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ABSTRACT

Recent studies have shown that recommender systems are vulner-

able, and it is easy for attackers to inject well-designed malicious

profiles into the system, leading to biased recommendations. We

cannot deny these data’s rationality, making it imperative to estab-

lish a robust recommender system. Adversarial training has been ex-

tensively studied for robust recommendations. However, traditional

adversarial training adds small perturbations to the parameters (in-

puts), which do not comply with the poisoning mechanism in the

recommender system. Thus for the practical models that are very

good at learning existing data, it does not perform well. To address

the above limitations, we propose adversarial poisoning training

(APT). It simulates the poisoning process by injecting fake users

(ERM users) who are dedicated to minimizing empirical risk to build

a robust system. Besides, to generate ERM users, we explore an

approximation approach to estimate each fake user’s influence on

the empirical risk. Although the strategy of "fighting fire with fire"

seems counterintuitive, we theoretically prove that the proposed

APT can boost the upper bound of poisoning robustness. Also, we

deliver the first theoretical proof that adversarial training holds a

positive effect on enhancing recommendation robustness. Through

extensive experiments with five poisoning attacks on four real-

world datasets, the results show that the robustness improvement

of APT significantly outperforms baselines. It is worth mentioning

that APT also improves model generalization in most cases.

CCS CONCEPTS

• Security and privacy → Social network security and pri-

vacy.
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1 INTRODUCTION

With the advent of the era of big data, the information we can obtain

has exploded and far beyond our processability. As an important

means to solve information overload, recommender systems have

been widely used in many applications such as e-commerce [36],

music service [40], and mobility prediction [25].

Unfortunately, due to the recommendation model’s openness

and collaboration, recent studies [22, 44] have shown that poison-

ing a few malicious profiles into the system is enough to make

biased recommendations. Specifically, unscrupulous producers can

easily poison fake profiles to promote their products or demote the

competitors’ ones (e.g., Amazon’s online retailer attached a link

to a sex manual next to the spiritual guide by constructing some

fake ratings
1
). Thus the vulnerability alarms that the recommender

system does not seem to be as robust as we expect.

The defense against poisoning attacks is mainly launched from

two aspects [9]: (1) detecting and removing fraudsters in the data

processing stage, and (2) building a robust recommendation model.

Extant fraudster detections will inevitably misclassify some normal

users and eliminate them in pursuit of a high detection rate, which

is irrational for these excluded normal users. In this work, we are

concerned about boosting the recommendation robustness even

if malicious data are invariably available. Moreover, a few works

[3, 34] have shown that adversarial robustness can provide critical

insights and finds for the model interpretability. Therefore, from

both the model’s security or interpretability, the study of robust

recommender systems is indispensable indeed.

Adversarial training [29] is widely recognized as an effective

method to enhance recommendation robustness [6, 15, 38, 43]. Its

1
https://www.cnet.com/news/amazon-blushes-over-sex-link-gaffe/
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core idea is to add adversarial perturbations into model parameters

(or inputs) to maximize the recommendation error, while the model

performs empirical risk minimization for self-improvement and

finally establishes a robust model in the adversarial game. However,

it is not impeccable. Models in practical applications are highly

irregular, resulting in learning algorithms that are very good at

studying existing data. This strong coupling is directly manifested

in the model’s excellent defense against the specific attack used in

adversarial training [28]. However, it is arduous for a poisoning

attacker to directly destroy the parameters (or existing rating),

significantly reducing practical performance.

Given the deficiency of existing adversarial training, we explore

an adversarial poisoning training (APT) to improve the recommen-

dation robustness by injecting fake data into the system, which we

call "fight fire with fire". The motivation is that malicious attackers

can devise bogus users to destroy recommendations, thus in theory,

defenders can also design positive users to improve model robust-

ness. To be specific, APT turns training into a min-min problem.

The inner objective is minimized towards finding poisoning users

(ERM users) who are committed to minimizing empirical risk, while

the outer minimization aims to correct the model’s parameters by

standard supervised training on the mixed dataset. Clearly, unlike

the zero-sum game of traditional adversarial training, APT performs

a positive-sum game strategy in which the two players alternately

improve model robustness in the way of alliance cooperation. The

major challenge of APT is the inner ERM user generation. Here,

we propose using the influence function [19] to estimate each poi-

soning user’s effect on the empirical risk to find ERM users. In a

theoretical Gaussian latent factor model, we prove that APT im-

proves the upper bound of adversarial robustness against poisoning

attacks. Besides, we provide the first theoretical proof of adversarial

training’s positive effect on building a robust recommender system,

lacking in previous works [15, 38, 43].

Our contributions are outlined as follows.

• Given the Gaussian latent factor model, we give the upper

bound of model robustness against poisoning attacks and

derive the first proof that adversarial training can improve

the poisoning robustness of recommender systems.

• We propose a novel robust training strategy, adversarial poi-

soning training, by poisoning fake ERM users into the rec-

ommender system for robust adversarial training. Besides, to

generate ERM users, we explore an influence-based method

to estimate fake users’ impact on empirical risk.

• Through theoretical analysis, we prove the effectiveness of

APT in improving model robustness, which provides a new

avenue for adversarial training.

• We evaluate the robustness against five poisoning attacks

on four real-world datasets. The results verify that APT

markedly enhances the recommendation robustness while

ensuring generalization.

2 PRELIMINARIES

2.1 Matrix Factorization for Recommender

Systems

In this paper, we mainly focus on the matrix-factorization-based

(MF-based) recommender system. Matrix factorization is widely

known in recommender systems due to its simplicity and effectiveness[35].

The typical paradigm of MF is to decompose the user-item interac-

tion matrix into the product of two low-dimensional latent matrices.

Formally, suppose 𝑟𝑖 ∈ R𝑚 is the rating vector of user 𝑖 , and 𝑟𝑖, 𝑗
denotes the rating given by user 𝑖 to item 𝑗 . There are 𝑛 users and

𝑚 items in total. Let𝑈 ∈ R𝑛×𝑑 and 𝑉 ∈ R𝑚×𝑑
are the latent factor

matrix of users and items respectively, and 𝑑 is the latent feature

dimension, then the unseen rating 𝑟𝑖, 𝑗 is predicted by 𝑟𝑖, 𝑗 = 𝑈𝑖𝑉
𝑇
𝑗
.

Solving𝑈 and𝑉 can be transformed into minimizing the following

problem:

arg min

𝑈 ,𝑉

∑
(𝑖, 𝑗) ∈Ω

(𝑟𝑖, 𝑗 −𝑈𝑖𝑉
𝑇
𝑗 )

2 + 𝜆(∥𝑈 ∥2

𝐹 + ∥𝑉 ∥2

𝐹 ), (1)

where Ω represents the set of all rated user-item pairs, ∥·∥𝐹 denotes

the Frobenius norm, and 𝜆 is the regularization parameter.

