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ABSTRACT
Automatically answering mathematical problems is a challenging
task since it requires not only the ability of linguistic understanding
but also mathematical comprehension. Existing studies usually ex-
plore solutions on the elementary math word problems that aim to
understand the questions described in natural language narratives,
which are not capable of solving more general problems containing
structural formulas. To this end, in this paper, we propose a novel
Neural Mathematical Solver (NMS) with enhanced formula struc-
tures. Specifically, we first frame the formulas in a certain problem
as a TEX dependency graph to preserve formula-enriched struc-
tures. Then, we design a formula graph network (FGN) to capture
its mathematical relations. Next, we develop a novel architecture
with two GRU models, connecting tokens from both word space
and formula space together, to learn the linguistic semantics for
the answers. Extensive experiments on a large-scale dataset demon-
strate that NMS not only achieves better answer prediction but also
visualizes reasonable mathematical representations of problems.
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1 INTRODUCTION
Letting computers learn and apply knowledge to answer mathemat-
ical problems is a crucial issue, which has attracted much attention
in information retrieval and natural language processing for a long
history [15]. It is challenging as it requires not only the ability of
linguistic understanding but also mathematical comprehension [9].

Towards this goal, researchers have explored many possibilities
in solving math word problems which is an elementary type of
mathematical problems [15]. Figure 1(a) presents an example. It is
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Question: Robin was making baggies of cookies with 6 

cookies in each bag. If she had 23 chocolate cookies and 

25 oatmeal cookies, how many baggies could she make?

x =  23 + 25 ÷ 6 (Expression):
Answer: 8

Question: Let f(x) = -x3
 - x2

. Let g(x) = -2x. solve f(g(x)) 

Answer: 8x3
 – 4x

2
 

(a) Math word problem

(b) Mathematical problem

Figure 1: Math word problem vs. Mathematical problem.
described in natural language narratives (Robin was...) and asks a
question (how many ...?). To solve this problem, readers translate it
in into an expression form for the answer (8). During this process,
we are required to identify the necessary numbers (e.g., 23 and 25),
and then infer their relation with corresponding operator (e.g., “+”)
by understanding the question. Along this line, research works have
attempted many methods, such as statistical learning [7], and deep
learning models [13]. More works can be found in the survey [15].

Although great success have been made in this task, it is quite el-
ementary because the solution only requires the linguistic abilities
including semantic understanding and operator extraction [15]. Ac-
tually, it is far from general mathematical problems (which accord
with high school level students), where a typical problem is shown
in Figure 1(b). Obviously, it is harder for generating the answer
since such problem contains many complicated but informative
formulas (marked “blue”), which asks us to make mathematical
comprehension. In this paper, we aim to solve this kind of math-
ematical problems in a principled way, where it is necessary to
incorporate the information of formulas for the answers.

However, it is a non-trivial task. First, how to represent such
formula-enriched problem remains much open since it is quite dif-
ficult to understand the formulas with their free-text format as a
token sequence (i.e., word or character) (in Figure 1). If directly
applying existing sequential methods [2, 10] for modeling, we only
learn their content semantics but ignore much structural informa-
tion as the prior work [14] suggested. Second, solving the problems
because we need to find a unified architecture to learn them with
considering both linguistic understanding from their contents of
what they ask and mathematical comprehension crossing formulas.

To this end, we propose a novel framework,NeuralMathematical
Solver (NMS), following the sequence-to sequence architecture
(Seq2Seq). Specifically, we first develop an assistant tool to con-
struct formulas in each problem with a TEX dependency graph,
which preserves formula-enriched structure. Then, we design a
formula graph network (FGN) to capture its mathematical relations.
Next, with enhanced formula information, we develop a novel ar-
chitecture with two GRUs, connecting the problem tokens from
both linguistic word space and structural formula space together, to
learn the problem semantics for generating answers. We conduct ex-
tensive experiments on a large-scale dataset. Experimental results
demonstrate that NMS not only achieves better performance of
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Problem (P): If                    , solve tan θ =   2 tan(2𝜃) 

\tan{θ}=\sqrt{2} \tan{2θ}
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Figure 2: NMS framework. (a) Formula graph construction. (b) Model architecture of neural solver. (c) FGN network.
answer prediction but also shows the sophisticated representations
for mathematical problems enhanced by formula comprehension.
To the best of our knowledge, this is the first attempt to introduce
formula learning for solving mathematical problems in the domain.

