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ABSTRACT
User modeling aims to capture the latent characteristics of users

from their behaviors, and is widely applied in numerous applica-

tions. Usually, centralized user modeling suffers from the risk of

privacy leakage. Instead, federated user modeling expects to pro-

vide a secure multi-client collaboration for user modeling through

federated learning. Existing federated learning methods are mainly

designed for consistent clients, which cannot be directly applied

to practical scenarios, where different clients usually store incon-

sistent user data. Therefore, it is a crucial demand to design an

appropriate federated solution that can better adapt to user mod-

eling tasks, and however, meets following critical challenges: 1)

Statistical heterogeneity. The distributions of user data in different

clients are not always independently identically distributed which

leads to personalized clients; 2) Privacy heterogeneity. User data
contains both public and private information, which have different

levels of privacy. It means we should balance different information

to be shared and protected; 3) Model heterogeneity. The local user
models trained with client records are heterogeneous which need

flexible aggregation in the server. In this paper, we propose a novel

client-server architecture framework, namely Hierarchical Person-

alized Federated Learning (HPFL) to serve federated learning in

user modeling with inconsistent clients. In the framework, we first

define hierarchical information to finely partition the data with

privacy heterogeneity. On this basis, the client trains a user model

which contains different components designed for hierarchical in-

formation. Moreover, client processes a fine-grained personalized

update strategy to update personalized user model for statistical het-

erogeneity. Correspondingly, the server completes a differentiated

component aggregation strategy to flexibly aggregate heteroge-

neous user models in the case of privacy and model heterogeneity.

Finally, we conduct extensive experiments on real-world datasets,

which demonstrate the effectiveness of the HPFL framework.

CCS CONCEPTS
• Security andprivacy→Privacy protections; •Human-centered
computing→ User models.
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1 INTRODUCTION
User modeling is an important basis to help researchers capture use-

ful potential characteristics with the reliance on personal data [59].

It has been applied to multiple typical tasks to provide appropriate

user models for users with various demands, such as modeling ca-

pabilities or preferences from users [10]. For example in intelligent

education systems, user modeling assists cognitive diagnosis for

modeling student capacities [51], while in recommender systems of

e-commerce, user modeling assists for modeling customer prefer-

ences [18]. In general, user modeling processes centralized training

with data aggregated, which causes privacy leakage. Considering

the privacy and sensitivity of personal data, regulations such as

General Data Protection Regulation (GDPR) are enacted to restrict

the centralized use of private data [4, 49, 50]. Therefore, user data

is required to remain local (e.g., personal devices), which results

in data isolation scenarios [35]. Focus on this dilemma, federated

learning (FL) has received widespread attention for potential of

secure distributed user modeling [42, 43]. It refers to building and

aggregating user models while leaving private data isolated so that

preserves the data privacy [39].

Generally, standard federated learning is an iterative framework

of a client-server architecture as shown in Figure 1(a). In particular,

there are two core parts in the framework. One is the client, where

all clients train local models on user data individually based on the

same global model and send them to a central server. The other

is the server, which aggregates the homogeneous local models to

a global one. During the process, the data of the clients is strictly

kept locally, and only the model information are interacted, which

guarantees the privacy protection. In the literature, many efforts

have been made improving federated learning technically, such

as FedSGD, FedAvg [39], FedAtt [23] and FedProx [27]. Though

some great performances have been achieved, previous works are

“dance in shackles”, that is, current federated learning frameworks

are designed for consistent clients [16]. In particular, on one hand,
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Figure 1: Differences between standard federated learning (left), and our hierarchical personalized federated Learning (right)
for user modeling. Standard FL simply aggregates and updates the consistent entire user models indiscriminately, while HPFL
partitions and processes the different components of the heterogeneous models independently. The top part shows a server
with a global model. The bottom shows clients with Non-IID data and local user models. Each round consists of four steps:
training a model locally, sending the model to the server, model aggregation in the server and updating models for clients.

researchers assume that the data in clients are consistent, i.e., in-

dependent and identically distributed (IID). On the other hand,

researchers simply initialize the local models of various clients with

consistent structures. These assumptions limit federated learning to

adapt different information and heterogeneous models. Obviously,

this view is inappropriate in user modeling tasks, in which there are

a variety of user scenarios [25]. In practice, the clients store incon-

sistent data since users in clients have different habits. Therefore, it

is necessary to find a superior federated learning process that better

adapts to federated user modeling tasks for isolated scenarios with

the inconsistent settings of clients.

Nevertheless, the particularity of user modeling with inconsis-

tent clients leads to three challenges which arise from the bottom up

at the level of distribution, data and model: (1) Statistical heterogene-
ity: Different from traditional scenarios where the data is assumed

to be IID [3], personal records for user modeling are usually non-

independently identically distributed (Non-IID), which results in

statistical disparities and personalization across the clients [28]. For

example, as shown in Figure 1, the preferences of users in client 1

are focused on the items belong to two different regions, while the

users in client 2 prefer the items in a certain region. The methods

as mentioned, which train local models for clients based on the

consistent global model, inevitably eliminate the personalization of

clients and reduce the ability to depict user characteristics [44]. Ac-

cordingly, it is necessary to integrate the personalized information

of user models to adapt statistical heterogeneity; (2) Privacy hetero-
geneity: As [1, 12] suggested, different information have different

levels of privacy. For example, as shown in Figure 1, the attributes

information of items (e.g., labels and categories) in clients are rela-

tively public, because they are summarized from the prior domain

knowledge and consistent in public [29]. While the information

such as representations of users in the user model, are strictly pri-

vate, since they are generated from preference distributions and

proprietary to users. On one hand, in the process of federated learn-

ing, rashly sharing representations will bring the risk of exposing

privacy [19]. On the other hand, discarding the sensitive informa-

tion to protect privacy will lead to a loss of information. Therefore,

we should flexibly apply specialized federated learning settings to

information with privacy heterogeneity so that we can balance

the information to be protected or shared across user models; (3)

Model heterogeneity: The mainstream federated learning methods

expect to build a general global model to model all locals. In other

words, the local model in client is the copy of the global model

in server [25]. However, in practical user modeling applications,

due to the different properties of the private data, the user model

structures among different clients are often different [26]. As shown

in Figure 1, the different amounts of items browsed by users lead

to differences in the sizes of the item space so that the user models

generated from local data naturally differ in structure. Therefore,
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the strategy to process heterogeneous user models in federated

learning also requires a careful design.