2.2 Adversarial Training for Recommender

One explanation [17] of machine learning’s vulnerability is that

the model overfits normal data’s robust features but ignores the

incomprehensible non-robust features. However, these two features

are equally important concerning supervised learning. At this time,

adversarial training plays a crucial role in learning non-robust fea-

tures. In recommendation tasks[15, 32, 38], adversarial training

adds perturbations to the model parameters (or inputs) to force

the recommender system to adapt to such noise and learn the per-

turbation’s non-robust features, thereby enhancing the robustness

facing adversarial attacks. The specific framework [9] is as follows:

min

𝜃𝑅
max

Δ, ∥Δ ∥≤𝜖
(L(D, 𝜃𝑅) + 𝜆𝑎𝑑𝑣L(D, 𝜃𝑅 + Δ)) . (2)

Δ is the added perturbation dedicated to destroying the recom-

mendation, 𝜖 > 0 limits the magnitude of perturbation, and 𝜆𝑎𝑑𝑣
controls the impact of perturbations. D, 𝜃𝑅 , and L are the dataset,

parameters, and training loss of the recommender system, respec-

tively. Briefly speaking, adversarial training performs a zero-sum

game between the recommender and attack adversary and seeks a

robust model in the game.

2.3 Threat Model

Attack goal. According to attackers’ intents, they can design var-

ious attacks, including promotion attacks, demotion attacks, and

availability attacks [22]. The promotion attack (demotion attack)

typically aims to increase (decrease) the popularity of the target

item (e.g., improve (decline) the recommendation ranking of an item

on the ranking-based model [24]). For the availability attack, the

attacker desires to maximize the recommendation error to render

the model useless ultimately. We cannot delete the existing rating,

so demotion attacks can be achieved by increasing the popularity

of non-target items until the target item is not in the user’s recom-

mendation list [42], which in a sense is equivalent to promotion

attacks. Besides, availability attacks are a hybrid of promotion at-

tacks and demotion attacks in essence. For simplicity, we primarily

concentrate on the defense against promotion attacks.

Attack capability. Theoretically, as long as the injected fake pro-

file is large enough, any model is fragile. Apparently, the model

robustness and attack capability cannot be decoupled. Also, inject-

ing excessive fake users is arduous to operate and will inevitably
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Algorithm 1: Adversarial Poisoning Training

Input: The epochs of training 𝑇 , pre-training 𝑇𝑝𝑟𝑒 , and

poisoning interval 𝑇𝑖𝑛𝑡𝑒𝑟 .

1 Randomly initialize the user set D∗
defined in Definition 3.1.

for 𝑇𝑝𝑟𝑒 epochs do
2 Do standard training on the dataset D;

3 end

4 D ′ = D;

5 for 𝑇 −𝑇𝑝𝑟𝑒 epochs do
6 for per 𝑇𝑖𝑛𝑡𝑒𝑟 epochs do
7 Calculate the influence vector I according to Eq. 5;

8 for each ERM user in D∗
do

9 Select𝑚∗
items in Φ with probability

𝑒𝑥𝑝 (−𝑡𝐼𝑖 )∑
𝑗∈Φ 𝑒𝑥𝑝 (−𝑡𝐼 𝑗 )

and rate the selected items with

normal distribution (𝜇𝑖 + 𝑟+, 𝜎𝑖 ) at random;

10 end

11 D ′ = D ∪D∗
;

12 end

13 Do standard training on the dataset D ′
;

14 end

produce different signatures from normal users, leading to being

detected. Given the above considerations, we limit the attacker to

register up to 𝑛′ malicious users, and the upper limit of the number

of ratings for each user is𝑚′
.

Attack knowledge. We consider the research under the white-box

attack; that is, the attacker can master everything about the recom-

mender system, including the algorithm used, specific parameter

settings, and even the users’ historical behavior. Although the chal-

lenge of obtaining knowledge makes this ideal attack less practical

than black-box attacks, the focus of our work is the defense. The

white-box attack provides the worst hypothesis for defense and

the most rigorous test for evaluating recommendation robustness,

which is beyond the black-box attack.

3 ADVERSARIAL POISONING TRAINING

Although adversarial training has been empirically proven to en-

hance adversarial robustness in recent works[15, 32, 38, 51], it still

has deficiencies against poisoning attacks. Adversarial training usu-

ally uses extant attack methods to approximate perturbations, and

it intuitively forces practical models that are very good at learning

existing data to adapt to these attacks [28]. However, unlike evasion

attacks, the poisoner cannot modify the existing ratings in recom-

mender systems, let alone the model parameters. Obviously, adding

perturbations to the parameters (inputs) in adversarial training can-

not truly reflect poisoning attacks, making the defense performance

often deficient in the face of practical attacks.

Now we consider an interesting question: an attacker can con-

struct malicious users to maximize the recommendation error; can

the defender also carefully design "favorable" fake data to improve

the system’s robustness? Given this motivation and the deficiency

of existing adversarial training, we propose adversarial poisoning

training (APT) by poisoning well-designed fake users to achieve

the effect of fighting poison with poison. Next, we give a formal

definition of the robust training method proposed in the paper.

Definition 3.1 (Adversarial poisoning training). Assume that D =

{𝑟1, . . . , 𝑟𝑛} is the dataset that may be contaminated. Besides, D∗ =
{𝑟∗

1
, . . . , 𝑟∗

𝑛∗ } is a set of 𝑛∗ fake users dedicated to minimizing the

empirical risk, then the framework of adversarial poisoning training

is defined as follows:

min

𝜃𝑅
min

D∗, |D∗ |=𝑛∗
L(D ∪ D∗, 𝜃𝑅) . (3)

In contrast to traditional adversarial training described in For-

mula 2, the inner objective of APT is the minimization operation,

and the perturbations used in APT are the poisoning users, which

we call ERM users or defense users. Essentially, APT simulates

the adversary’s poisoning process, which can solve the pseudo-

poisoning issue of adversarial training in the recommendation. The

current major challenge is how to optimize the inner objective of

Formula 3 to generate ERM users. Thanks to the influence func-

tion’s application in decision-making prediction [19], we derive an

approximate solver for generating ERM users by estimating each

user’s influence on empirical risk.

The influence function assesses the sensitivity of data changes

on decision-making. To be specific, for a point 𝑧 in the training set,

we add a small perturbation 𝛿 to it to become 𝑧′ = 𝑧 + 𝛿 , then the

impact of this modification on the test point 𝑧𝑡𝑒𝑠𝑡 is defined as

I𝑝𝑒𝑟𝑡,𝑙𝑜𝑠𝑠 (𝑧, 𝛿) := − 1

𝑛
∇𝜃L(𝑧𝑡𝑒𝑠𝑡 , ˆ𝜃 )𝑇𝐻−1

ˆ𝜃
∇𝑧∇𝜃L(𝑧, ˆ𝜃 )𝛿,

where L is the training loss of Formula 1, and 𝐻𝜃 is the Hessian

matrix of training loss. The full proof can be found in [19].

