users preferences are influenced by
other users with the same interests [23]. (2) Improving the
sampling strategies in BPR. BPR samples negative items
from the unobserved items with equal probabilities for
every user. However, some researchers have found that
uniform sampler is highly ineffective, especially for long-
tail or large-scale datasets. Therefore, Dynamic Negative
Sampling (DNS) [25], Adaptive Oversampling Bayesian Per-
sonalized Ranking (AoBPR) [26] and Alpha-Beta Sampling
(ABS) [27] are proposed which dynamically pick negative
training samples from a ranking list produced by the current
prediction model and iteratively update the list containing
all unobserved items. (3) Improving the objective function
in BPR. The AUC metric is not for quantifying such a
recommender list where positive items placed on the top,
negative items placed at the bottom, and unknown items in
between. To address this issue, Song, et al. [28] introduce
a generalized AUC (GAUC) that measures both head and
tail of a ranking list. (4) Mining implicit information via
additional data. For example, Ding, et al. focus on the
purchase feedback and propose a sampler for BPR with
probabilistic weights based on the additional view data of
the E-commerce domain. Moreover, Yu, et al. leverage view
data to classify the uncertainly negative items [16]. (5) Intro-
ducing transfer learning to BPR. Since most of the pairwise
methods are confined to one domain of data source, some
work has concerned the question of modeling preferences
across distinct domains. CroRank [29] is a typical approach
that bridges users inclinations transferred from the auxiliary
domain to the target domain for a better recommendation.
(6) Combining BPR with specific application issues. Because
pairwise methods have achieved success in solving implicit
feedback problem, some studies apply BPR to practical ap-
plications and find that it can greatly improve performance
and productivity, e.g., teaching path recommendation [30],
[31], technology forecasting [32], [33], talent recommenda-
tion [34], etc.

To learn pairwise objective functions, most approaches
are implemented by matrix factorization. Nowadays, since
deep neural networks (DNNs) have shown success in com-
puter vision, natural language processing, and so on [35],
some work attempts to leverage neural networks to learn
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pairwise objective functions instead of matrix factorization.
Specifically, Xiangnan He, et al. [36] propose a general
framework called Neural Collaborative Filtering (NCF),
which models users and items as feature embeddings, to
be fed into neural layers for learning interactions. An ad-
vanced instantiation of NCF is NeuMF which consists of
generalized matrix factorization and multi-layer perceptron
to model latent feature interactions. NeuPR proposes an
alternative approach so that the negative sampler in NCF
is unnecessary [37]. In addition to neural networks, there
is also some work that leverages graphs to model user-item
interactions, while its pairwise objective function is the same
as BPR but optimized by graph learning algorithms [38]. It
is worth mentioning that, DNNs are not only used to learn
pairwise ranking, but also to learn pointwise regression in
some work [39]. However, there are a number of empirical
studies showing deep models do not always generate better
recommendations [40]. Therefore, it can be considered that
matrix factorization based models are still the mainstream
way for handling implicit feedback problem, which leads us
to adopt matrix factorization to design our algorithm and
sampler in this paper.

2.2 Ranking-oriented CF

As aforementioned, the criteria of pairwise methods do
not well reflect the quality of the recommendation lists,
as mistakes at different positions are penalized equally,
which is not the expected behavior in a ranking list. As
top-k recommendation has become a common choice in
scenarios, the goal of recommending a satisfying sequen-
tial list for users becomes even more important. Several
prior ranking-oriented CF algorithms typically use ranking-
oriented objective functions to learn potential factors of
users and items. Earlier, researches focus on probabilistic
Latent Semantic Analysis (pLSA) for statistical modeling
user preferences from ratings [41]. [42] further improves
the traditional pLSA by directly modeling user preferences
with a set of items rather than individual items. Later on,
[43] proposes a similarity-based approach to leverage the
ranks of items in the ranking list rather than the rating
values, so does OrdRec [44] while it further put forward
a pointwise regression of ranks by ratings. Collaborative
Competitive Filtering (CCF) employs a multiplicative la-
tent factor model to exploit the interactive choice process
in recommender systems [45]. Some work addresses item
ranking by labeling, e.g., [46] proposes a top-k labeling
strategy based on context information and it outperforms
five-graded feedback (“bad”, “fair”, “good”, “excellent”,
“perfect”). Recently, more and more work pays attention to
metric space. LCR [47] assumes that the rank matrix is low-
rank in certain neighborhoods of the metric space defined
by user-item pairs, and proposes to minimize a general
empirical risk of ranking loss. Along this line, I-Injection [48]
further adopts pre-use preferences of users to address the
sparsity problem. Nowadays, there are methods leverages
which listwise measures to design a ranking-oriented CF,
e.g., ListCF [49] optimizes similar users probability distribu-
tions over permutations of the items to estimate a preference
ranking based on ratings. However, most of these methods
are not specially designed for general recommendation sce-
narios with implicit no-graded relevance scores from users

3

to items [50], [51]. Later on, Shi, et al. [17] propose CLiMF to
deal with one-class data by directly maximizing the MRR
and achieve better ranking results for implicit feedback
problem, which makes CLiMF become one of the most
popular listwise approaches, but it has low efficiency.

Since our paper mainly addresses the smoothing and
optimization process of MAP and MRR, here we discuss
previous CF methods which attempt to optimize another
ranking metric, namely NDCG, for making a distinction. In
general, we can roughly divide them into two categories.
The first category is to optimize NDCG in an explicit and
interpretable way, like CoFiRank [52], the authors design
a loss function to directly optimize NDCG, however, it
is of extremely high time complexity due to sophisticated
computation of NDCG and optimization processes. The
second category is more common today, it aims to opti-
mize NDCG in an implicit fashion without a smoothing
objective function, like CRMF [53] and DNS [25], while it
makes the approaches lack interpretability to some extent.
Consequently, we intend to optimize ranking metrics in an
explicit and efficient manner, which seems to be difficult to
achieve by optimizing NDCG.

In summary, although there is some work that general-
izes pairwise ranking to listwise via direct optimization of
ranking measure [17], [54], it is difficult to model the inter
list loss and has low efficiency. In addition, research shows
that such listwise methods all adopt learning method based
on structured estimation [19], which can commonly improve
the performance based on multi-classification datasets sig-
nificantly, like explicit data, and is not adequate for accu-
rate characterization of binary-classification datasets, like
implicit data [51], resulting in that such listwise methods
are inferior to some pairwise methods on implicit feedback.

To solve the problem mentioned above, we consider
linking the pairwise thinking and the listwise framework,
and propose a new hybrid CF called CLAPF. Specifically, the
listwise framework is designed for addressing the ranking
problem, while the pairwise thinking can be effectively
helpful to tap the implicit feedback information from data.
In detail, we follow some outstanding ideas in CLiMF [17]
and Multiple Pairwise Ranking (MPR) [16] to optimize the
MAP and formulate the objective functions as multiple
pairs. Besides, the computation complexity of CLAPF is
acceptable. In particular, the convergence speed of learning
the CLAPF can be further accelerated by a new sampler
designed in this paper.