To address the above challenges, we propose a novel Hierarchical

Personalized Federated Learning (HPFL) framework for user model-

ing. HPFL is a client-server architecture as the general flow shown

in Figure 1(b). Compared to traditional FL process, there is a two-

stage task in client stage. In the first phase, client of HPFL defines

the hierarchical information in data by privacy heterogeneity, i.e.,

public information and private information. Accordingly, we design

a user model with hierarchical structure which contains both public

component and private component. After local user model training

process, client uploads the public component directly, while deliv-

ers the drafts of private component to safeguard the data privacy.

In the second phase, we propose a fine-grained personalized update

strategy to weighted fuse the corresponding components to new

local model according to both local user model and global model

in server. As for server stage, the server executes differentiated

component aggregation strategy for components received from

clients. It directly weighted aggregates the public components of

the same attribute to obtain the global public components. Corre-

spondingly, for the private component, since the original of the

representations is saved in local, the server aggregates the universe

of local drafts to generate the private components of global model

without alignment operations on representations. With the fine-

grained personalized update strategy, we take both the expansion

of the user model knowledge at the global perspective and the in-

heritance of user model personalization at the local perspective

into consideration, which accommodates statistical heterogeneity.

Moreover, with differentiated component aggregation strategy, we

safely aggregate heterogeneous user models by different compo-

nents so that we address both privacy heterogeneity and model

heterogeneity. Finally, we conduct extensive experiments in differ-

ent scenarios, including student capacities modeling in intelligent

education systems and user preferences modeling in recommender

systems. The experimental results clearly demonstrate that HPFL

outperforms the baselines in user modeling tasks in terms of accu-

racy performances, ranking effectiveness and modeling rationality.

To the best of our knowledge, HPFL is the first framework for

federated user modeling tasks, which is specifically designed to

take into account both differentiated component aggregation and

fine-grained personalized update strategy.

2 RELATEDWORK
In this section, we briefly review some related works from two

aspects, i.e., user modeling and federated learning.

2.1 User Modeling
User modeling is a fundamental task, which aims to analyze behav-

ioral information to infer the unobservable characteristics, such

as capability, preference, habit, tendency and so on [59]. To model

the rich characteristics of users, user modeling has been widely

used in various applications, for example, based on user capabil-

ity fitting, researchers employ user modeling to model user vision

level [8], lawyer expertise [45] and gamer competitiveness [57];

based on user preference mining, researchers apply user modeling

to tasks, such as personalized search [46], restaurant recommenda-

tion [58], news recommendation [9], dynamic social network [54]

and other broad recommendation tasks [31, 33, 47]. Recently, artifi-

cial neural network-based user modeling methods have received

widespread attention. Researchers apply the methods into some

important personalized user modeling tasks, such as cognitive di-

agnosis for fitting student cognitive abilities [51] and collaborative

filtering recommendation for mining user interest preferences [18],

in which each method establishes a set of user modeling process

to mine unobservable information of users and builds the hidden

relationship between users and items in the particular scenario.

However, most of the existing user modeling methods are cen-

tralized training processes, which introduce the risk of revealing

the user data privacy, leading to obstacles in practical applications.

Therefore, we raise the federated user modeling task, which aims

to process user modeling for isolated and inconsistent clients via

federated learning technique.

2.2 Federated Learning
Federated learning is a promising machine learning technique in re-

cent years. Federated learning is first proposed to solve the problem

of model updating inmobile terminals [39].With process of training

local models independently and aggregating the models centrally,

FL ensures data isolation and privacy protection. As people pay

more and more attention to privacy protection and regulations such

as General Data Protection Regulation (GDPR) limit the collection

and use of personal data, FL has received extensive attention. From

a technical perspective, existing frameworks can be categorized

into three types [55, 56], i.e., horizontal federated learning, vertical

federated learning and federated transfer learning. Specifically, in

horizontal federated learning, the data in the different clients shares

the same feature space of items but users are different; while in

vertical federated learning, the data shares the same user space but

the feature spaces of items are not quite overlapped [6]; finally, fed-

erated transfer learning faces the scenarios where both the feature

spaces and the user spaces are inconsistent [24, 34].

Since then, some frameworks for improving the process are pro-

posed. FedSGD and FedAvg [39] train the local model in parallel.

The server here simply generates a global model by the weighted

average of the local model parameters according to data sizes. Fe-

dAtt [23] considers the different importances of local models and ag-

gregates local models by applying a layer-wise soft attention mech-

anism between local models and the global model. FedProx [27]

subjoins a proximal term to close the local model and the global

model, which aims to avoid the excessive drift during optimization.

However, current works are proposed based on the assumption of

consistent clients and provide a uniform model for all the clients,

which is out of operation in practical scenarios [38]. Moreover, the

methods mentioned still bring the risk of privacy leakage, especially

when the models submitted contain sensitive representation infor-

mation, e.g., the user representations in user models. Unfortunately,

the common privacy protection method, differential privacy feder-

ated learning [14, 40] faces the dilemma of that the confidentiality

and accuracy are not entirely available simultaneously [5, 20, 48].