If we use empirical risk loss L𝐸𝑅 instead of the loss of 𝑧𝑡𝑒𝑠𝑡 ,

we can measure the influence of data modifications on empirical

risk. Besides, considering poisoning a user 𝑧′ to the system, it is

equivalent to copying an existing user 𝑧 in the dataset first, and

then adding a perturbation 𝛿 = 𝑧′ − 𝑧 to the newly copied 𝑧, so

the influence of poisoning 𝑧′ can be considered as I𝑝𝑜𝑖𝑠𝑜𝑛 (𝑧′) =
I𝑐𝑜𝑝𝑦 (𝑧) + I𝑝𝑒𝑟𝑡 (𝑧, 𝛿). When 𝑧 is fixed, the influence I𝑐𝑜𝑝𝑦 (𝑧) is
the same for any fake user and can be ignored. Furthermore, owing

to data sparsity in the recommender system, suppose the minimum

rate is 0 and 𝑧 = arg min𝑟,𝑟 ∈D ∥𝑟 ∥, then 𝑧 will be close to zero

vector. Based on the above observations, we can approximate the

influence of each poisoning user 𝑧′ on empirical risk as follows:

𝐼𝑝𝑜𝑖𝑠𝑜𝑛 (𝑧′) ≈ I𝑇 𝑧′, (4)

where the influence vector I is

I = − 1

𝑛
∇𝜃𝑅L𝐸𝑅 ( ˆ𝜃𝑅)𝑇𝐻−1

ˆ𝜃𝑅
∇𝑧∇𝜃𝑅L(𝑧, ˆ𝜃𝑅). (5)

Here we defineL𝐸𝑅 ( ˆ𝜃𝑅) =
∑
𝑟𝑖,𝑗

1

1+𝑒𝑥𝑝 (−(𝑟𝑖,𝑗−𝑟𝑖,𝑗 )2) instead of train-

ing loss, because it is more sensitive to minor changes in the rating

and can better perceive the abnormal impact of the attack.

The 𝑖-th element in the influence vector 𝐼 ∈ R𝑚 reflects item 𝑖 of

poisoning user 𝑧′ on the empirical risk. The smaller the influence,

themore beneficial selecting this item tominimize the empirical risk.

Based on this property, we contribute an influence-based approach

to generate ERM users, which can be decomposed into two steps:

(1) selecting𝑚∗
items to be rated. Let the item set Φ = {𝑖 |I𝑖 < 0}. It
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is easy to know from Eq. 4 that rating the item in the complement Φ
is bound to increase influence. Consequently, we only select items

in Φ, and the probability that we choose item 𝑖 ∈ Φ is
𝑒𝑥𝑝 (−𝑡𝐼𝑖 )∑
𝑗∈Φ 𝑒𝑥𝑝 (−𝑡𝐼 𝑗 )

,

where 𝑡 is used to scale the influence. (2) Rating each item selected

in step 1. Intuitively, poisoning robustness requires more real users

(we will prove it in Theorem 4.3), so we are inclined to rate with

the normal distribution of existing ratings. However, Eq. 4 inspires

us that the injected user 𝑧′ has a small influence when the selected

item’s rate reaches the maximum (the selected item 𝑖 ∈ Φ), exposing
its fake features. To tackle the contradiction, wemake a compromise

to randomly rate each selected item from the distribution N(𝜇𝑖 +
𝑟+, 𝜎𝑖 ). N(𝜇𝑖 , 𝜎𝑖 ) is the rating distribution of item 𝑖 , Adding 𝑟+ > 0

indicates that minimizing the influence prefer to increase the rates.

The algorithm of APT is shown in Alg. 1. We first do𝑇𝑝𝑟𝑒 rounds

of standard pre-training. Then we generate new ERM users using

the approach proposed in the previous paragraph and combine them

with the original data for standard training. In addition, considering

the sufficiency and efficiency of model learning, we generate new

ERM users every 𝑇𝑖𝑛𝑡𝑒𝑟 rounds and use implicit Hessian-vector

products [19] to approximate ∇𝜃𝑅L𝐸𝑅 ( ˆ𝜃𝑅)𝑇𝐻−1

ˆ𝜃𝑅
in Eq. 5 efficiently.

4 THEORETICAL RESULTS

In this section, we theoretically analyze the poisoning robustness

of the recommender system. Precisely, we follow the latent factor

model, which using latent features to associate users with products

for recommendations. For simplicity, we only focus on a single

item’s recommendation (see appendix for all proofs). Note that

these analysis results can be easily expanded to multiple items.

Definition 4.1 (Gaussian model). Let 𝑢 ∈ R𝑑 be the mean vector

of user embedding and let 𝜎 > 0 be the variance parameter. Then

the (𝑢, 𝜎)-Gaussian model is defined by the following distribution

over (𝑢, 𝑟 ) ∈ R𝑑 × {±1}: First, draw a rating 𝑟 ∈ {±1} uniformly at

random, then sample the user embedding𝑢 ∈ R𝑑 fromN(𝑟 ·𝑢, 𝜎2𝐼 ).

Here we limit the rating 𝑟 to {−1, 1}, which denotes whether the

model recommends the item (𝑟 =1) or not (𝑟 = −1) to the user.

Definition 4.2 (Gaussian recommender). Let (𝑢1, 𝑟1), . . . , (𝑢𝑛, 𝑟𝑛) ∈
R𝑑 × {±1} be drawn i.i.d. from a (𝑢, 𝜎)-Gaussian model. Let 𝑣 ∈ R𝑑
be the item embedding estimator: 𝑣 =

∑𝑛
𝑖=1

𝑟𝑖𝑢𝑖 . Then the recom-

mendation model 𝑓𝑣 : R𝑑 → {±1} is defined as 𝑓𝑣 = 𝑠𝑖𝑔𝑛(⟨𝑣,𝑢⟩).

Based on the above two definitions, we can define the recom-

mendation error 𝛽 = P(𝑢,𝑟 ) [𝑓𝑣 (𝑢) ≠ 𝑟 ]. Next, we give the upper
bounds of robustness against poisoning attacks under no defense,

adversarial training, and adversarial poisoning training.

Theorem 4.3. Let (𝑢1, 𝑟1), . . . , (𝑢𝑛, 𝑟𝑛) ∈ R𝑑×{±1} be drawn i.i.d.
from (𝑢, 𝜎) -Gaussian model, and (𝑢 ′

1
, 𝑟 ′

1
), . . . , (𝑢 ′

𝑛′, 𝑟
′
𝑛′) ∈ R

𝑑 ×{±1}
are poisoning data. Suppose 𝑣 = 1

𝑛

∑𝑛
𝑖=1

𝑟𝑖𝑢𝑖 , ∥𝑣 ∥2 = 𝛼 , and limit
max ∥𝑢∥∞ = 𝛾 . If ⟨𝑣,𝑢⟩ − 𝑛′𝑑𝛾2/𝑛 ≥ 0, then the recommendation
model 𝑓𝑣 has robust recommendation error atmost 𝛽 with a probability
of at least 1 − 2 exp(− 𝑑

8(𝜎2+1) ) if

𝑛′ ≤ 𝑛

𝑑𝛾2
·
(
𝛼
√
𝑑 (2

√
𝑛 − 1)

2

√
𝑛 + 4𝜎

− 𝛼𝜎
√

2 log 1/𝛽
)
.