3 PRELIMINARIES

In this section, we first introduce some notations and the
definition of implicit feedback problem. Then the optimiza-
tion criteria of pairwise methods and CLiMF which will be
used in later sections are given briefly.

3.1 Notation and Problem Definition

We first give the notations and problem definition. U =
{u}?_, is defined as the set of users and I = {i}/, is
defined as the set of items, where n and m represent the
number of users and items, respectively. Each v € U has
expressed her positive feedbacks on items I C I. The
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number of observed items for user u in the given data
collection is n}. Y,; denotes the binary relevance score of
item i to user u, i.e., Y,; = 1 if item i is relevant to user u,
0 for irrelevant. I(z) is an indicator function that is equal to
1, if z is true, and O for false. o(z) is the Sigmoid function,
where o(z) =1/(1 + e~ 7).

R,; denotes the rank of item ¢ in the ranking list for user
u, and the items are ranked in a descending order based on
their predicted relevance scores for user u, which means that
the higher the relevance score of the prediction, the smaller
the rank of the item. f,; denotes the predictor function
that maps the parameters from user u and item ¢ to a
predicted relevance score. The predictor function is modeled
by widely used matrix factorization as f,; = UuViT + b;,
where U, is a latent factor vector describing user u, V; is a
latent factor describing item ¢, and b; is the bias of item <.
The goal of implicit feedback problem is to recommend
a personalized ranking list of items for user u from the
unobserved item set I\ ;7 based on the predicted score f;.

3.2 Optimization Criteria of Pairwise Methods

Most of the optimization criteria of pairwise methods di-
rectly adopt the BPR criterion, which is fundamentally
based on pairwise comparisons between an observed item
and an unobserved item [14]. This criterion is mainly to
optimize the AUC. The definition of AUC for user u is
given by

AUC, =

> > I(Rui < Ryj). (1)

+
”I\I" | i€l jeNNLT

In BPR, researchers derive the approximation of I(R,,; <
R,;) by using the differentiable loss as

~Ino(fui — fuj)- (2

When neglecting the constant, we can obtain the objec-

tive function of BPR as
Lepr(Uu, 1) = Y > o(fui—
'LGIJ JGI\IU

]I(Rm; < Ry; )

fuj)- ®)

In BPR, researchers point out that optimizing the objec-
tive function Lgpg means maximizing the individual proba-
bility that user prefers item 7 to item j, which contributes to
1 should rank higher than j, and can be expressed as

=[] I Pr(Ru < Ru). (4)

i€lf jEINIT

Lgpr (U, I)

3.3 Optimization Criterion of CLIMF

Shi, et al. [17] propose CLiMF for dealing with implicit
feedback by directly maximizing the Mean Reciprocal Rank
(MRR) and achieve better ranking results on some usage
scenarios, which makes CLiMF become one of the most
popular listwise approaches. The definition of Reciprocal
Rank of a recommendation list for user u, as defined in
information retrieval [20], can be given by

n,’:]§
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Obviously, RR,, is dependent on the ranking of the
observed items. In CLiMF, researchers smooth Reciprocal
Rank in the same way as in BPR, and the smooth version of
RR,, can be given by

RRy, =Y Yuio(fui) [[(1 = Yuro(fur — fui))-  (6)
i=1 k=1

Although Eq. (6) is a smooth function with respect to
the predicted relevance scores, optimizing this function
could still be practically intractable, due to its multiplicative
nature. The computational cost grows quadratically with the
number of items, which is very large for most recommender
systems. To solve the problem, a lower bound of the smooth
version of RR, can be derived and we finally have the
objective function of CLiMF as

LU, 1) = Y Ino(fui) + Y, (1= o(fur — fui))
iert ikelf
= Z IHO'(fui) + Z lna(fui - fuk:)'
iell i,kel
()

Notice that we use 1 — o(z) = o(—x) to get the above
formula. Through the objective function, we can find that
the optimization criteria of listwise methods only focus on
the observed items. Unlike the mainstream pairwise meth-
ods digging users preference through pairs of the observed
item and the unobserved item, the current listwise objective
functions have no positive-unlabeled pairs and no unob-
served items. However, in implicit feedback situations, users
usually see fewer items and most items are unobserved, so
we argue such an objective function exists limitations on the
exploitation of huge unobserved information.

Overall, both pairwise and listwise methods optimize
some kind of metrics and utilize informative observed items
of users, but the only kind pairs of an observed item and an
unobserved item in pairwise methods lead to insufficient
ability on ranking performance, while the only kind pairs
of two observed items in listwise methods lack ability for
mining implicit information. In the following section, we
will introduce the technical details of our CLAPF model for
addressing the above problem.

4 COLLABORATIVE LIST-AND-PAIRWISE FILTER-
ING

We will introduce CLAPF in the following three steps:
smoothing the MAP, CLAPF formulation, and learning
the CLAPFE.

Specifically, we first smooth the Mean Average Precision
(MAP) as a low bound version to make it can be optimized
in a comparable time to pairwise methods. MAP is a listwise
measure and usually provides users more valuable top-
ranked recommendation. Some researchers try to maximize
MAP in some application scenarios [55] but not in implicit
feedback situations. Then, we respectively combine the
smooth MAP and aforementioned MRR with the pairwise
objective function to make these listwise methods more
effective in top-k recommendation from implicit feedback.
Finally, we illustrate the learning process of CLAPF using
matrix factorization and Stochastic Gradient Descent (SGD)
in detail.
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4.1 Smoothing the MAP

MAP is defined as the average of AP across all the users [21].
The definition of AP of a ranked list for user u can be
given by
1 ;f; kzlyuk]l(Ruk < Ry). 8)
Obviously, AP, is dependent on the rankings of the
observed items. The rankings of the items change in a
non-smooth way concerning predicted relevance scores, and
therefore AP, is a non-smooth function with respect to the
model parameters. Thus we cannot use standard optimiza-
tion methods to optimize AP, . Based on insights in CLiMF,
we approximate I( Ry, < Ry;) by using a Sigmoid function
I(Rur < Rui) = o(fur — fui), and approximate R by
using another Sigmoid function % ~ 0(fui), which makes
the relationship that the higher the relevance score of the
predict, the smaller the rank of the item. Then based on this
trick, we reach a smoothed approximation of AP, as

AP, = moyr
1=1 tul i—1

m

AP, = lZYu'LU fuz ZYukU fuk fuz) ©)

211

Eq. (9) is a smooth function over the model parameters,
but optimizing the function still has low efficiency. For ex-
ample, the complexity of the gradient of Eq. (9) concerning
the item feature parameter V; is O(m?), so the computation
complexity grows quadratically with the number of item m.
Next, we propose a lower bound of Eq. (9) to make it can be
optimized in a comparable time to pairwise methods.