2 NEURAL MATHEMATICAL SOLVER
2.1 Problem and Overview
Generally, a mathematical problem P is defined as a sequence of L
tokens: P = {p1,p2, · · · ,pL}, where pi is either a word token (pwi )
from a vocabulary or a formula token (pfi ) from the mathematical
objects (including quantities or symbols like “+”). Theremay bemul-
tiple formulas in problem P , comprised of some consecutive formula
tokens, For example, the problem in Figure 1(b) contains three for-
mulas (e.g., “f (x) = −x3−x2”). We denote the formulas in one prob-
lem as F = { f1, f2, · · · , fM }, where fm = {p

f
i , · · · ,p

f
j }, 1 ≤ i, j ≤ L

denotes a certain formula. Besides, we are also given a answer se-
quence: Y = {y1,y2, · · · ,yT }, where token yj is defined in corre-
spondence with pi in P . The goal of solving mathematical problems
is to learn a model which reads the tokens from P and generate the
output Ŷ = {ŷ1, ŷ2, · · · , ŷT } as accurate as the answer sequence Y .

In this paper, we propose a Neural Mathematical Solver (NMS),
which is shown in Figure 2. It has two steps: (1) The construction
part establishes the formula graph from its free-text format, preserv-
ing its formula-enriched structures. (2) The solving part provides a
neural solver for generating the answer of problem.

2.2 Formula Graph Construction
As mentioned in Section 1, given a certain problem, it is difficult to
learn its formulas includedwith the free-text format since such treat-
ment overlooks much structural and relational information [14].
Therefore, we should deal with the first challenge of how to present
formulas in a structural way, which supports the downstream task
of problem solving. Although existing solutions like KaTeX library
(https://katex.org/) can produce the formula with an abstract syntax
tree (AST), they cannot be directly applied to our formula establish-
ment in mathematical problems due to the following reasons. First,
AST contains extra information including original source code and
annotations on typesetting and redundant parentheses, which are
unnecessary for modeling mathematical structure and dependency,
resulting in much larger feature space. Second, AST only treats
each formula separately with a tree-based structure, which cannot
capture the correlations among multiple formulas in the problem.
e.g., the variables “θ” in Figure 2(a) should be connected.

To address these issues, in this paper, we develop an assistant
tool to frame the formulas in a problem as a TEX-based dependency

graph based on their TEX codes, which as shown in Figure 2(a). It
has the following advantages. First, we just treat the mathematical
objects as nodes including variables (“θ”), numbers (“2”), and TEX
operators (“tan” ), which reduces the space compared to AST. Sec-
ond, we distinguish different relations between nodes by four types,
i.e., brother, father, child and relative, to keep the grammar-enriched
formula structures. Third, like many attributed networks [11], each
node in the formula graph is endowed with some features (i.e.,
“Attribute”, “Content”) to enhance their semantics1. Therefore, our
constructed dependency graph can help represent such formula-
enriched mathematical problems.
2.3 Neural Solver
After reconstructing mathematical problems with formula-enriched
structures, now we discuss the model details of NMS. Recall Fig-
ure 1(b), solving such problems is even harder in that it requires not
only the ability of linguistic understanding but also mathematical
comprehension. In this paper, we propose a novel neural solver
following Seq2Seq architecture with encoder-decoder (Figure 2(b)).

2.3.1 Encoder Architecture. Our solver encoder reads problem se-
quence and produces it into hidden representation encoding its se-
mantics, which has two modules: (1) an embedding module projects
the inputs into hidden space from different token forms; (2) a sen-
tence module learns the problem semantic representations.

Embedding Module. In the embedding module, given a certain
problem P = {p1,p2, · · · ,pL} consisting of both word tokens (pw )
(red circle) and formula tokens (pf ) (blue circle), we map them
separately into an embedded sequence with fixed-length vectors
{x1,x2, · · · ,xL}, denoted as Embw (·) and FGN(·), respectively.

For the word tokens {pwi }, Embw (·) initializes each of them by
an pre-trained word embedding xi ∈ Rd with word2vec [6].

For the formula tokens {pfi }, instead of directly modeling with
their free-text format, we propose a specialized Formula Graph
Network (FGN) (Figure 2(c)) to capture their mathematical relations
over the formula graphwith comprehension. Specifically, we denote
our formula graph as G = {V , E,R}. A node vi ∈ V represents a
mathematical token including variables, numbers or TEX operators
etc. (vi ,vj , r ) ∈ E is an edge from nodevi to nodevj with a relation
r ∈ R from the set of {brother, father, child, relative}. Moreover, we
add a “self” relation into the R to capture nodes’ self-loop effects,
and therefore, |R |=5. Besides, each node is associated with features
including its token attribute and content (an example in Figure 2(a)).