Table 1: Statistics of datasets

Dataset users items ratings sparsity

FilmTrust 796 2011 30880 98.07%

ML-100K 943 1682 100000 93.70%

ML-1M 6040 3706 1000209 95.53%

Yelp 14575 25602 569949 99.85%

Given the recommendation error bound 𝛽 , Theorem 4.3 gives

the upper bound of the poisoning users tolerated by the standard

training model. If the upper bound exists (the right side of the

inequality is greater than 0), it is easy to find that the larger the

number of normal users 𝑛, the more the number of acceptable

poisoning users 𝑛′. This means that recommendation robustness

needs more real users. Note that similar findings [33] were found

in evasion attacks.

Theorem 4.4. Assume a (𝑢, 𝜎) -Gaussian model uses adversarial
training under the assumptions of Theorem 4.3, and 𝜖 is adversarial
perturbation level. If min𝑖=1,...,𝑛 ∥𝑢𝑖 ∥ = 𝜏 , then the recommendation
model 𝑓𝑣𝐴𝑇 has robust recommendation error at most 𝛽 with proba-

bility at least 1− 2 exp

(
− 𝑑

8(𝜎2+1)

)
if

𝑛′ ≤ 𝑛

𝑑𝛾2 − 𝜖𝜏
·
(
𝛼
√
𝑑 (2

√
𝑛 − 1)

2

√
𝑛 + 4𝜎

− 𝛼𝜎
√

2 log 1/𝛽 + 𝜖𝜏

)
.

For the recommendation model that uses adversarial training,

Theorem 4.4 gives the upper bound of poisoning robustness. Com-

pared with Theorem 4.3, it is easy to find that adversarial training

improves model robustness. In particular, to our best knowledge,

this is the first theoretical proof that adversarial training can im-

prove the poisoning robustness in recommender systems.

Theorem 4.5. Assume a (𝑢, 𝜎) -Gaussianmodel under the assump-
tions of Theorem 4.3. If (𝑢∗

1
, 𝑟∗

1
), . . . , (𝑢∗

𝑛∗ , 𝑟
∗
𝑛∗ ) ∈ R𝑑 × {±1} are ERM

users dedicated tominimizing empirical risk. Supposemin𝑖=1,...,𝑛 ∥𝑢𝑖 ∥ =
𝜏 , then the recommendation model 𝑓𝑣 has robust recommendation
error at most 𝛽 with probability at least 1− 2 exp

(
− 𝑑

8(𝜎2+1)

)
if

𝑛′ ≤ 1

𝑑𝛾2
·
(
𝑛𝛼

√
𝑑 (2

√
𝑛 − 1)

2

√
𝑛 + 4𝜎

− 𝑛𝛼𝜎
√

2 log 1/𝛽 + 𝑛∗𝛾𝜏
)
.

Similarly, comparing Theorem 4.5 with Theorem 4.3, APT can

also provably boost the upper bound of tolerable poisoning data,

which provides a new idea for adversarial training.

Moreover, comparing the upper bound of Theorem 4.4 with

Theorem 4.5, we can conclude that when 𝑛∗ > (𝑛 + 𝑛′)𝜖/𝛾 (the

proportion of injected ERM users is larger than the one of parameter

perturbation), APT is more robust than adversarial training.

5 EXPERIMENTS

5.1 Experiments Settings

5.1.1 Datasets. We use four real-world datasets commonly used

in the security studies [8, 13, 16, 26, 37, 43] of the recommender
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system, including FilmTrust
2
, ML-100K

3
(MovieLens-100K), ML-

1M
4
(MovieLens-1M), and Yelp

4
. ML-100K includes 943 users who

have rated 1,682 movies for 100,000 ratings. ML-1M comprises 6,040

users who have rated 3,706 movies about one million times. For

FilmTrust, the same pretreatment as [26] is used to filter cold-start

users who seriously affect the recommender system (the rating

number is less than 15), leaving 796 users with trust ratings for

2011 movies. Yelp is a common dataset for business, and we use

the subset create by [16] which also filters users with ratings less

than 15. Table 1 lists the detailed statistics of these datasets. All

ratings are from 1 to 5, and we normalized them to [0, 1] in the

experiments. For each dataset, we randomly select a positive sample

from each user for testing, and the rest are used as the training set

and verification set in a 9:1 ratio.

5.1.2 Attack Approaches. We use the following poisoning attack

for robustness validation:

Random Attack [21]: This attack assigns the maximum rating

to the target item and rates selected items according to the normal

distribution of all user ratings at random.

Average Attack [21]: The only difference from Random Attack

is that the non-target selected item 𝑖 is randomly rated with the

normal rating distribution of item 𝑖 .

AUSH Attack [26]: This attack uses GAN to generate each fake

user to carry out attacks imperceptibly and assigns the highest

rating to the target item.

PGA Attack [22]: This attack builds an attack objective and uses

SGD to update the poisoned user’s ratings to optimize the objective.

Finally, the first𝑚′
items with the largest ratings are selected as

the fake user’s filler items.

TNA Attack [12]: This attack selects a subset of the most influ-

ential users in the dataset and optimizes the rating gap between the

target item and top-K items in the user subset. Here we use S-TNA.

5.1.3 Baselines. We compare the proposed APT with the following

robust algorithms:

Adversarial Training(AT) [16]: In each training step, it first uses
SGD to optimize the inner objective to generate small perturbations

and adds them to the parameters, and then performs training.

PCMF [2]: Unlike traditional matrix factorization to learn two

matrices𝑈 and 𝑉 , this method only optimizes one user-item inter-

action matrix𝑈 ∈ R𝑛×𝑚
, and then estimates the complete matrix

by𝑈𝑈𝑇𝑌 , where 𝑌 ∈ R𝑛×𝑚
is the training matrix.

APT-rand: The non-influential version of APT. It generates "ERM"

users at random rather than based on influence. The primary pur-

pose of introducing this method is to verify the effectiveness of the

influence function.

Remark: The experiments are concerned with the MF-based model

and evaluate the defense method’s effectiveness in improvingmodel

robustness. Robust algorithms [7, 49] strongly coupled with non-MF

models cannot be compared fairly, so they are omitted here.

5.1.4 Evaluation Protocol. We first use HR@K (Hit Ratio), which

calculates the proportion of test items that appear in the user’s top-

K recommendation list. Besides, we introduce Rank shift, which is

2
https://www.librec.net/datasets/flmtrust.zip

3
https://grouplens.org/datasets/movielens/

4
https://www.yelp.com/dataset/download

defined as the difference between the specific item’s rank before

and after the attack. The closer the value is to 0, the smaller the

impact of the attack. Lastly, we define robustness improvement

𝑅𝐼 = 1−(𝐻𝑅𝑑𝑒𝑓 𝑒𝑛𝑠𝑒 −𝐻𝑅𝑜𝑟𝑖𝑔𝑖𝑛)/(𝐻𝑅𝑎𝑡𝑡𝑎𝑐𝑘 −𝐻𝑅𝑜𝑟𝑖𝑔𝑖𝑛). The closer
the value is to 1, the better the robustness. We report the average

results of 30 independent repeated experiments and perform paired

t-test to judge the statistical significance when necessary.