The model parameters U, V; can be obtained via maxi-
mizing Eq. (9) as

Uy, I =arg rélax{APu} = arg max{ln(APu)}

= arg max Yuio(fui)
{ (Zl 1 ulZ

k=1

Notice that >°;"; Y.y = n;, according to Jensen’s in-
equality and the concavity of the Sigmoid function, then
=In
(Z Zl 1 ul —

we have
In(AP,)
L_;'_ ZYuz In (U fuz Z Yuka fuk fuz))
i=1

Yui (hla(fui) +In (Z Yuro (fur — fuz)))
m Yo

Yui (hl(f(fui) + In <Z - (fuk fuz)))
=1 "u
5 )

k=1
1
Y. <1na (fui) + j Yur o (fur — fui)

(10)

Z Yuko(fuk -

fuz Z Yuka fuk

1V
§+"—‘ §+"‘ EJF"—‘ R
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o

&
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&
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-
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1
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= 2 Z an fuz + Z 1I10' fuk fuz)
kel
1
= by Y o no(fui)+ Y, > no(fur — fui)
“ iert i€l kel
(11)

The constant

o ) in the lower bound can be neglected.

Then we can obtain a new objective function of optimizing
the MAP measure as

Zln(r f’U.’L —+ Z an' fuk*ful) (12)

iel} i,kel}

LMAP Uu» I

We can take a close look at the two terms within the first
summation. The maximization of the first term is the same
as in Eq. (7), which contributes to learning latent factors
that promote the observed item ¢. However, maximizing
the second term turns to learn latent factors of the other
observed items in order to increase their relevance scores,
which is very different from the criterion of CLIMF given by
Eq. (7). In summary, CLiMF leads to promote one observed
item and scatter the others, while Eq. (12) makes a better
balance of promoting and scattering two observed items
at once.

4.2 CLAPF Formulation

As we have the objective functions of optimizing MAP and
MRR measures in Eq. (7) and Eq. (12), we can next analyze
the functions from an individual probabilistic perspective
and bring the pairwise thinking into listwise methods. Here,
we just start with the MAP described by Eq. (12).

Similar to BPR, we respectively analyze the two terms in
Ly ap function. Optimizing the first term >°,;+ Ino(fu;)
means maximizing the individual probability that user u
prefers item ¢, which contributes to promoting the observed

items as
> o(fu) = [] Pr(Ru). (13)
ield i€t
Optimizing the second term ). kelf Ino(fuk — fui)

means maximizing the individual probablhty that user u
prefers item k to item 4, which contributes to k should rank
higher than i as

Z lna(fuk - fuz)

ikelf

H Pr(Ruk < Rm)

ikel}

(14)

Similar to CLiMFE, we can find that Lyap is only depen-
dent on the observed items, not exploring rich interactions
in the unobserved items. In implicit feedback situations,
users usually see fewer items and most items are unob-
served items, so such an objective function poses insuffi-
ciency to a certain degree. Motivated by pairwise thinking
represented as Eq. (4), we can inject the unobserved items
into our objective function Lyap. Based on Eq. (13), we
can relax the criterion of promoting the observed item 3,
assuming that the promotion of the observed item ¢ should
rank higher than the unobserved item j, which is similar to
Eq. (4). Using this trick, we can introduce pairwise ranking
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into our model and further exploit the hidden richer interac-
tions in the unobserved items, expecting to further improve
the recommendation performance.

We make a summary and derive our final objective
function. Optimizing the second term Eq. (14) means max-
imizing the individual probability that user u prefers the
observed item k to the other observed item ¢; Optimizing the
first term Eq. (13) can be relaxed to maximizing the individ-
ual probability that user u prefers item i to item j, expressed
as [[;er+ Hjel\lj Pr(R,; < Ryj). Now we have two dif-
ferent ranking targets described by individual probability
related to two pairs of items. Facing the ranking problem
about multiple pairs, inspired by MPR framework [16], we
can maximize both of these two targets by maximizing their
joint distribution probability of two ranking pairs. Then
we have a new criterion called CLAPF-MAP, showing the
overall likelihood for all users and items as

CLAPF-MAP = [[ [] ]I Pr(Rur < Rui, Rui < Ruj).
weU i pert jenrt
(15)
We can represent the ranking pairs Ry, < Ryi, Rui <
R,; to be optimized for user u as follows

)‘(fuk - ful) + (1 - A)(fuz - fuj)7

where 0 < A <1 is a tradeoff parameter used to fuse their
relation, which can be determined via empirically testing a
validation set. Following BPR, we use o(x) to approximate
the probability Pr(-) to make the objective function differ-
entiable. Then the objective function of CLAPF-MAP can be
represented as follows

(16)

1
I%in —In CLAPF-MAP + 573(9), (17)
where © = {U, € R™*4 V; e R b, e R,u € U,i € I} is
set of model parameters to be learned, and d is the number
of latent factors.

InCLAPF-MAP =Y Y~ > Ino(A(fuk — fui)

wel i kel} jeI\L
+ (1= X (fui = fug)-

Eq. (18) is the log-likelihood of CLAPE-MAP. R(O) =
> uer 2tesloul|Uul |2+ v |[[VA]|” + Bol|b¢||?] is a regulariza-
tion term to prevent overfitting in the learning process, and
S = {i,k,j} is a group of sampled items, where i,k € I,
and j € I\I;.

Next, we formulate the MRR measure Eq. (7) with pair-
wise ranking in the same way. Optimizing the second item
> kel Ino(fui — fur) means maximizing the individual
probability that user u prefers the observed item ¢ to the
other observed item k, expressed as [];;c;+ Pr(Ru; <
R,x); Optimizing the first term the same as Eq. (13)
can be relaxed to maximizing the individual probabil-
ity that user u prefers item 7 to item j, expressed as
[Licrs Ijen s Pr(Rui < Ry;). We maximize both of these
targets by maximizing their joint distribution probability
of two ranking pairs. By this mean, we can represent the
ranking pairs as in the new criterion called CLAPF-MRR as
follows

(18)

A fui = fur) + (@ =X (fui — fug), (19)

6

where 0 < A < 1is a tradeoff parameter used to fuse their
relation. Then the objective function of CLAPF-MRR can be
represented as

1
min —In CLAPF-MRR + 5 R(6). (20)

Here, we directly give the log-likelihood of CLAPF-MRR
in the same way as

InCLAPF-MRR =" >~ >~ Ino(Mfui — fur)

w€lU j kerf jel\If

+ (1 =N (fui = fus))-

21)

4.3 Learning the CLAPF

For CLAPFE, when we learned the model parameters O, we
can predict the user u’s preference on an unobserved item j
via commonly used matrix factorization f,; = UuVjT + b;.
Then the personalized ranking list for user « can be obtained
via picking up the top-k largest preference scores of items
which are the mostly relevant to the user.