Therefore, there are still some difficulties for applying federated

learning in practical applications.
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3 PRELIMINARIES
In this section, we first provide a clear definition of the federated

user modeling. Then we consider two scenarios specifications.

3.1 Problem Definition
Before the framework design, we formally provide the issue of

federated user modeling. In our scenario, there are |C | clients. In
a specific client c , there are |Uc | users and |Vc | items, which can

be represented as: Uc = {u1,u2, · · · } and Vc = {v1,v2, · · · }. The

attribute dimension of items is K. Moreover, the interactions be-

tween users and items generate |Rc | interaction records. Each user

u, item v and their interaction result д form a triplet (u,v,д). In the

problem tackled in this paper, we aim to train |C | local user models,

i.e., {Θ1,Θ2, · · · } for each clients, where the c-th user modelΘc can

model the potential characteristics of users in client c and predict

the interaction results.

As mentioned earlier, in the federated user modeling scenarios,

there is inconsistency between clients. To achieve the inclusion of a

variety of client settings for federated user modeling, we define and

divide the different information with privacy heterogeneity. As we

know, in the real world, all the clients share some public knowledge

information, such as attributes of items, which are relatively public,

allowing it to be communicated and shared. In addition, clients also

hold some strictly private information in personal data that needs

to be protected, such as distributions of users and items. In order to

reasonably utilize the information with different privacy intensity

as much as possible and avoid the risk of privacy disclosure, we

define hierarchical information as:

Definition 1. Public information: it refers to the information that
contains the prior domain knowledge so that it can be shared among
clients. In this case, the public information is relatively private and
incompetent to expose the sensitive user information.

Definition 2. Private information: it is the information which is
proprietary for clients and represents the unique distributions of users
and items among each client. Apparently, it is with strictly privacy
and needs to be protected.

Specially, each local user model Θ contains two corresponding

designed components, i.e., public components as Θk for public in-

formation and private components as Θr for private information.

Please note that in practical scenarios, the user data in devices is

proprietary so that it is difficult for data centers to conduct central-

ized training in this case, which results in isolated and inconsistent

user modeling.

3.2 Scenario specifications
User modeling can be applied in many scenarios, such as education,

e-commerce, catering and so on. In this work, we choose two repre-

sentative issues in real user modeling scenarios. The first one is user

capability modeling in areas such as education. This task is special-

ized as student performance prediction [32]. Correspondingly user

u, itemv and information ofK attributes in our problem are denoted

as: student, question and knowledge concepts in question, respec-

tively. The result of interactive behavior д is the student’s response

to the question, and the target in this scenario is to model student’s

mastery of questions and predict the student performances. The

Figure 2: Hierarchical Personalized Federated Learning
framework with differentiated component aggregation and
fine-grained personalized update strategy.

other is user preference modeling in areas such as recommendation.

This task is regarded as customer rating prediction [30]. Similarly

user u, item v and K attributes here, that is, customer, product and

product categories. The interactive behavior is the user evaluation

of the product. We mine customers’ interests and complete user

rating prediction as the ultima objective.

4 HIERARCHICAL PERSONALIZED
FEDERATED LEARNING

In this section, we describe our Hierarchical Personalized Feder-

ated Learning (HPFL) framework for user modeling in more details.

Specifically, we first introduce an overview of our framework. All

of the technical details are described in the following sections, in-

cluding both client design with fine-grained personalized update

strategy and server design with differentiated component aggre-

gation strategy. Then we design a general user model as the local

user model for hierarchical information, namely GUM. Finally, we

present the whole workflow of HPFL.

4.1 Model Overview
To solve the problems mentioned, we propose a novel Hierarchical

Personalized Federated Learning (HPFL) framework as illustrated

in Figure 2, which accords to a client-server architecture. Client

is the personal device, which is responsible for training a simple

while proprietary user model with private records, that is GUM in

our framework. Besides, it delivers the different components of user

model and updates a personalized user model using the fine-grained

personalized update strategy based on the global model received.
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Algorithm 1 Fine-grained Personalized Update.

Input: The aggregated global public components, Θ
д
k ; The aggre-

gated global private components, Θ
д
r ; The original local public

components, Θk and private components, Θr ;

Output: The updated local public components, Θk and private

components, Θr ;

1: Update(Θk ,Θ
д
k ,Θr ,Θ

д
r ) :

2: compute new local Θk on attributes by Eq.(1)

3: compute new local Θr by Eq.(2)

4: return Θk and Θr

The server is in charge of fusing heterogeneous local user models

to a global one by different components with the differentiated

component aggregation strategy. In a nutshell, the client maintains

the personalization from Non-IID user data and the server allows to

aggregate different components of the heterogeneous user models

without compromising privacy. We will introduce the technical

details of the two parts in the following subsections, respectively.

4.2 Client Design
The client in our framework is mainly responsible for two phases:

one is to upload the trained local user model, and the other is to

update the personalized user model based on the global model. Spe-

cially, the client first independently initializes and trains a general

user model named GUM. The GUM contains both the public and

private components, which are designed for hierarchical informa-

tion (The details of GUM will be introduced in Section 4.4). The

user model is trained with only local data and aims to model local

user characteristics appropriately.

As for upload phases, client delivers the local user model by

different components. In particular, the public component is deliv-

ered directly, since it is with public information. While the privacy

component is sensitive, and the centralized use of the privacy com-

ponent can lead to privacy leaks. Therefore, in our framework,

client maintains the originals of the private components locally.