5.1.5 Parameters Setting. We concern the MF-based recommen-

dation model described in Section 2.1, and we set the latent factor

dimension 𝑑 to 64. The model is trained for 25 epochs, and the

Adagrad optimizer is used for training. In APT, we inject 5% of

ERM users without special mention, and set 𝜖 in AT to 0.03 for a

fair comparison, which is about 5% of the parameter weight. In

FilmTrust, ML-100K, ML-1M, and Yelp, 𝑡 is set to 40, 20, 20, 10,

𝑇𝑝𝑟𝑒 is set to 5, 15, 15, 10, 𝑟+ is set to 2, 1, 1, 1, the number of ERM

user’s rated items𝑚∗
is set to 100, 400, 700, 2500, and ERM users

are generated every 3, 2, 2, and 2 epochs, respectively.

In FilmTrust, ML-100K, and ML-1M, we use HR@50
5
, while

HR@1000 is used in Yelp. This is because Yelp is difficult to attack,

and setting a large K helps make apparent comparisons between

defense methods. A similar treatment is reflected in the attack size,

set to 5% in Yelp and 3% in other datasets. For the target items of

attacks, we learn two types of items: (1) random items randomly

selected from all items, and (2) unpopular items randomly selected

from items with the number of rates less than 5. In each attack,

we set the number of target items to 5 and set the number of filler

items 𝑚′
to the average number of ratings per user. The source

code of APT is available at https://github.com/Daftstone/APT.

5.2 Performance Comparison

In this section, we compare the robustness and generalization of

the model configured with APT and other defense methods.

5.2.1 Robustness. We evaluate the hit ratio of target items in attack

and defense, as shown in Table 2. The Origin denotes the unper-

turbed model, and the Attack represents the perturbed model with

no defense. First, the target item’s HR is significantly promoted

after the attack, which means that the recommender system is vul-

nerable. Second, these defense methods are positive in weakening

the attack’s damage with respect to HR in most cases. Third, the

proposed APT achieves remarkable defense results, almost close

to the unperturbed model performance. On average, we reduce

the impact of attacks on random items by over 89% and unpopular

items by over 87%, which effortlessly outperforms baselines. Finally,

we notice that the performance of APT against AUSH is slightly

inferior when compared with the defense against other attacks,

and a similar phenomenon also appears in adversarial training. We

suspect that AUSH’s poisoning data based on GAN are closer to

the real data, making it more formidable for adversarial training to

discover and learn adversary data’s non-robust features.

Moreover, Fig. 1 shows the Rank shift distribution of target items

(unpopular items) under the TNA attack. Consistent with the find-

ings in Table 2, the attack significantly promotes the target item’s

rank among all users. After using adversarial training, the rank

5
Collaborative filtering is often used for candidate selection in practical recommenda-

tions, so it is more instructive to select a larger K to ensure a high recall [15].
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Table 2: The performance in target items (robustness). *, **, and *** indicate that the improvements over the best results of

baselines are statistically significant for 𝑝 < 0.05, 𝑝 < 0.01, and 𝑝 < 0.001, respectively.

Dataset Attack
Random items Unpopular items

origin Attack PCMF AT APT-rand APT origin Attack PCMF AT APT-rand APT

FilmTrust

(HR@50)

Average 0.1290 0.3126 0.3653 0.1308 0.3348 0.1119 0.0000 0.0320 0.3386 0.0054 0.0298 0.0041

Random 0.1290 0.3735 0.3650 0.1695 0.4303 0.1233** 0.0000 0.0424 0.3373 0.0063 0.0360 0.0044**

AUSH 0.1290 0.6235 0.2657 0.3092 0.6567 0.1564*** 0.0000 0.3721 0.2433 0.1015 0.2799 0.0208***

PGA 0.1290 0.4814 0.3495 0.2728 0.5257 0.1307*** 0.0000 0.1635 0.3340 0.0627 0.1201 0.0052***

TNA 0.1290 0.8855 0.3306 0.8000 0.8315 0.2129*** 0.0000 0.6689 0.3198 0.5751 0.4559 0.0152***

ML-100K

(HR@50)

Average 0.0460 0.4787 0.0725 0.3348 0.1981 0.0554* 0.0000 0.9292 0.0470 0.8572 0.0773 0.0009***

Random 0.0460 0.2366 0.0746 0.1641 0.1272 0.0394*** 0.0000 0.5199 0.0500 0.4265 0.0165 0.0007***

AUSH 0.0460 0.5567 0.0645 0.4160 0.2367 0.0761 0.0000 0.9773 0.0363 0.9112 0.1195 0.0015***

PGA 0.0460 0.3131 0.0564 0.2410 0.1274 0.0394** 0.0000 0.5576 0.0425 0.5402 0.0107 0.0002***

TNA 0.0460 0.5774 0.0620 0.4012 0.2356 0.0871 0.0000 0.9897 0.0382 0.9336 0.1399 0.0019***

ML-1M

(HR@50)

Average 0.0001 0.4241 0.0232 0.1791 0.1330 0.0224 0.0000 0.9682 0.0403 0.9297 0.2102 0.0242***

Random 0.0001 0.1028 0.0226 0.0472 0.0316 0.0302 0.0000 0.8350 0.0390 0.5625 0.0219 0.0064***

AUSH 0.0001 0.4600 0.0340 0.1163 0.1285 0.0537 0.0000 0.9909 0.0453 0.9581 0.2747 0.0980***

PGA 0.0001 0.8050 0.0156 0.0381 0.0161 0.0010*** 0.0000 0.4837 0.0373 0.3383 0.0042 0.0012***

TNA 0.0001 0.4572 0.0185 0.2172 0.1508 0.0323 0.0000 0.9703 0.0188 0.9274 0.2281 0.0192

Yelp

(HR@1000)

Average 0.0143 0.0496 0.7913 0.0325 0.0175 0.0155* 0.0000 0.0427 0.7971 0.0247 0.0126 0.0076*

Random 0.0143 0.0402 0.7890 0.0347 0.0182 0.0160* 0.0000 0.0407 0.8018 0.0245 0.0182 0.0098**

AUSH 0.0143 0.1127 0.5536 0.0650 0.0616 0.1106 0.0000 0.1207 0.7921 0.0759 0.0724 0.1023

PGA 0.0143 0.0257 0.7437 0.0167 0.0189 0.0142 0.0000 0.0251 0.7310 0.0109 0.0137 0.0058

TNA 0.0143 0.0876 0.8717 0.0603 0.0381 0.0443 0.0000 0.0663 0.8612 0.0592 0.0386 0.0355*

change caused by the attack can be eased, but it is only slight. On

the contrary, APT impels the distribution of rank shift obviously

tends to 0, which means that applying APT can produce more stable

recommendations in a disturbed environment.

In conclusion, these results confirm the positive effect of APT in

boosting recommendation robustness against poisoning attacks.