The optimization problem of the objective functions
in Eq. (17) & Eq. (20) can be solved by employing the
widely used Stochastic Gradient Descent (SGD) algorithm.
The main process of SGD is to randomly select a record,
which includes a user u, three items containing ¢,k%, j,
and iteratively update model parameters based on the
sampled feedback records. Here we abbreviate Eq. (16) or
Eq. (19) as R, and sampled items as .S, then the ten-
tative objective function of CLAPF-MAP or CLAPF-MRR
can be written as f(u,S) = —Ino(R.,) + %||U.|]* +
G Cres IViIP + 5 Dies [I0e]* = [l + exp(=R,.,)] +
L|U1? + % Sres VAP + 5 Ses [[b]*. We can up-
date the corresponding parameters © by walking along the
descending gradient direction

of(u,S)

00 7
where © canbe U,,, V, b, t € S = {i, k,j}, and v > 0 is the
learning rate.

Compared with BPR, the extra computational cost of
CLAPF algorithm is mainly due to the calculation of gra-
dient update for newly introduced one item k. The time
complexity of the update rule in Eq. (22) is O(d), where d is
the number of latent features. Then the total time complexity
of CLAPF is O(T'nd), where T is the number of iterations
and n is the number of users. Meanwhile, the time complex-
ity for predicting a users preference on an item is O(d), the
same as that in BPR. Thus, the computation complexity of
our proposed approach CLAPF and the seminal approach
BPR are comparable in terms of efficiency, which is much
faster than the existing listwise methods.

0=0-—-v (22)

5 IMPROVING THE CLAPF

We have introduced a new hybrid CF framework called
CLAPF and two instantiations of CLAPF called CLAPF-
MAP and CLAPF-MRR. Compared with pairwise methods,
CLAPF makes a comparison of two observed items, which
contributes a lot to the ranking problem in top-k recom-
mendation; Compared with listwise methods, CLAPF deep
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taps the connection in the observed items and the unob-
served items, which can exploit the hidden rich interactions
among users and the unobserved items. In this section, we
discuss the sampling problem under the objective functions
of CLAPF and design a new sampling strategy for CLAPF.

5.1 The Sampling Problem

Sampling strategies play an important role in learning from
data. Especially in CF areas, researches on pairwise ranking
methods focus on building an adaptive sampler for the
unobserved items. Among the samplers, Dynamic Negative
Sampling (DNS) [25] and Adaptive Oversampling Bayesian
Personalized Ranking (AoBPR) [26] have become the most
popular ones by dynamically picking negative training sam-
ples from a ranking list produced by the current prediction
model and iteratively updating the list containing all unob-
served items. However, these negative sampling strategies
are designed for the gradient vanish problem in the pairwise
ranking field. As for ranking oriented CLAPF, we not only
deal with the pair of the observed item and the unobserved
item to make an accurate recommendation, but also focus on
the pair of two observed items to address the ranking prob-
lem, so a sampling strategy containing all of the observed
items and the unobserved items is much needed.

Similar to AoBPR, we first analyze a gradient of model
parameter © of our CLAPF as

I(R-,)

of(u,S
oo —a-atie) Tg
Learning the model parameter with CLAPF is done by loop-
ing over Eq. (22). As can be seen in Eq. (23), each gradi-
ent step has a multiplicative scalar (1 — o(R.,)), which
depends on how the scoring model (using current model
parameters ©) would discriminate between the pairs of a
user u. Notice that, if (1 —o(Ry,)) is close to 0, nothing
can be learned from the sample case S because its gradient
vanishes, i.e., © is not changed by Eq. (22).

Thus, for given (u,%), we could choose (k,j) pair s.t.
R, is small to increase (1—o (R, ,)) and effectively update
the model parameters. For CLAPF-MAP, R, = A(fur —
fui) + (L = A)(fus — fuj), so instead of using a large fux, it
is better to choose an item k with small predicted relevance
score from the observed items; and instead of using a small
fuj, it is better to choose an item j with large predicted
relevance score from the unobserved items. As for CLAPF-
MRR algorithm, Ry, = A(fui — fuk) + (1 = X)(fui — fuj), sO
the item k and the item j both with large predicted relevance
score from the observed items and the unobserved items can
be considered as good sample case. To sample such cases,
a ranking list is first generated according to the predicted
relevance score to help probability-driven sample from the
global data. As most of the real-world data follow long-tail
distributions, the geometric sampler is adopted to sample
from the ranking lists.

(23)

5.2 Double Sampling Strategy

Here, we propose a new sampler for CLAPF, namely Double
Sampling Strategy (DSS), and give an illustration of DSS
in Fig. 1.
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Fig. 1: llustration of Double Sampling Strategy.

To speed up the learning convergence of CLAPF, the
sampler consists of two parts where the first part is a
negative sampler for the item j, while the second part is
a positive sampler for the item k. In addition, we uniformly
sample the item ¢ from the observed items of user u. In
detail, for the instantiation CLAPF-MAP, we sample the
item k and the item j by the following steps.

e Step (1): Model the users and the items by matrix
factorization and get the latent factor representation
of users and items.

e Step (2): Randomly pick a factor f;, and rank the
items by descending order according to the latent
factor values, then get the ranking list.

o Step (3): For current user u and random factor f,,
return sgn(U,, 4), where U is the latent representation
of users, U, 4 is the value in factor f, related to user
u, and sgn(+) is the sign function.

o Step (4):If sgn(U, 4) > 0, return the item k from the
observed items by geometric sampling the bottom
items in the ranking list; and the item j from the
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unobserved items by geometric sampling the top
items in the ranking list; Otherwise, if sgn(Uu_yq) <0,
reverse the ranking list and then do the same thing.

As for CLAPF-MRR, Step (4) changes as

o Step (@: If sgn(U, 4) > O, return the item & from
the observed items by geometric sampling the top
items in the ranking list; and the item j from the
unobserved items by geometric sampling the top
items in the ranking list; Otherwise, if sgn(U,, 4) < 0,
reverse the ranking list and then do the same thing.

Based on the above steps, DSS gives two sampled items
k,j from the observed items and the unobserved items.
Compared with uniform sampling, the extra computational
cost of DSS sampler is mainly due to the ranking process
in Step (2). Thus we can easily follow AoBPR and DNS
and reset the ranking lists every log(|m|) iterations, where
m is the number of items, to make DSS can be used in a
comparable time to uniform sampling. For simplicity, we
abbreviate CLAPF with DSS algorithm as CLAPF+.