Instead, it only provides some drafts, which are generated as the

rough estimation for user or item representations. Specifically, as

shown in Figure 2, client is required to process a clustering task on

Θr to obtain the local cluster centers as drafts, which are represen-

tative for representations in user model, but low sensitive. Then the

two components from clients will be aggregated in server, which

will be introduced in Section 4.3.

As for update phases, after accepting the aggregated global

model, the client is mainly responsible for updating the local GUMs

from the global one to provide an appropriate user model for further

applications. However, clients in federated user modeling have per-

sonalized information due to inconsistency generated from different

application scenarios and operation styles. To retain personalized

information and customize user models for clients, methods such

as model interpolation [38, 41] are utilized in model update process.

Unfortunately, since the black-box model interpolation lacks inter-

pretability and may introduce the poor results [2], we regulate a

fine-grained personalized update strategy to fuse the local person-

alized information and global generalized information to update

GUMs by different components as Algorithm 1. The fusion process

Algorithm 2 Differentiated Component Aggregation.

Input: The set of public components from clients, Sk ; The set of
drafts of private components from clients, Sr ; The set of local
validation results from clients, Sacc ;

Output: The aggregated global public components, Θ
д
k ; The ag-

gregated global private components, Θ
д
r ;

1: initialize p.
2: Aggregation(Sk ,Sr ,Sacc ) :
3: compute Θ

д
k on attributes with Sk , Sacc and p by Eq.(3)

4: Θ
д
r ← Cluster(Sr )

5: return Θ
д
k and Θ

д
r

is in reference to a certain weight, which can reflect the importance

of the local model. Noting that the comparison on weights is not

our focus. Therefore, we choose local test accuracy as a intuitive

dynamic weight in principle.

For public component in GUM, at round t, client i add the local

attribute knowledge vector ctk,i and the global attribute knowl-

edge ct,дk on attribute k via the corresponding accuracy Acctk,i to

accuracy weighted update the new knowledge vector as:

ctk,i = ctk,i ×Acc
t
k,i + ct,дk × (1 −Acc

t
k,i ). (1)

Apparently, the better performances the local attribute knowledge

has, the more likely it is to retain its own knowledge. But the poor

knowledge vector will be out of the local optima after synthesizing

the global information, so as to carry on the further optimization.

Correspondingly, for private component in GUM, the client i
distance weighted update new representation with the affects of

all global cluster centers, i.e., global private components, via the

distances between the local one (Embj,i ) and global centers Θ
д
r .

The update process can be denoted as:

Embд =
N∑
n=1

| |Embj,i − Θд
r,n | | × Θд

r,n∑N
m=1
| |Embj,i − Θд

r,m | |
,

Embj,i = Embj,i × Acci + Embд × (1 − Acci ). (2)

In particular, Acci is an accuracy vector, representing the accuracy

of the local model on each attribute. Similarly, the more accurate

representations are less affected. While the more incompetent rep-

resentation is updated to a general representation before the next

training process on GUM.

4.3 Server Design
The server mainly processes the core task of aggregation of local

user models to the global user model so that expands the avail-

able information for clients. However, the client inconsistency in

federated user modeling causes privacy heterogeneity and model

heterogeneity so that existing aggregation strategy which simply

processes on a consistent entire model is inappropriate [1]. In order

to flexibly implement the aggregation of inconsistent user models

in federated learning, we propose the differentiated component

aggregation strategy as Algorithm 2. With the strategy, we sepa-

rately aggregate the different components in GUM, i.e., the public

components and private components.
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Figure 3: General user model, GUM

For the public component Θk in GUM, which is with relative

openness and tolerated to be directly fused, the server processes

a weighted aggregation of the same attribute to obtain the global

public components in Figure 2. In particular, in round t , the local
public components are delivered from clients. To obtain the global

public components Θ
д
k , the server fuses each knowledge vector

(ctk,i ) that represents knowledge information on attribute k from

clients i in reference to both the number of iterations on attribute

k (I tk,i ) as well as the local validation accuracy (Acctk,i ). Finally, the

global attribute knowledge, ct,дk is denoted as:

ct,дk =

∑C
i=1

δ (Acctk,i ,p) × (I
t
k,i ×Acc

t
k,i ) × ctk,i∑C

i=1
δ (Acctk,i ,p) × (I

t
k,i ×Acc

t
k,i )

. (3)

In particular, δ (x ,p) is an indicator function, where δ (x ,p)=1, if
x > p; otherwise, δ (x ,p)=0, while p is a dynamic threshold. That is,

the server only aggregates the knowledge vectors whose local vali-

dation accuracy is higher than the threshold to dynamically select

vectors in user models that are eligible to partake their knowledge.

For the private component Θr in GUM, it is strictly private.

Since it is proprietary, unscrupulous alignment and fusion processes

will reveal private preference information [19]. Therefore, server

receives the cluster centers in clients which are regarded as the

drafts of their representations from local user models. After that,

server performs a further clustering with all the cluster centers,

which is cluster aggregation as shown in Figure 2. The new cluster

centers in server, which are defined as global private components

Θ
д
r , represent the comprehensive representations of the bunches

which involve similar users or items from different clients.

4.4 Local User Model Design
The functional structure in our proposed HPFL framework is the

user model Θ, which is expected to model the users properly in

various tasks. Indeed, a more complex model (e.g., NCD [51] and

NCF [18]) is likely to be suitable for corresponding scenario, while

it has weak generalization for other tasks. In addition, both of the

above two models focus on low dimension for user and item rep-

resentations on attributes so that lack the ability to model deep

information [52]. As a result, in this section, we propose a Gen-

eral User Model (GUM) as shown in Figure 3, which is flexible,

explainable and capable of deep representation.