5.2.2 Generalization. It is meaningless to improve the robustness

at the cost of apparently sacrificing the generalization of standard

recommendations. Table 3 records the HR of various defense meth-

ods in the holdout test set. We can find that the baseline PCMF

is only effective on Movielens datasets. Faced with more sparse

FilmTrust and Yelp, the performance is significantly decreased,

which indicates that the expression ability of a single user-item

interaction matrix is still insufficient. Besides, AT’s performance

is dramatically reduced, even by 0.1 to HR, whereas the proposed

APT’s generalization accuracy only fluctuates slightly. More encour-

agingly, APT surprisingly improves the generalization on ML-100K,

ML-1M, and Yelp, and the improvement is above 0.01 in terms of HR.

These results confirm that APT effectively guarantees the model’s

generalization while performing high-quality defense. Although

AT and APT are both based on adversarial training, the generaliza-

tion is quite different. We reasonably suspect that performing the

zero-sum game in AT improves robustness at the massive price of

sacrificing generalization, in line with the finding in [47].

5.3 Performance under Different Attack Sizes

We conduct the robustness improvement test of APT under different

attack sizes, as illustrated in Fig. 2. On the one hand, the overall

defense performance of APT remains at a high level, although there

will be individual cases where it performs poorly (e.g., injecting

2% of fake users on Yelp by AUSH). On the other hand, as the

attack intensity increases, the robustness against attacks will also

be attenuated. Especially in Yelp, RI is reduced by up to 20%. This

signifies that high-intensity attacks bring severe defense challenges.

5.4 Effectiveness of the Influence

In this paper, we generate ERM users based on evaluating the em-

pirical risk by influence function. To study its effectiveness, we

define APT-rand as a non-influential version of APT. The specific

comparison is shown in the last two columns of Table 2 and Table 3.

From Table 2, we observe that although APT-rand can mitigate the

harm of attacks, its performance improvement is tiny compared to

APT. On average, the robustness of APT is increased by 22 times

that of APT-rand concerning HR. Besides, Table 3 shows that APT-

rand reduces model generalization, even is the worst among all the

compared approaches in ML-1M. We reasonably believe that the

injected users derived by APT-rand are irregular, and these random

data destroy the original distribution and increases the difficulty of

model training. These comparison results highlight that the use of

the influence function in APT apparently enhances the robustness

and generalization of the recommender system.

5.5 Sensitivity w.r.t the Number of ERM Users

We test the impact of injected ERM users from 1% to 20% on the un-

popular item’s defense performance, and the results are illustrated

in Fig. 3. 0.00 on the abscissa denotes that no defense method has

been employed. The Origin is used as the benchmark, which repre-

sents a clean model without any attacks. First, we are delighted to

find that using only 1% of ERM users can drastically weaken the at-

tacks’ impact, particularly in the ML-100K and ML-1M. Next, as the

number of ERM users injected increases, the defense performance is

gradually improving. Most of them reach saturation at 5% injection,

and the HR of target items is close to the benchmark, which means

that the attack is invalid. Finally, there are the same findings as

in Section 5.2.1 that the defensive performance against the more

real AUSH fake users on Yelp is not good. It inspires subsequent
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Figure 1: The distribution of rank shift. In each dataset, top: TNA attack; middle: adversarial training on TNA attack; bottom:

adversarial poisoning training on TNA attack; boxplot: statistical distributions of rank shift. The closer the rank shift is to 0,

the smaller the damage of the attack.

0.01 0.02 0.03 0.04 0.05
Attack size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
I

(a) FilmTrust

Average

Random

AUSH

PGA

TNA

0.01 0.02 0.03 0.04 0.05
Attack size

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

R
I

(b) ML-100K

Average

Random

AUSH

PGA

TNA

0.01 0.02 0.03 0.04 0.05
Attack size

0.88

0.90

0.92

0.94

0.96

0.98

1.00

R
I

(c) ML-1M

Average

Random

AUSH

PGA

TNA

0.01 0.02 0.03 0.04 0.05
Attack size

0.0

0.2

0.4

0.6

0.8

1.0

R
I

(d) Yelp

Average

Random

AUSH

PGA

TNA

Figure 2: Robustness improvement (RI) under different attack sizes when attacking unpopular items.
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Figure 3: The impact of the number of ERM users on defense performance.
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Table 3: The performance in test set (generalization). *, **, and *** indicate that the improvements over the unperturbedmodel

are statistically significant for 𝑝 < 0.05, 𝑝 < 0.01, and 𝑝 < 0.001, respectively.

Dataset Attack
random items unpopular items

origin Attack PCMF AT APT-rand APT origin Attack PCMF AT APT-rand APT

FilmTrust

(HR@50)

Average 0.8539 0.8550 0.8421 0.7631 0.8518 0.8377 0.8539 0.8554 0.8417 0.7485 0.8504 0.8363

Random 0.8539 0.8557 0.8413 0.7687 0.8515 0.8394 0.8539 0.8565 0.8425 0.7528 0.8520 0.8383

AUSH 0.8539 0.8556 0.8443 0.7476 0.8512 0.8334 0.8539 0.8543 0.8451 0.7507 0.8497 0.8352

PGA 0.8539 0.8518 0.8431 0.7340 0.8508 0.8338 0.8539 0.8537 0.8436 0.7480 0.8498 0.8343

TNA 0.8539 0.8441 0.8467 0.7460 0.8464 0.8329 0.8539 0.8392 0.8433 0.7387 0.8396 0.8319

ML-100K

(HR@50)

Average 0.2106 0.5080 0.3552 0.1863 0.1920 0.2201*** 0.2106 0.2054 0.3567 0.1787 0.1958 0.2201**

Random 0.2106 0.2180 0.3507 0.1940 0.2056 0.2251** 0.2106 0.5123 0.3579 0.1924 0.2017 0.2275***

AUSH 0.2106 0.2097 0.3550 0.1816 0.1917 0.2168 0.2106 0.2002 0.3514 0.1840 0.1938 0.2196**

PGA 0.2106 0.0208 0.3528 0.1897 0.2009 0.2302*** 0.2106 0.2040 0.3524 0.1830 0.1987 0.2194*

TNA 0.2106 0.2036 0.3508 0.1830 0.1974 0.2222** 0.2106 0.1986 0.3535 0.1815 0.2000 0.2209***

ML-1M

(HR@50)

Average 0.0933 0.0903 0.0959 0.0775 0.0706 0.1013*** 0.0933 0.0848 0.0963 0.0697 0.0700 0.1008***

Random 0.0933 0.0990 0.0960 0.0938 0.0759 0.1052*** 0.0933 0.0933 0.0969 0.0899 0.0762 0.1045***

AUSH 0.0933 0.0909 0.0996 0.0784 0.0713 0.1016*** 0.0933 0.0860 0.0984 0.0753 0.0705 0.1005***

PGA 0.0933 0.0942 0.0964 0.0853 0.0738 0.1016*** 0.0933 0.0887 0.0953 0.0793 0.0742 0.1006***

TNA 0.0933 0.0874 0.0953 0.0840 0.0712 0.1018*** 0.0933 0.0849 0.0976 0.0712 0.0703 0.1009***

Yelp

(HR@1000)

Average 0.4093 0.4050 0.2997 0.3047 0.3697 0.4239*** 0.4093 0.4000 0.2998 0.3057 0.3698 0.4241***

Random 0.4093 0.4022 0.2992 0.2931 0.3711 0.4221*** 0.4093 0.3985 0.2970 0.2946 0.3650 0.4216***

AUSH 0.4093 0.3954 0.3121 0.2859 0.3576 0.4197*** 0.4093 0.3965 0.3146 0.2871 0.3570 0.4216***

PGA 0.4093 0.3987 0.3087 0.2922 0.3654 0.4203*** 0.4093 0.3998 0.3093 0.2956 0.3685 0.4257***

TNA 0.4093 0.3745 0.2936 0.2786 0.3587 0.4161*** 0.4093 0.3723 0.2894 0.2730 0.3583 0.4180***

research on the recommender system’s security should draw more

attention to the poisoning data’s imperceptibility.