6 EXPERIMENTAL EVALUATION

In this section, we mainly evaluate CLAPF and CLAPF+ on
six real-world datasets from different perspectives. Specifi-
cally, we first describe the datasets, baselines, and parameter
settings used in the experiments. Then, we compare the
recommendation performance of CLAPF and CLAPF+ with
baseline approaches in terms of many evaluation metrics.
Finally, we analyze the effectiveness of the proposed DSS
sampler in CLAPF+ on learning convergence.

6.1 Datasets

We use six real-world datasets in our empirical studies, in-
cluding three general datasets, i.e., MovieLens100K!, Movie-
Lens1lM, UserTag, and three large datasets, i.e., Movie-
Lens20M, Flixter?, Netflix’. Specifically, MovieLens100K
(ML100K) contains 100,000 ratings annotated by 943 users
on 1,682 movies; MovieLens1M (ML1M) contains 1,000,209
ratings annotated by 6,040 users on 3,952 movies; UserTag
contains 246,436 user-tag pairs from 3,000 users and 2,000
tags; MovieLens20M (ML20M) contains 20,000,263 ratings
annotated by 138,493 users on 26,744 items; Flixter contains
8,196,077 ratings annotated by 147,612 users on 48,794 items;
and Netflix contains 99,072,112 ratings annotated by 480,189
users on 17,770 items. We use item to denote movie (for
ML100K, ML1M, ML20M, Flixter, and Netflix) or tag (for
UserTag). For ML100K, ML1M, ML20M, Flixter, and Netflix,
we take a pre-processing step mentioned in [56], which only
keeps the ratings larger than 3 as the observed positive feed-
back (to simulate the implicit feedback). The final datasets
are shown in TABLE 1.

For all the six datasets, following the previous common
training/test split strategy [10], [23], we randomly split half
of the observed user-item pairs as training data, and the
rest as test data; we then randomly take one user-item pair
1 https:/ /grouplens.org/datasets/movielens/.
https://www.cs.ubc.ca/jamalim/datasets/.

3 http://www.netflix.com/.

8

TABLE 1: Description of the experimental datasets, includ-
ing the number of users (n), the number of items (m), the
number of user-item pairs in the training data (P), the
number of user-item pairs in the test data (P'¢), and the
density of each data, i.e., (P + P*¢)/n/m.

Datasets [ n m P pte (P +P¥)/n/m
ML100K 943 1,682 27,688 27,687 3.49%
ML1IM 6,040 3,952 287,641 287,640 2.41%
UserTag | 3,000 3,000 123,218 123,218 4.11%
ML20M | 138,493 26,744 579,741 580,093 0.11%
Flixter 147,612 48,794 318,353 318,671 0.02%
Netflix | 480,189 17,770 4,556,347 4,558,506 0.23%

for each user from the training data to construct a validation
set. We repeat the above procedure for five times, so we have
five copies of training data and test data. The experimental
results are averaged over the performance of those five
copies of test data.

6.2 Evaluation Metrics

To study the recommendation performance, we adopt sev-
eral metrics for distinct perspectives. As for top-k rec-
ommendation, we adopt commonly used top-k evaluation
metrics, including Precision, Recall, F'1, and 1 — Call. In
addition, we also adopt ranking-aware evaluation metrics,
including M AP, MRR, and NDCG.

6.3 Baselines and Parameter Settings

In order to demonstrate the effectiveness of our model,
we compare it with several methods?, i.e., PopRank, Ran-
domWalk, WMF, BPR, MPR, CLiMF, NeuMF, NeuPR, and
DeepICF. We describe the baselines below:

o PopRank ranks the items according to their popular-
ity in training data.

o Random Walk (denoted as RandomWalk) estimates
the users preference on an item via a weighted aver-
age of all reachable users preferences on that item.

e WMF [6] is a typical pointwise method based on
matrix factorization. It defines a weight distribution
for each (u,i) € U x I, then employs a matrix
factorization model to solve a regression problem by
optimizing a square loss function.

e BPR [14] is a seminal pairwise method as men-
tioned above.

e MPR [16] is a state-of-the-art pairwise ranking
method, which taps the connections among items
with the multiple pairwise criteria.

e CLiMF [17] is a typical listwise method, which
explores the optimization of Mean Reciprocal
Rank (MRR).

e NeuMF [36] is a pairwise neural-based model, and
is an advanced instantiation of NCF which consists
both of generalized matrix factorization and multi-
layer perceptron to model latent feature interactions.

e NeuPR [37] is a pairwise neural-based model and
is a more efficient deep CF model without negative
sampling.

4 We release the source code at https://github.com/bigdata-

ustc/CLAPF-MPR.
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TABLE 2: Performance comparisons of CLAPF (-MAP, -MRR) and baselines on ML100K, ML1M, UserTag, ML20M, Flixter,
and Netflix. Numbers in boldface are the best results.

Dataset  Method Prec@j Recall@5 F1@5 1 — Call@5 NDCG@5 MAP MRR time
PopRank 0.272+0.009 0.054+0.002 0.082+0.003 0.652+0.020 0.291+0.007 0.14040.001 0.44340.005 136s
RandomWalk 0.298+0.006 0.061+0.001 0.0894-0.001 0.6834-0.010 0.31640.004 0.149+0.002 0.455+0.006 162s
WMF 0.359+0.008 0.0860.004 0.121+0.005 0.792+0.019 0.375+0.009 0.239+0.002 0.563+0.017 1189s
BPR 0.364+0.006 0.094+0.001 0.13040.002 0.813+0.002 0.37940.010 0.247+0.002 0.587+0.012 256s
MPR 0.37240.004 0.098+0.002 0.135+0.002 0.826+0.006 0.384-£0.009 0.254-+0.003 0.598+0.010 485s