Our proposed GUM aims to model the potential characteristics

of users. It is mainly divided into two parts which are correspond-

ing designed for the hierarchical information, i.e., public compo-

nent and private component. As shown in Figure 3, we use the

triplet record (u,v,д) as the input of GUM. Then we fetch the K-

dimensional user embedding (Embu) and item embedding (Embv)
via the user id and item id, respectively. The embeddings reflect the

distributions of the inputs on the attributes. As mentioned before,

the embeddings contain extreme private information, which can

be use to infer local data distributions, so that they are defined as

private components. In addition, we convert the attribute ids of

the item v into multi-hot vectors, which is used to correspondingly

strengthen the information of certain attributes.

Then, we fuse the distributions on the attributes to the multidi-

mensional vector representation, which is treated as a summary of

the distributions, via three mapping matrixes, i.e., knowledge ma-

trix u (KMu ), relation matrix (RM) and knowledge matrix v (KMv )

in Figure 3. Where KMu and KMv are K × N matrixes which rep-

resent the N-dimensional knowledge vectors of K attributes at user

and item perspective, respectively. While RM is a K × K matrix

and indicates the knowledge relation among K attributes. With the

multi-hot vector of the attribute information of the current item, we

fetch the K-dimensional attribute vector (Embc), which is on behalf

of the relation of attributes. Obviously, the three matrixes contain

the public knowledge information, which represents attributes with

multidimensional vectors. Naturally, the knowledge in matrixes

is relatively public and difficult to be used to detect private infor-

mation. Therefore, we define these components of GUM as public

components. Finally, we compute user representation (Ru) and item
representation (Rv) as:

Ru = Embu · Embc
T · KMu . (4)

Rv = Embv · Embc
T · KMv . (5)

Finally, we simply define the distances between the user and the

item as the user reflex on a item as:

Puv = Ru − Rv. (6)

Noting that, for different tasks, we will use it to conduct different

prediction tasks in user modeling as the objective. In particular, we

use a simple N × 1 hidden mapping matrix (HM) to map Puv to a

continuous value, representing the prediction as:

Fuv = Puv · HM . (7)

In addition, to independently represent the hidden characteristic,

e.g., capability or preference of user out of the items based on the

multidimensional representations, we denote the hidden character-

istic as:

hu = Embu · (KMu · HM). (8)

With our proposed GUM, we establish both the private compo-

nents and the public components for hierarchical information. The
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Algorithm 3 The HPFL framework.

1: Server executes:
2: initialize Θ0

k .

3: for each round t = 1 ,2,... do
4: initialize Sk = {}, Sr = {}, Sacc = {}
5: for each client index c ∈ C in parallel do
6: Θt+1

k,c ,Lc
t+1

c ,Acct+1

c ← ClientUpdate(c , Θt,д
k ,Θ

t,д
r )

7: Sk = Sk ∪Θ
t+1

k,c , Sr = Sr ∪ Lc
t+1

c , Sacc = Sacc ∪Acct+1

c

8: Θ
д,t+1

k ,Θ
д,t+1

r ← Aggregation(Sk ,Sr ,Sacc ) according to

Algorithm 2

1: ClientUpdate(c ,Θд
k ,Θ

д
r ):

2: Θk ,Θr ← Update(Θk ,Θ
д
k ,Θr ,Θ

д
r ) according to Algorithm 1

3: Θk ,Θr ,Acc← LocalTraining(c ,Θk ,Θr )

4: Lc ← Cluster(Θr )

5: return Θk , Lc and Acc to server

private components are superficial private representations of users

and items. The public components contain the multidimensional

representation of knowledge information on attributes. Further-

more, we map the private representations to the multidimensional

representation vectors, i.e. user representations and item repre-

sentations, with mapping matrixes. Finally, we use a simple and

general approach to define the user reflex for a certain item. For

different tasks, we will flexibly apply user reflex vector to predict

corresponding object.

4.5 HPFL Workflow
As mentioned above, the total workflow of HPFL is presented in

Algorithm 3. For each global round, client first processes local

training with only local data on GUM and delivers the different

components of GUM to server, respectively. Hereafter, the server

aggregates all local public components and private components

by differentiated component aggregation strategy as Algorithm 2.

Then the server distributes the global user model to all the clients.

Finally, client receives the different components of global model and

personalizes its own user model with the fine-grained personalized

update strategy before next-round local training as Algorithm 1. It

is worth noting that in our process, the user models are allowed to

vary from client to client, so independent initialization is possible.

In summary, our proposed HPFL framework has the following

advantages. HPFL achieves personalized model update through

the fine-gained model fusion, avoiding the neglect of statistical

heterogeneity. Furthermore, through the aggregation process, we

specifically aggregate the model components with different privacy

intensity to make use of as much information as possible on the

premise of protecting the privacy information, which conforms

privacy heterogeneity. At the same time, HPFL does not need to

align the original representations in user models, so it is adaptive

to the heterogeneous representation spaces among user models to

suit model heterogeneity. Finally, our framework achieves good

performances on multiple user modeling tasks, as covered in the

next section.

Table 1: Statistics of the datasets: ASSIST and MovieLens.

Statistics ASSIST MovieLens

# of clients 59 10

# of records 327,058 96,538

# of users 3,477 925

# of items 17,561 1,679

# of attributes 122 19

# attributes per item 1.20 1.72

# attributes per record 1.20 2.21

5 EXPERIMENTS
In this section, we first introduce our experimental datasets and

framework setups. Then, we conduct experiments to demonstrate

the superiority of our HPFL framework in user modeling tasks from

the following three aspects: (1) the accuracy performances on user

modeling tasks; (2) the ranking effectiveness on predictions; (3) the

modeling rationality at the parameter level.