6 RELATEDWORK

6.1 Security of Recommender Systems

Recent studies have shown that recommender systems are vulnera-

ble [9, 22, 35]. Attackers can easily introduce bias into the recom-

mender system by injecting some fake profiles. Earlier attacks [4,

44] manually designed malicious profiles based on simple heuristics,

so such model-independent attack’s performance was limited. With

the development of optimization algorithms, attacks based on spe-

cific models have received increasing attention[12, 13, 22, 39, 42, 46].

The training of model-based recommendation algorithms usually

uses backpropagation [14, 16], so perturbations were added along

the gradient direction to perform the attack [12, 13, 22, 39]. Inspired

by the GAN’s application [18] in the recommendation, some work

[8, 26] uses GAN to generate real-like fake ratings to bypass the

detection. Besides, the items’ ratings can naturally be modeled as ac-

tions, which encourages researchers to use reinforcement learning

to generate poisoning data [11, 37, 46].

6.2 Defense against Poisoning Attacks

The widespread applications of recommender systems make their

security issues increasingly prominent. The extant defense can

be divided into proactive robust model construction and reactive

attack detection [9], which will be listed below.

Noting that the variance of noise in collaborative filtering is

generally non-Gaussian and heteroscedastic, Student-t prior was

used for latent features to improve recommendation performance

[20]. Traditional matrix factorization learns two matrices U and

V. Bampis et al. [2] proposed that using a user-item matrix with

fewer parameters can produce stable recommendations. Inspired

by network distillation, Chen et al. [7] used knowledge distillation

to learn a student model that is more robust to perturbations. Liu et

al. [27] calculated the robust bound of the FM model by relaxation

and maximized the bound to enhance robustness. More recently,

many works [6, 10, 15, 23, 32, 38, 43, 51] have focused on adversarial

training. Assuming that each instance may be the target of attacks

[9], adversarial training adds perturbations to the inputs or model

parameters that force the model to learn fragile perturbations.

Traditional detection [4, 31] uses statistical methods to extract

the user-rating matrix’s potential features and uses machine learn-

ing algorithms, e.g., SVM and clustering, to identify malicious pro-

files. Besides, considering that fake users’ diversity leads to the

lack of prior knowledge, unsupervised learning [30, 45, 50] and

semi-supervised learning [5, 41] were used to detect attacks. Since

attacks are often completed instantaneously, using time as addi-

tional information as a detection consideration can improve the

detection performance [1, 48, 52]. Kumar et al. [52] combined fair-

ness, reliability, and goodness to qualify users. A recent work [49]

combined robust optimization with fraudster detection to enhance

robustness against attacks.

7 CONCLUSION

This paper proposes adversarial poisoning training (APT), a new

adversarial training method to resist poisoning attacks in the rec-

ommender system. Specifically, we utilize the influence function

to find ERM users who minimize the empirical risk, and then the

model minimizes the training loss to learn these fake users. The

ERM users and model collaboratively improve the model robustness

in such dynamic training. Through a simple statistical model, we

prove that the positive-sum game strategy of APT increases the

upper bound of poisoning users tolerated by the model. Also, we

derive the first theoretical proof that adversarial training can im-

prove recommendation robustness. Finally, extensive experiments

show that the proposed APT improves the robustness by over 88%

on average, which is superior to the highly competitive robustness

methods. Since our method only interacts with the model when

calculating the ERM user’s influence, theoretically, our method can
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be applied as long as the recommendation model is second-order

differentiable. In the future, we plan to extend APT to more models.

In addition, its applications in non-recommendation fields are also

worth studying.
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A DETAILED PROOFS

First, we provide two related lemmas provided from [33].

Lemma A.1 ([33]). Let 𝑧 ∈ R𝑑 be drawn from a spherical Gaussian,
i.e., 𝑧 ∼ N𝑑

(
𝜇, 𝜎2𝐼

)
where 𝜇 ∈ R𝑑 and 𝜎 > 0. Moreover, let𝑤 ∈ R𝑑

be an arbitrary unit vector with ⟨𝑤, 𝜇⟩ ≥ 𝜌 where 𝜌 ≥ 0. Then we
have

P[⟨𝑤, 𝑧⟩ ≤ 𝜌] ≤ exp

(
− (⟨𝑤, 𝜇⟩ − 𝜌)2

2𝜎2

)
.

Lemma A.2 ([33]). Let 𝑧1, . . . , 𝑧𝑛 ∈ R𝑑 be drawn i.i.d. from a
spherical Gaussian with mean norm

√
𝑑 , i.e., 𝑧𝑖 ∼ N𝑑

(
𝜇, 𝜎2𝐼

)
where

𝜇 ∈ R𝑑 , ∥𝜇∥2 =
√
𝑑, and 𝜎 > 0. Let 𝑧 ∈ R𝑑 be the sample mean vector

𝑧 = 1

𝑛

∑𝑛
𝑖=1

𝑧𝑖 and let𝑤 ∈ R𝑑 be the unit vector in the direction of 𝑧,
i.e.,𝑤 = 𝑧/∥z∥2 . Then we have

P

[
⟨𝑤, 𝜇⟩ ≤ 2

√
𝑛 − 1

2

√
𝑛 + 4𝜎

√
𝑑

]
≤ 2 exp

(
− 𝑑

8

(
𝜎2 + 1

) ) .
Proof of Theorem 4.3. Assume that the set of users embed-

dings is B(𝑢) = {𝑢 ∈ R𝑑 | ∥𝑢∥ ≤ 𝛾}, and U ′
is 𝑛′ poisoning users’

embedding selected from B(𝑢). 𝑣 and 𝑣 ′ respectively represent

the item embedding before and after poisoning. For the recom-

mendation model defined in Definition 4.2, we need to bound the

recommendation error 𝛽

P
(𝑢,𝑟 )

[∃U ′ ⊆ B(𝑢) : 𝑓𝑣′ (𝑢) ≠ 𝑟 ]

= P
(𝑢,𝑟 )

[∃U ′ ⊆ B(𝑢) : ⟨𝑟𝑢, 𝑣 ′⟩ ≤ 0]

= P
(𝑢,𝑟 )

[∃U ′ ⊆ B(𝑢) : ⟨𝑟𝑢, 1

𝑛 + 𝑛′ (𝑛𝑣 +
∑

(𝑢′,𝑟 ′) ∈𝑈 ′ 𝑟
′𝑢 ′)⟩ ≤ 0]

= P
(𝑢,𝑟 )

[⟨𝑛𝑟𝑢, 𝑣⟩ + min

∑
(𝑢′,𝑟 ′) ∈U′ 𝑟𝑟

′𝑢𝑢 ′ ≤ 0]

≤ P
(𝑢,𝑟 )

[⟨𝑛𝑟𝑢, 𝑣⟩ − 𝑛′𝑑𝛾2 ≤ 0] = P
(𝑢,𝑟 )

[⟨𝑟𝑢, 𝑣

∥𝑣 ∥
2

⟩ ≤ 𝑛′𝑑𝛾2

𝑛𝛼
] .