¥  CLIMF 0.278+0.003 0.0550.001 0.084+0.003 0.667+0.022 0.301+0.005 0.16240.009 0.499+0.006 521s
S  NeuMF 0.365+0.009 0.094+0.005 0.13040.005 0.806+0.018 0.37940.009 0.25140.002 0.590+0.012 753s
E NeuPR 0.337+0.003 0.082+0.003 0.115+0.002 0.784+0.006 0.347 +0.005 0.220-+0.003 0.545+0.016 685s
DeepICF 0.355+0.003 0.090+0.002 0.122+0.003 0.791+0.009 0.368-+0.005 0.247+0.002 0.576-0.010 1096s
CLAPF (A = 0.4) -MAP 0.432+40.005 0.115+-0.003 0.158+0.003 0.858+0.011 0.454+0.006 0.294+0.002 0.664+0.010 264s
CLAPF (A = 0.2) -MRR 0.395-+0.004 0.109+0.002 0.146+0.001 0.850+0.012 0.41740.009 0.270+0.002 0.669+0.009 266s
CLAPF+ (A = 0.4) -MAP 0.4324-0.003 0.110=0.001 0.155+0.002 0.869+0.027 0.456+0.008 0.289+0.001 0.655+0.020 282s
CLAPF+ (A = 0.2) -MRR  0.410+0.004 0.102+0.002 0.142+0.002 0.851+0.019 0.439+0.010 0.264+0.003 0.669+0.007 286s
PopRank 0.282+0.002 0.040+0.001 0.063+0.001 0.667+0.001 0.293+0.001 0.151+0.001 0.444+0.002 1174s
RandomWalk 0.296+0.002 0.044 +0.001 0.068+0.001 0.688+0.001 0.30840.001 0.15140.001 0.459+0.002 7633s
WMF 0.441+0.004 0.074+0.004 0.113+0.001 0.857+0.003 0.452-+0.005 0.249-+0.001 0.639-+0.001 10654s
BPR 0.438+0.001 0.073+0.001 0.112-+0.001 0.850-0.009 0.452-+0.002 0.255-0.001 0.648+0.002 5688s
MPR 0.440+0.002 0.0750.001 0.117+0.001 0.849+0.005 0.460+0.002 0.26240.001 0.6550.002 9736s
S  CLiMF 0.2700.002 0.039-+0.001 0.061+0.001 0.664+0.006 0.277 4+0.002 0.139+0.001 0.464+0.002 10105s
3  NeuMF 0.399+0.010 0.066+0.002 0.101+0.003 0.818=+0.011 0.415+0.010 0.224-+0.001 0.593+0.002 8249s
= NeuPR 0.349+0.009 0.053+0.004 0.083+0.005 0.763+0.010 0.36240.009 0.20240.001 0.554+0.003 7697s
DeepICF 0.3874-0.006 0.0644-0.001 0.0964-0.003 0.79940.002 0.411+0.005 0.217+0.001 0.583+0.004 14014s
CLAPF (A = 0.4) -MAP 0.474+0.002 0.081-0.001 0.123+0.001 0.877 +0.009 0.490+0.003 0.265+0.001 0.686+0.003 5747s
CLAPF (x = 0.8) -MRR 0.478+0.002 0.082+0.001 0.12040.001 0.864+0.003 0.491+0.002 0.26140.001 0.692+0.006 5724s
CLAPF+ (A = 0.4) -MAP  0.481+0.002 0.087 +-0.001 0.130+0.001 0.876+0.004 0.508+0.002 0.269+0.001 0.674+0.003 6120s
CLAPF+ (A = 0.8) -MRR 0.470-0.002 0.079-+0.001 0.124+0.001 0.873+0.003 0.481+0.003 0.261+0.001 0.678+0.004 6213s
PopRank 0.264+0.001 0.037+0.001 0.061+0.001 0.5224+0.006 0.263+0.001 0.12540.001 0.39640.003 543s
RandomWalk 0.27140.004 0.0380.001 0.064 +0.001 0.533+0.006 0.277+0.001 0.126-0.001 0.398+0.003 4035s
WMF 0.273+0.004 0.041+0.001 0.064+0.001 0.57040.004 0.2804-0.004 0.134+0.001 0.399+0.006 4365s
BPR 0.287+0.003 0.042+0.001 0.066-+0.001 0.572+0.006 0.283+0.003 0.141-+0.001 0.402-+0.006 1826s
0 MPR 0.282+0.003 0.045+0.001 0.067+0.001 0.590-0.005 0.280-£0.003 0.151-0.001 0.411+0.005 3144s
& CLiMF 0.263+0.002 0.039+0.001 0.063+0.001 0.540+0.008 0.27040.003 0.14540.001 0.42240.005 6428s
) NeuMF 0.294-+0.008 0.046-+0.001 0.0730.001 0.605+0.010 0.30240.009 0.157+0.001 0.44040.005 6759s
3 NeuPR 0.269+0.007 0.040-0.002 0.064 +0.002 0.57440.013 0.27640.007 0.131+0.001 0.389+0.005 6173s
DeepICF 0.285+0.005 0.041+0.001 0.067 +0.002 0.582+0.012 0.293+0.005 0.15040.009 0.42940.006 8592s
CLAPF (A = 0.3) -MAP 0.296+0.003 0.047 +0.001 0.0730.001 0.593+0.009 0.3050.002 0.161+0.001 0.457 +0.004 1907s
CLAPF (x = 0.2) -MRR 0.267+0.002 0.041-+0.001 0.064+0.001 0.578+0.008 0.276+0.003 0.149+0.001 0.460+0.006 1927s
CLAPF+ (A = 0.3) -MAP  0.307+0.002 0.049+0.001 0.080+0.001 0.639+0.009 0.322+0.003 0.166+0.001 0.46140.004 2128s
CLAPF+ (A = 0.2) -MRR  0.291+0.002 0.047+0.001 0.069+0.001 0.584+0.008 0.30640.002 0.160+0.001 0.469+0.005 2137s
PopRank 0.063+0.001 0.083+0.001 0.059+0.001 0.256+0.001 0.089+0.001 0.0350.001 0.09640.001 2h
RandomWalk 0.069+0.001 0.08640.003 0.0634-0.002 0.28140.008 0.102+0.003 0.040+0.001 0.126+0.001 94h
WMF 0.077+0.001 0.096+0.001 0.071+0.001 0.305-0.002 0.104-+0.001 0.045-0.001 0.189-0.001 48h
BPR 0.089+0.001 0.114+0.003 0.083+0.002 0.346+0.005 0.12140.003 0.054+0.001 0.204+0.001 29h
MPR 0.093+0.001 0.116+0.002 0.087+0.002 0.352+0.003 0.126-+0.003 0.058-+0.001 0.207+0.001 44h
Z CLIMF - - - - - - - >200h
Y  NeuMF 0.080-0.001 0.101+0.002 0.074+0.002 0.32740.008 0.11040.003 0.048+0.001 0.19240.001 71h
S  NeuPR 0.0750.001 0.090-+0.002 0.067+0.002 0.299+0.005 0.104+0.003 0.044+0.001 0.183+0.001 67h
DeepICF 0.077 +0.001 0.095+0.002 0.071+0.002 0.315=+0.007 0.106-t0.002 0.046-t0.001 0.188-0.001 102h
CLAPF (x = 0.3) -MAP 0.112+0.001 0.145+-0.002 0.104+0.001 0.41140.004 0.157+0.002 0.080+0.001 0.23540.001 33h
CLAPF (A = 0.9) -MRR 0.105-0.001 0.140-+0.002 0.097 +0.001 0.392+0.004 0.146+0.001 0.07340.001 0.238+0.001 33h
CLAPF+ (A = 0.3) -MAP 0.113+0.001 0.141+0.002 0.102+0.001 0.421+0.005 0.153+0.002 0.082+0.001 0.232+0.001 35h
CLAPF+ (A = 0.9) -MRR  0.109+0.001 0.133+0.002 0.095+0.001 0.401+0.004 0.13940.001 0.069+0.001 0.22840.001 35h
PopRank 0.048+0.001 0.075=+0.001 0.043+0.001 0.197+0.001 0.078=0.001 0.032-0.001 0.104=0.001 2h
RandomWalk 3.0E-5+43E6  2.0E-5z0.001 1.7E-5488E-6  1.4E-4425E-5 49E-5+8856  2.3E-4+1886  8.2E-4+4486  108h
WMF 0.058+0.001 0.102+0.001 0.055+0.001 0.233+0.001 0.100-£0.001 0.039-+0.001 0.167+0.001 20h
BPR 0.062+0.001 0.100+0.001 0.056-0.001 0.252+0.002 0.107+0.001 0.043-0.001 0.175-0.001 12h
MPR 0.064+0.001 0.107+0.001 0.058+0.001 0.266+0.002 0.11040.001 0.049+0.001 0.19240.001 22h
5 CLiMF — — — - — — — >200h
E NeuMF 0.062-0.001 0.093+0.002 0.056+0.001 0.260+0.003 0.109+0.001 0.045+0.001 0.185+0.001 45h
i NeuPR 0.052+0.001 0.085+0.002 0.0500.001 0.22140.002 0.088+0.001 0.03640.001 0.16340.001 38h
DeepICF 0.0594-0.001 0.09140.002 0.0534-0.001 0.247 4-0.003 0.100+0.001 0.040+0.001 0.175=0.001 62h
CLAPF (x = 0.3) -MAP 0.064-+0.001 0.104-+0.002 0.057+0.001 0.264+0.001 0.110+0.001 0.050+0.001 0.194+0.001 14h
CLAPF (A = 0.2) -MRR 0.073+-0.001 0.121+0.005 0.069+0.002 0.284+0.003 0.119+0.001 0.05340.001 0.207+0.001 15h
CLAPF+ (A = 0.3) -MAP  0.065+0.001 0.108+0.002 0.058+0.001 0.268+0.002 0.11040.001 0.055+0.001 0.196+0.001 16h
CLAPF+ (A = 0.2) -MRR 0.071+0.001 0.117+0.002 0.0650.001 0.277 +0.002 0.108+0.001 0.053+0.001 0.201+0.001 16h
PopRank 0.048+0.001 0.032+0.001 0.030+0.001 0.197+0.001 0.05240.001 0.031+0.001 0.08740.001 3h
RandomWalk — — - - — — — >200h
WMF 0.101+0.001 0.068+0.001 0.063+0.001 0.361+0.002 0.11740.001 0.05340.001 0.18140.001 89%h
BPR 0.109+0.001 0.0764+0.001 0.069+0.001 0.388+0.001 0.126-+0.001 0.060-£0.001 0.199-+0.001 64h
MPR 0.114+0.001 0.080+0.001 0.073+0.002 0.397+0.002 0.132-0.004 0.063-0.001 0.205-0.001 103h
é CLiMF — — - - — — — >200h
% NeuMF 0.0984-0.001 0.07040.001 0.0664-0.001 0.3554-0.002 0.120+0.001 0.05440.001 0.182+0.001 122h
Z  NeuPR 0.088+0.001 0.063+0.001 0.055-0.001 0.339-+0.002 0.108-0.001 0.050-0.001 0.171+0.001 104h
DeepICF 0.095+0.001 0.068+0.001 0.062+0.001 0.3450.001 0.11440.001 0.05240.001 0.17640.001 165h
CLAPF (A = 0.3) -MAP 0.134+0.001 0.090+0.001 0.085+0.001 0.450+0.002 0.158+0.001 0.075+0.001 0.220+0.001 72h
CLAPF (x = 0.2) -MRR 0.119-+0.001 0.083-0.001 0.076+0.001 0.433+0.002 0.139+0.001 0.068+0.001 0.213+0.001 71h
CLAPF+ (A = 0.3) -MAP  0.139+0.001 0.089+0.001 0.087+0.001 0.453+0.001 0.162+0.001 0.081+0.001 0.2284-0.001 75h
CLAPF+ (A = 0.2) -MRR  0.122+0.001 0.085-0.001 0.080+0.001 0.446+0.002 0.148+0.001 0.07340.001 0.232+0.001 75h
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Fig. 2: Top-k (k = 3, 5, 10, 15, 20) recommendation performance of CLAPF (-MAP, -MRR) and baselines on ML100K, ML1M,