5.1 Experimental Datasets
We conduct our experiments on two typical user modeling tasks

as referred in section 3.2. Correspondingly, we use two real-world

public datasets to verify our HPFL. For educational task, we employ

a public dataset, ASSIST (short for Assistments). ASSIST (2009-2010

“Non-skill builder”
1
) records the mathematics learning logs from an

online tutoring program. It has been widely used for user capability

modeling. Besides, for recommendation task, we adopt MovieLens

(ml-100K
2
) including ratings for movies through the MovieLens

web site, which is common for user preference modeling.

We first simulate a real federated learning scenario by dividing

the datasets. In ASSIST, we divide the data into clients by teacher

ids. Moreover, we filter out the clients whose students and average

records are less than 5 to ensure that there is sufficient data for

training. Finally, we get over 300K records of 3477 students in 59

clients. There are over 17K questions responded in a two-point scale,

which belong to 122 concepts. Similarly, we divide the data into

clients according to users’ location via national area in zipcode (e.g.,

1xxxx–Delaware, New York, Pennsylvania) in MovieLens and we

delete the clients with less than 5 customers. We get our MovieLens

dataset afterwards, which has over 96K records of 925 customers

from 10 clients. Users rate on 1676 products (i.e., movies) belong-

ing to 19 categories with a five-point scale. More statistics of the

datasets are presented in Table 1. Specifically, in our datasets, the

concepts and categories mentioned are public information as we

defined in Sec 3.1. The interaction records of users and items, such

as answers to questions of students and users’ ratings of movies,

contain sensitive information of users, which are the private infor-

mation. In our scenario, each client only expects to hold its own

data during training process, which causes data isolation. We aim

to fuse and update local GUMs trained with isolated and inconsis-

tent datasets in a percipient way, so that provide high quality user

1
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-

data/non_skill-builder-data-2009-2010

2
https://grouplens.org/datasets/movielens/100k
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(a) Distribution of attributes in ASSIST.
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(b) Distribution of attributes in MovieLens.

Figure 4: Distribution of attributes by clients of two datasets:
ASSIST (left), MovieLens (right).

models for clients. Consequently, we solve federated user modeling

problem for inconsistent local clients.

Then we analyze the data to compare the data distributions on

the attributes of different clients. In particular, in order to com-

pare the user modeling effects of HPFL under different distribution

scenarios, we conduct experiments on both natural IID and Non-

IID datasets. To be specific, we analyze the distribution of all the

attributes of both datasets as Figure 4. For better illustration, we

choose 10 clients with the largest data volumes. Different colors

represent different attributes and the cover areas represent the fre-

quency of occurrence of attributes in data. For example, we can

compare the line of client 8 with other lines in Figure 4(a). We can

observe that the distributions of some attributes (around orange

color) appear more frequently in it than any other clients. It ap-

parently shows that the frequency of occurrence of attributes is

inconsistent, which results in Non-IID data across clients in ASSIST.

While the distributions of attributes in MovieLens are almost con-

sistent, which demonstrates that the data in MovieLens is closer to

being IID. Therefore, ASSIST is a natural Non-IID dataset, whereas

MovieLens is used as an approximate IID dataset in our experi-

ments. Although the distribution of attribute in Movielens is IID,

there are still inconsistencies in user space and item space that

bring inconsistency to the structures of user models.

5.2 Experimental Settings
5.2.1 Data partition. In both datasets, i.e., ASSIST and MovieLens,

we execute a random 80%/20% train/test partition of each user

records. It is worth noting that we maintain the data in each client

isolated in the experiments for federated user modeling methods.

5.2.2 HPFL Setting. We specify the framework setups in HPFL,

including the GUM settings and HPFL settings. GUM is a general

neural user model, in whichwe set N, the width of knowledge vector

inKMu andKMv as 5. Moreover, in HPFL, for both global and local

clustering tasks, we simply select the usual method–K-means [37]

and the number of centers, K is 1/10 of the numbers of inputs.

Finally, before training process, we initialize all parameters with

xavier initialization following [15]. To facilitate further research in

HPFL, we have published our code
3
.

5.2.3 Baselines. First, we demonstrate the generalization and ef-

fectiveness of our proposed GUM by comparing two typical user

modelingmethodswith centralized training process, i.e,NCD,NCF,

3
https://github.com/bigdata-ustc/hierarchical-personalized-federated-learning

which focus on cognitive diagnosis and collaborative filtering rec-

ommendation tasks, respectively.We verify separately in the special

areas of these methods, i.e., NCD for education and NCF for recom-

mendation.

• NCD [51] is a state-of-the-art cognitive diagnosis model,

which models the complex cognitive relationships of shallow

representations of both students and questions.

• NCF [18] is also a state-of-the-art collaborative filtering

model based on deep neural networks, which models shallow

features of both users and items.

Then, we compare some representative federated learning meth-

ods, which mainly process in inconsistent scenarios with a general

settings. In our experiments, they are applied to both user modeling

tasks based on GUM. Besides, we also train the user models in a dis-

tributed manner and conduct evaluations to verify the effectiveness

of the federated settings in extending the available information,

which is denoted as Distributed.

• FedSGD [39] is a standard federated learning method based

on stochastic gradient descent, where the server takes a sim-

ple weighted average of all models to obtain a united global

model and clients perform one epoch of gradient descent for

per training process.

• FedAvg [39] also aggregates models to a united global model.

However, FedAvg processes more computation steps in gra-

dient descent to accelerate training and convergence.

• Fednoise is an extension method based on traditional fed-

erated process. It follows local differential privacy [7, 11, 53]

which adds some random disturbances, like Laplace noise to

local models before transmitted.