The inequality in the last line is based on max ∥𝑢∥∞ = 𝛾 and

𝑟 ∈ {±1}. Invoking Lemma A.1 with 𝜇 = 𝑢 and 𝜌 = 𝑛′𝑑
𝑛𝛼 𝛾

2
to get

P
(𝑢,𝑟 )

[∃𝑈 ′ ⊆ B(𝑢) : 𝑓𝑣′ (𝑢) ≠ 𝑟 ] ≤ exp

(
−

(
𝑛 ⟨𝑣,𝑢⟩ − 𝑛′𝑑𝛾2

)
2

2𝑛2𝛼2𝜎2

)
.

(6)

Besides, invoking Lemma A.2, we can derive

⟨𝑣,𝑢⟩ ≥ 2

√
𝑛 − 1

2

√
𝑛 + 4𝜎

𝛼
√
𝑑. (7)

with probability at least 1 − 2 exp(− 𝑑
8(𝜎2+1) ).

Combining Formula 7 and Formula 6 and setting the right part

of Eq. 6 equal to 𝛽 , the theorem can be proved. □

Proof of Theorem 4.4. The inner objective of adversarial

training maximizes the recommendation error, that is

Δ𝑎𝑑𝑣 = arg min

Δ, ∥Δ ∥≤𝜖
⟨𝑟𝑢, 𝑣 + Δ𝑎𝑑𝑣⟩ = −𝑠𝑖𝑔𝑛(𝑟𝑢) · 𝜖.

The outer objective is optimized through the standard training.

Suppose that the item embedding of adversarial training is 𝑣𝐴𝑇 . We

have

𝑣𝐴𝑇 + Δ𝑎𝑑𝑣 =
∑𝑛

𝑖=1

𝑟𝑖𝑢𝑖 = 𝑣 .

So 𝑣𝐴𝑇 = 𝑣 + 𝑠𝑔𝑛(𝑟𝑢) · 𝜖 , and we need to bound the quantity

P
(𝑢,𝑟 )

[∃U ′ ⊆ B(𝑢) : 𝑓𝑣′
𝐴𝑇

(𝑢) ≠ 𝑟 ]

= P
(𝑢,𝑟 )

[∃U ′ ⊆ B(𝑢) : ⟨𝑟𝑢, 𝑣 ′ + 𝑠𝑔𝑛(𝑟𝑢) · 𝜖⟩ ≤ 0]

= P
(𝑢,𝑟 )

[∃U ′ ⊆ B(𝑢) :

⟨𝑟𝑢, 1

𝑛 + 𝑛′ (𝑛𝑣 +
∑

(𝑢′,𝑟 ′) ∈U′ 𝑟
′𝑢 ′) + 𝑠𝑔𝑛(𝑟𝑢) · 𝜖⟩ ≤ 0]

= P
(𝑢,𝑟 )

[⟨𝑛𝑟𝑢, 𝑣⟩ + min

∑
(𝑢′,𝑟 ′) ∈U′ 𝑟𝑟

′𝑢𝑢 ′ + (𝑛 + 𝑛′) ∥𝑢∥
1
· 𝜖 ≤ 0]

≤ P
(𝑢,𝑟 )

[⟨𝑛𝑟𝑢, 𝑣⟩ − 𝑛′𝑑𝛾2 + (𝑛 + 𝑛′)𝜖𝜏 ≤ 0]

= P
(𝑢,𝑟 )

[⟨𝑟𝑢, 𝑣

∥𝑣 ∥
2

⟩ ≤ 𝑛′𝑑
𝑛𝛼

𝛾2 − 𝑛 + 𝑛′
𝑛𝛼

𝜖𝜏] .

Invoking Lemma A.1, we can get the bound of the recommendation

error:

exp

(
−

(
𝑛 ⟨𝑣,𝑢⟩ − 𝑛′𝑑𝛾2 + (𝑛 + 𝑛′)𝜖𝜏

)
2

2𝑛2𝛼2𝜎2

)
. (8)

Putting Formula 7 into Formula 8 and setting Formula 8 to 𝛽 , the

theorem is proved. □

Proof of Theorem 4.5. SupposeU∗ = {(𝑢∗
1
, 𝑟∗

1
), . . . , (𝑢∗

𝑛∗ , 𝑟
∗
𝑛∗ )}

is the set of injected ERM users’ embedding. Similar to the proof of

Theorem 4.3, we have

P
(𝑢,𝑟 )

[∃U ′ ⊆ B(𝑢) : 𝑓𝑣′ (𝑢) ≠ 𝑟 ]

= P
(𝑢,𝑟 )

[∃U ′ ⊆ B(𝑢) : ⟨𝑟𝑢, 𝑣 ′⟩ ≤ 0]

= P
(𝑢,𝑟 )

[∃U ′ ⊆ B(𝑢) :

⟨𝑟𝑢, 1

𝑛 + 𝑛′ + 𝑛∗ (𝑛𝑣 +
∑

(𝑢′,𝑟 ′) ∈U′ 𝑟
′𝑢 ′ +

∑
(𝑢∗,𝑟 ∗) ∈U∗ 𝑟

∗𝑢∗)⟩ ≤ 0]

= P
(𝑢,𝑟 )

[⟨𝑛𝑟𝑢, 𝑣⟩ + min

∑
(𝑢′,𝑟 ′) ∈U′ 𝑟𝑟

′𝑢𝑢 ′ + 𝑛∗ ∥𝑢∥
1
𝛾 ≤ 0]

≤ P
(𝑢,𝑟 )

[⟨𝑛𝑟𝑢, 𝑣⟩ ≤ 𝑛′𝑑𝛾2 − 𝑛∗𝛾𝜏] = P
(𝑢,𝑟 )

[⟨𝑟𝑢, 𝑣

∥𝑣 ∥
2

⟩ ≤ 𝑛′𝑑𝛾2

𝑛𝛼
− 𝑛∗𝛾𝜏

𝑛𝛼
] .

Invoking Lemma A.1, we can get the upper bound of recommenda-

tion error 𝛽 :

exp

(
−

(
𝑛 ⟨𝑣,𝑢⟩ − 𝑛′𝑑𝛾2 + 𝑛∗𝛾𝜏

)
2

2𝑛2𝛼2𝜎2

)
. (9)

By combining Formula 7 and Formula 9 and setting Formula 9 to 𝛽 ,

the theorem is proved. □
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