Given the formula graph G, FGN introduces the K graph layers
to iteratively learn the encoding of every node. At (k+1)-th layer, to
1Our tool: https://git.bdaa.pro/math-nlp/latex_rgcn/-/treemaster/Latex
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learn the encoding hk+1i of node vi , our graph network operation
can be specified as a message-passing-receiving mechanism [12]:

hk+1Ni
=
∑

r ∈R

∑
j∈N r

i

1
|N r

i |
Wk

r h
k
j , (1)

hk+1i = σ (Wkhki ⊕ hk+1Ni
), (2)

where N r
i is the subset of Ni consisting of all the neighbors of

node vi with relation r . Wk
r and Wk are trainable parameters that

transform the node messages. ⊕ is vectorial concatenation. σ (·)
is a non-linear activation function ReLU(·). Generally, FGN has
two operations for the encoding. First, Eq. (1) first aggregates the
message from all vi ’s neighbors. Second, Eq. (2) combines the infor-
mation of both its neighbors hk+1Ni

and node vi at previous layer hki .
It worth mentioning that FGN assumes that neighbors connected
by different relations would produce different influences on the
node vi , and thus updates the relation-specific parameters (Wk

r )
for learning the embedding of formula token at each layer.

Moreover, at layer 0 of FGN, we initialize each node embedding
by assigning its original features from two perspectives: (1) one-hot
encoding for “Attribute” embedding; and (2) word2vec embedding
for “Content” with its original formula token.

After FGN, we can embed each formula token (pfi ) based on
both its semantics and structural relations, and denote it as its last
K-layer’s structural embedding: xi = hKi .

Sentence Module. Then in the sentence module, we need to
learn the linguistic semantics of a problem {s1, s2, · · · , sL} from the
embedded sequence {x1,x2, · · · ,xL}. Note that existing standard
methods like LSTM or GRU [2] cannot be directly applied since
they just model the sequence in a uniform space. However, our
embedded sequence consists of the elements from two space, one
from the linguistic word space (Embw (·)) and the other from the
structural formula space (FGN (·)). To address this problem, in this
paper, we introduce a novel architecture with two GRU models re-
ceiving different type inputs but holding one hidden semantic space,
connecting with each other. Formally, at l step, our architecture
updates the hidden semantic state sl as:

sl =

{
GRUw (xl , sl−1;θw ) if xl from word space,
GRUf (xl , sl−1;θf ) if xl from formula space.

(3)

At last, the problem is represented as the encoder output: sp = sL .

2.3.2 Decoder Architecture. The decoder generates the answers
with one token yt at a step t , giving its conditional probability over
the problem embedding sP by the encoder and all the previous
outputs {y1,y2, · · · ,yt−1}. In our decoder implementation, we first
introduce the standard GRU model [2], i.e., GRU (·;θD ) (θD is the
trainable parameter) to get the hidden state when decoding, and
then generate the answer output with Softmax function.

With our NMS, the overall loss L on a problem-answer pair
can be defined as minimizing the negative log likelihood of the
generated token sequences using Adam optimization:

L =
∑T

t=1
− log P (yt |y1, y2, · · · , yt−1, sP ). (4)

3 EXPERIMENT
3.1 Experimental Dataset and Setup
Dataset. The dataset is collected with mathematical problems for
senior high school students from their exercises. Problems are

Table 1: The statistics of the dataset.

Num.
problem

Avg. problem
Length

Avg. answer
Length

Avg. formula
Number

Avg. formula
Length

31,500 48.47 8.87 3.46 35.91
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Figure 3: Data analyses.

grouped into several knowledge concepts like “Function”. We select
problems with the most 5 frequent concepts. We conduct data anal-
yses in Table 1 and Figure 3. We observe that the formula tokens
take large portions of the whole mathematical problems, i.e., they
take nearly 69% of the whole problem tokens on average, and even
take larger portions in shorter problems. This demonstrates that for-
mulas have significant effects, which argues that the model should
make the comprehension for them to better answer the problem.

Experimental Setup. In NMS, we set the word embedding size
d=100. For FGN, we set the number of graph layers K=2. The di-
mensions of node embedding in each layer are [200, 150, 100]. We
set all GRU models with hidden state size as 50. In the training
process, we initialized all the network parameters with a Gaussian
distribution (mean 0, standard deviation 0.01). We set the learning
rate as 0.001, mini batches as 32 and dropout with 0.1. In the test
process, we utilize the beam search with size 3 for the generation.

Baseline and Evaluation. Since there are few attempts which
directly solve this mathematical problems, we introduce several
representative Seq2Seq models. The first three are Seq2Seq-GRU,
Seq2Seq-BiGRU, Seq2Seq-RMC, which have GRU [2], BiGRU [4]
and RMC [8] in encoders, respectively. Then, we select Seq2Seq-
Attn with attention network [1] and the state-of-the-art Trans-
former [10]. We also introduce a variant of NMS without FGN to
highlight the effectiveness of formula structures, denoted as NMS-F.
It directly model the formula tokens as their original free-texts.