• FedProx [27] adds a reference loss in local training for each

client, that is, the distances between the local model and

the global model, so that it constrains the local personalized

optimization process not to drift excessively.

• FedAtt [23] incorporates soft-attention in aggregation pro-

cess. The server considers the importance of models and

aggregates local models by layers with the distances be-

tween the global model and local models. Then it weighted

aggregates local models to obtain the final global model.

In addition to verify the different federated process, we compare

our completeHPFL on the user modeling tasks with two simplified

frameworks: HPFL-K and HPFL-R, which only processes on pub-

lic components or private components, respectively. For fairness,

in our experiments, all methods mentioned are implemented by

PyTorch, and trained on a Linux server with two NVIDIA Tesla K80

GPUs and 256G memory to achieve the best performance.

5.2.4 Evaluation metrics. To observe the accuracy performances

of our proposed methods in user modeling tasks, we evaluate meth-

ods at both classification and regression perspectives. In particular,

we use the widely-used ROC Curve (AUC) [13], Prediction Accu-

racy (ACC), Mean Absolute Error (MAE), and Root Mean Square

Error (RMSE) metrics to measure the proximity between prediction

and ground truth [22]. In particular, AUC and ACC evaluate the

correctness of classification tasks in the range of [0, 1], the larger

the values are, the better the results. Moreover, MAE and RMSE

evaluate the similarity between prediction and ground truth in
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Table 2: Accuracy performances of user modeling tasks for metrics on both datasets.

Methods

ASSIST MovieLens

ACC AUC RMSE ACC MAE RMSE

NCD 0.727 0.749 0.430 - - -

NCF - - - 0.385 0.759 0.988

GUM 0.736 0.774 0.421 0.397 0.745 0.946
Distributed 0.699 0.718 0.442 0.389 0.802 1.001

FedSGD 0.704 0.716 0.453 0.341 0.933 1.111

FedAvg 0.703 0.724 0.445 0.397 0.802 0.993

Fednoise 0.701 0.722 0.441 0.387 0.804 1.019

FedProx 0.704 0.725 0.444 0.405 0.798 0.989

FedAtt 0.715 0.727 0.438 0.404 0.796 0.989

HPFL-K 0.715 0.730 0.437 0.403 0.792 0.987

HPFL-R 0.723 0.738 0.433 0.405 0.798 0.991

HPFL 0.726 0.742 0.431 0.407 0.786 0.978

regression tasks whose range is [0, 1], the lower the values are, the

better the results.

In the practical user modeling tasks, we not only focus on the ac-

curacy of prediction, but also the partial orders of user preferences

for items [42]. Therefore, we adopt the commonly used ranking

measurement indicators in user modeling tasks: Degree of Agree-

ment (DOA) [21] and Normalized Discounted Cumulative Gain

(NDCG) [17]. The indicators count whether the predicted ranking

of the more preferred item is higher, which reflects the ranking

effectiveness of the models.

5.3 Experimental Results
5.3.1 Accuracy performances. To evaluate the accuracy perfor-

mances of all the abovemethods in isolated user modeling scenarios,

we conduct the prediction tasks as mentioned before. Specially, for

two typical user modeling tasks, i.e., cognitive diagnosis and col-

laborative filtering recommendation, we implement the target as

student performance prediction and user rating prediction, respec-

tively. We repeat the experiments 5 times and summarize the aver-

age of results. Table 2 reports the overall results on both datasets

with evaluation metrics mentioned. Noting that, for student perfor-

mance prediction of two-point scale, we usually focus on AUC and

ACC. While for rating prediction, especially non-two-point scale

rates, MAE is the more reasonable indicators.

Some key observations as follows: (1) Our proposed GUM model

performs better than NCF and NCD on two datasets. It shows our

general user model that is capable of deep representation for users

and items is general and appropriate for user modeling tasks. (2) In

all, federated methods perform better than distributed training pro-

cesses. It shows federated learning settings that can harness more

information from isolated clients, which usually results in better

user models. Obviously, our proposed HPFL-based methods have

the better performances than any other methods on both datasets.

This means that our methods can more effectively accommodate

user modeling tasks. (3) Obviously, the improvements in ASSIST

from our methods are even more significant, because the data in

ASSIST among clients is more inconsistent, that is with the Non-IID

characteristic, while the data in MovieLens is basically IID. It indi-

cates that our methods overperform on both datasets, but in data

with more Non-IID characteristics, the advantages of our methods

are more prominent. (4) HPFL performs the best performances on

both tasks. While the performances of simplified methods, HPFL-K

and HPFL-R are poorer than HPFL, because both of these methods

lack some information of model components, i.e., lack of private

component and public component, respectively.

5.3.2 Ranking effectiveness. As we argued earlier, not only the

accuracy of prediction, but also the partial orders of user preferences

are important in evaluation for user modeling. We adopt some

common used indicators to evaluate the ranking effectiveness on

both tasks. One is the Degree of Agreement (DOA) for extra ranking,

which is used for measuring the consistency of preferences and

predictions in group. That is, whether one prefers the same item

than another user as user model reflects. Specifically, a DOA result

on a specific attribute k is defined as:

DOA(k) =

|Uc
1
|∑

a=1

|Uc
2
|∑

b=1

Iabk
δ (hak ,hbk ) ∩ δ (д̄ak , д̄bk )

δ (hak ,hbk )
. (9)

Here, Uc1
and Uc2

denote the users in clients c1 and c2, while

hak indicates the hidden characteristic, e.g., capability or prefer-

ence of user a on attribute k obtained by the our user models

as Eq. 8, and д̄ak is the average respond of user a on attribute k.