UserTag, ML20M, Hlixter, and Netflix.

e DeepICF [39] is a typical pointwise neural-based
model.

We use “CLAPF (-MAP, -MRR)” to represent CLAPF
(-MAP, -MRR) with the uniform sampler, and “CLAPF+
(-MAP, -MRR)” to represent CLAPF (-MAP, -MRR) with
our DSS sampler. For a fair comparison, all the matrix
factorization based CF methods are implemented in the
same code framework. For all CLAPF methods, the regu-
larization parameters are searched as o, = o, = (3, €
{0.001,0.002,0.01,0.02,0.1}, and the tradeoff parameter
A € {0.0,0.1,...,1.0}, and the iteration number is chosen
from 7' € {1000,10000,100000}. The NDCGQ5 perfor-
mance on the validation data is used to select all the best
parameters of CLAPE. The learning rate is chosen from
~ € {0.0001,0.001,0.01} and the number of latent is fixed
as d = 20 in BPR, MPR and CLAPF, and the initialization
value of U,,V;,b; are set the same as in [57]. For Ran-
domWalk, the walk length is searched from {20, 40, 60, 80},
and the reachable threshold is searched from {2, 5,10, 20},
as showing huge time cost on large datasets, we make some
tradeoffs between efficiency and effectiveness. For WME, the
number of latent is chosen from {10, 20}, the weighted pa-
rameter is searched from {10, 20, 40, 100}, the learning rate
is chosen from {0.0001, 0.001, 0.01}, and the regularization
parameters are searched from {0.001,0.01,0.1}. For MPR,
the tradeoff parameter is searched from {0.0,0.1,...,1.0}.
For CLiMF, regularization parameters are searched from
{0.001,0.01,0.1}, the latent dimensionality is fixed as 20,
and the learning rate is searched from {0.0001,0.001,0.01}.
For each deep model, we implement it using TensorFlow,
the embedding size is searched from {4,8,16,32}, the
learning rate is chosen from {0.0001,0.001,0.01}, and we
keep the structure as reported in [36], [37], [39] containing

four layers in MLP component. For the above and other
model parameters, the optimal values are tuned according
to NDCGQ5 performance on validation data. Noted that,
unlike the evaluate protocol in [36], where only 100 un-
observed items are sampled to evaluate the final ranking
performance, we rank all the unobserved items based on
the predicted scores as adopted in common recommender
systems.