For the evaluation protocols, we partition the data into several
training/testing sets with the ratios as 60%/40%, 70%/30%, 80%/20%,
90%/10%, respectively to validate the model performance at differ-
ent data sparsities. For each training set, we sample 10% data for
validation. Then since our task can be treated as a generation task,
we select the widely-used metrics including ACC (probability of
correct answer) [9], BLEU (average result of BLEU-1, BLEU-2 and
BLEU-3), ROUGE (ROUGE-L) for model evaluation.
3.2 Experimental Results
Answer performance. Table 2 reports the results of all models
for solving mathematical problems. There are several observations.
First, NMS consistently performs the best at all data sparsities,
which demonstrates NMS can effectively capture the mathematical
relations of formula structure for the task. Second, Transformer
and Seq2Seq-BiGRU perform better than other baselines since they
all design sophisticated encoders to learn the problem semantics
in encoders. Third, RMC performs not very well. This is probably
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Table 2: The overall performance of problem solving.

Training/test ratio 60%/40% 70%/30% 80%/20% 90%/10%
Metric ACC BLEU ROUGE ACC BLEU ROUGE ACC BLEU ROUGE ACC BLEU ROUGE

Seq2Seq-GRU 27.94% 27.78 52.10 28.72% 28.43 52.89 29.38% 29.68 52.99 30.25% 30.50 55.37
Seq2Seq-BiGRU 30.40% 31.78 55.83 30.85% 32.09 56.94 30.47% 31.89 57.05 32.87% 33.85 57.70
Seq2Seq-RMC 26.38% 26.32 49.06 26.50% 27.01 49.81 26.82% 26.98 50.53 27.51% 27.66 51.47
Seq2Seq-Attn 29.59% 30.16 54.95 30.58% 31.48 55.15 30.94% 32.07 56.42 31.13% 31.91 55.59
Transformer 30.71% 32.15 55.81 31.31% 32.90 55.85 32.20% 33.52 56.12 32.32% 34.82 57.38

NMS-F 29.94% 31.24 53.71 30.78% 32.99 55.91 31.86% 33.54 56.96 32.16% 33.62 57.98
NMS 31.85% 33.09 55.61 32.14% 33.88 57.22 33.65% 34.08 57.55 34.21% 36.67 59.93
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Figure 4: Problem visualization with knowledge concepts.
because introducing memory modules may bring many parameters
for the model. Last, we can see NMS-F performs better than GRU,
which means it is necessary to treat word and formula tokens
in different space separately for the problem solving. Moreover,
NMS achieves even better since it capture the formulas’ structural
relations rather than just treating them as the free-texts.

Problem correlation analysis. As mentioned, by incorporat-
ing formula structure into problem embedding, NMS is able to
discover the latent correlation among problems, which can support
many applications, such as problem recommendation [3]. To demon-
strate this task, we randomly sample 5000 mathematical problems,
and project their final embeddings, i.e., sp in Figure 2(b), into 2D
space by t-SNE [5].We also introduce the embedding results learned
by Seq2Seq-BiGRU as comparison. We label the problems with their
knowledge concepts using different colors. Figure 4 shows the visu-
alizations. First, problems with same concepts learned by NMS are
easier to be grouped, meaning that they are closer in the hidden
space. This demonstrates that NMS can learn better problem embed-
dings by making formula comprehension. Moreover, “Set” problems
are nearly grouped into one cluster since they have simple formula
structures. However, “Function” problems are scattered because
they usually incorporate many types of formulas, causing different
patterns, e.g., exponential function and logarithmic function have
different formula structures, which cannot be grouped.

Discussion. There are some future directions. First, although
NMS can capture the formula structural relations for mathemati-
cal problems, they sometimes cannot predict quantities effectively.
For example, it is difficult to distinguish the numerical difference
between 1

2 (1, 2) and 11
22 (11, 22) when the problems are not long.

For this issue, we may need another reasoning ability to learn prob-
lem logic [9]. Second, we will design different graph networks for
learning formula structure. Third, we will consider more specific
structures (e.g., figure) of more complex problems (e.g., “geometry”)
for the answers. We hope this work can lead to more studies.
4 CONCLUSION
In this paper, we proposed a novel Neural Mathematical Solver
(NMS) to answer mathematical problems. Specifically, to preserve

formula structure, we first developed an assistant tool to construct
TEX based formula dependency graph to represent each problem.
Then we designed a FGN to capture its mathematical relations. Next,
we developed a novel model with two GRUs to learn the problem
semantics for answers, connecting both word space and formula
space. Experimental results demonstrated the effectiveness of NMS.
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