6.4 Summary of Experimental Results
6.4.1  Main results

The experimental results and the training time of all al-
gorithms on six datasets are shown in TABLE 2, and the
numbers in boldface are the best results (with DSS sampler
or not). In addition, top-k (k = 3,5, 10, 15, 20) recommenda-
tion performance is shown in terms of two most concerned
metrics, Recall and NDCG, in Fig. 2. We use “— ” to denote
the cases that do not produce results within 200 hours. From
the table and the figure, we have the following observations:

o CLAPF (-MAP, -MRR) and CLAPF+ (-MAP, -MRR)
perform better than the other baselines in terms of
PrecisionQk, Recall@Qk, F1Qk, 1 — CallQk, and
NDCGQE on six datasets, which shows that our
proposed algorithms can recommend better top-k
items for users. Besides, CLiMF is inferior to the
pairwise ranking methods, indicating that the typical
listwise method works on datasets where only a
few historical items are given to the individual user
as in [17]. Moreover, we observe that neural-based
models are not superior to matrix factorization based
models on some datasets, which mainly because
deep models are possibly to overfit under various
conditions of data sparseness.
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Fig. 3: Recommendation performance of CLAPF (-MAP, -MRR) with different tradeoff parameters (from top row to bottom
row: ML100K, ML1M, UserTag, ML20M, Flixter, and Netflix).
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CLAPF (-MAP, -MRR) and CLAPF+ (-MAP, -MRR)
perform better than the other baselines in terms of
NDCG , MAP, and M RR on six datasets, which
proves that our proposed algorithms really address
the ranking problem by optimizing the observed
item pairs, and propose a more accurate rank-biased
list for users. More precisely, CLAPF-MAP overall
performs better than CLAPF-MRR in terms of M AP
with DSS sampler or not, while CLAPF-MRR overall
performs better than CLAPF-MAP in terms of M RR
with DSS sampler or not, confirming our proposed
algorithms are optimizing what they intend to opti-

mize.

As to the training time, CLAPF and CLAPF+ are
comparable to BPR in terms of efficiency even for
large datasets, far faster than CLiMF, which indi-
cates that our proposed algorithm does not increase
the computation complexity. To some extent, our
proposed DSS sampler works efficiently in CLAPF
framework, indicated that CLAPF is a basic method

with extensive applicability.

6.4.2

Impact of tradeoff parameters

To have a deep understanding of the objective functions
in CLAPF, we adjust the tradeoff parameter as A €
{0.0,0.1,...,1.0} and show the results in terms of Prec@5,
Recall@5, F1Q5, NDCGQ5, M AP, and M RR in Fig. 3. It
is worth mentioning that, since CLAPF-MAP and CLAPF-
MRR respectively have two-pair objective functions (one is
of listwise and the other is of pairwise), we can remove
one of two pairs to study their performance on datasets by
setting the tradeoff parameter A = 0 or 1. From the figure,
we can see that using different tradeoff parameters effects
the recommendation performance of CLAPFE, but there is

some difference between CLAPF-MAP and CLAPF-MRR.

CLAPF-MAP responds more gently to changes in parame-
ters, while CLAPF-MRR responds very strongly to changes
in certain parameters. Specifically, in terms of some metrics,
like F1@5, NDCGQ5, and M AP, a flexible trade-off pa-
rameter overall help CLAPF-MAP get better performance
than CLAPF-MRR, which indicates that CLAPF-MAP has
more potential in top-k or rank-aware recommendation, and

our smoothing approach preserves aforementioned good
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Fig. 4: The learning convergence of CLAPF with different samplers on training iterations (from left column to right column:

ML100K, ML1M, UserTag, ML20M, Flixter, and Netflix).

properties of MAP measure. Notice that when A = 0,
CLAPF reduces to BPR.

6.4.3 Convergence analysis

We also conduct supplementation experiments on six
datasets to further demonstrate the effectiveness of our
proposed DSS sampler for CLAPF in Fig. 4. As DSS not
only samples the negative item (item j in CLAPF) from the
unobserved items, but also samples the positive item (item
k in CLAPF) from the observed items each time, we remove
one or both of the sampling functions in DSS to build three
comparative sampling strategies:

e Uniform Sampling picks the positive items (the
item k and the item ¢ in CLAPF) and the negative
item (the item j in CLAPF) from the observed items
and unobserved items with equal probabilities each
time.

o Positive Sampling picks the positive item (the item k)
in the same way as DSS, and picks the other items
(the item j and the item ¢) in the same way as
Uniform Sampling each time.

e Negative Sampling picks the negative item (the
item j) in the same way as DSS, and picks the other
items (the item % and the item ¢) in the same way as
Uniform Sampling each time.

Fig. 4 shows that DSS sampler helps converge much
faster than the other samplers in terms of MAP, which
indicates that DSS is a more effective sampler for CLAPF
by drawing informative positive and negative items in a
fine-grained way. In addition, all non-uniform samplers
help converge faster than Uniform Sampling. Meanwhile,
Positive Sampling does not perform as well as Negative
Sampling, which mainly because the observed items are
much fewer than the unobserved items. Moreover, DSS
sampler helps converge faster at early iterations, which
mainly because such fine-grain utilizing of rank information
on positive and negative items is significant for learning the
unstable model. Finally, all algorithms almost converge after
some iterations, then fluctuate in a tiny range around.

All the analyses show that our CLAPF algorithm and
DSS sampler are indeed superior to the previous methods
for implicit feedback problem.

7 CONCLUSION

In summary, this paper presents a new hybrid ranking
model, namely Collaborative List-and-Pairwise Filtering

(CLAPF), for improving top-k recommendation from im-
plicit feedback. We combined the objective functions of
optimizing the two rank-biased metrics (MAP, MRR) with
the pairwise objective function and formalized two instan-
tiations of CLAPF called CLAPF-MAP and CLAPF-MRR.
On the one hand, CLAPF brings the ranking measure into
pairwise methods, which contributes a lot to the ranking
problem in the top-k recommendation. On the other hand,
CLAPF introduces pairwise thinking into listwise objective
functions, which can exploit the hidden rich unobserved
information and reduce the computation complexity. We
conducted extensive experiments on six real-world datasets,
and proved that our methods significantly outperform state-
of-the-art implicit feedback recommenders regarding vari-
ous evaluation metrics. The main contribution of our ap-
proach is to provide a new idea of utilizing rank-biased
measures by combining the pairwise objective function
on implicit feedback. The CLAPF framework is a hybrid
listwise and pairwise model that helps us understand the
ranking essence in top-k item recommendation, and is not
limited to the instantiations in this paper. We encourage
more smoothed listwise metrics to be optimized with our
CLAPF framework.
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