δ (x ,y) is an indicator function, where δ (x ,y)=1, if x > y; other-
wise, δ (x ,y)=0. Iabk is another indicator function, where Iabk=1
if both user a and user b have interacted on the attribute k be-

fore. Furthermore, we average the DOA(k) of all attributes as DOA

to measure the extra ranking effectiveness, which is denoted as

DOA =
∑K
k=1

DOA(k)/K ,DOA ∈ [0.0, 1.0], the larger the DOA, the
better the performance on the extra ranking.

The other is theNormalizedDiscounted Cumulative Gain (NDCG)

for inter ranking, which is used for measuring the consistency of

real preferences and predictions for users. That is, whether one

prefers an item than another item as the user model reflects. First,

we define the DCG of a specific user u is formulated as:
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Table 3: Ranking effectiveness of DOA and NDCG on ASSIST.

NCD GUM Distributed FedSGD FedAvg Fednoise FedProx FedAtt HPFL-K HPFL-R HPFL

DOA 0.755 0.773 0.736 0.736 0.741 0.721 0.743 0.749 0.756 0.743 0.758
NDCG 0.826 0.864 0.837 0.825 0.833 0.831 0.835 0.834 0.834 0.849 0.856

Table 4: Ranking effectiveness of DOA and NDCG on MovieLens.

NCF GUM Distributed FedSGD FedAvg Fednoise FedProx FedAtt HPFL-K HPFL-R HPFL

DOA 0.505 0.590 0.537 0.519 0.668 0.539 0.668 0.669 0.678 0.672 0.699
NDCG 0.855 0.869 0.893 0.858 0.891 0.864 0.892 0.891 0.896 0.898 0.910

(a) Centralized (b) Distributed (c) HPFL-K (d) HPFL-R (e) HPFL

Figure 5: The user characteristics of different methods reduced dimension by t-SNE on five clients in ASSIST, where one point
corresponds to one user.

(a) Centralized (b) Distributed (c) HPFL-K (d) HPFL-R (e) HPFL

Figure 6: The user characteristics of different methods reduced dimension by t-SNE on five clients in Movielens, where one
point corresponds to one user.

DCG(u) =
K∑
k=1

huk
log

2
k + 1

. (10)

Here, K denotes the total attributes and the K attributes are

ordered by д̄uk as the recall order. Then we define NDCG(u) =
DCG(u)/IDCG(u), where the IDCG(u) is the ideal DCG(u), that
is apply DCG(u) to the huk descending sorted. Furthermore, we

average the NDCG(u) of all users as NDCG to measure the inter

ranking effectiveness as NDCG =
∑ |U |
u=1

NDCG(u)/|U |,NDCG ∈
[0.0, 1.0]. A larger NDCGmeans a better inter ranking performance.

Table 3 and Table 4 report the ranking effectiveness on DOA

and NDCG. We can conclude the following from the results: (1)

GUM performs better than other centralised methods, meaning

that our high-dimensional user model adds more comparability for

both inter and extra ranking. (2) HPFL performs outstanding results

on two aspects on the whole, while HPFL-K gets great results on

DOA and HPFL-R has advantages in NDCG. It results from that

HPFL-K lacks private components so that it focuses on common-

ality between models, while HPFL-R ignores public components

which add more collaboration between clients. (3) Compared with

standard federated learning methods, distributed training method

performs a comparable result in NDCG, while performs inferior

results in DOA. It demonstrates that standard federated methods

bring a coordination among clients so that it is benefit to extra

ranking but causes weakness in inter ranking to some extent for

user modeling.

5.3.3 Modeling rationality. Furthermore, we deeply analyze the

rationality of user models at the parameter level. We expect HPFL to

facilitate the creation of more rational user models. As mentioned

earlier in section 4.4, there are two components in local GUMs, i.e.,

public component and private component for hierarchical informa-

tion. In order to compare the effects of hierarchical information, we

deeply analyze methods by different components. In particular, we

conduct the similarity analysis of public components and personal-

ization analysis of private components to observe the similarities

and differences between clients in federated learning.

Similarity analysis of public components. For the public compo-

nent, we expect it to represent information collaboration between
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Table 5: Similarity of different methods on both datasets.

Methods ASSIST MovieLens

Distributed 27.741 1.397

FedAvg 1.628 0.327

HPFL-K 1.945 0.031

HPFL-R 30.292 0.165

HPFL 4.023 0.066

clients. Therefore, we calculate the similarity of public components

from clients of different methods. Specifically, we analyze the multi-

client methods, such as distributed training process, the standard

and clear Fedavg and our methods, then we calculate the cosine

similarity of the corresponding public component between different

clients. We define a total similarity as:

Simi =
C∑
i=1

C∑
j=1

∑K
k=1

cos(ck,i , ck, j ))

K
. (11)

Where the cos(x ,y) is the cosine similarity function and it is ap-

plied to the pair-wised knowledge vectors from both clients. The

lower value of Simi, the higher the similarity. For better compar-

ison, we choose 10 clients with the largest data volumes on both

datasets. Table 5 reports the results of similarity in models from

both datasets. According to the results, we obtain the following con-

clusions: (1) On both datasets, public components across clients in

the distributed training method are more different, since there is no

federated process that clients communicate on public components.

Besides, in our method, HPFL-K has the highest similarity, followed

by HPFL. Obviously, aggregation of public components enhances

similarity between user models in clients. (2) The similarity on

ASSIST, which is Non-IID is much higher than those on Movie-

Lens which is more IID, it shows that models trained on IID data

are more likely to learn a similar distribution for parameters that

represents the global distribution to some extent to obtain a better

local user model, GUM. While models on Non-IID data should have

some personalization, because in which case the consistent user

models can lead to errors. Just as FedAvg has lower similarity, while

performs worse on ASSIST as Table 2.

Personalization analysis of private components. For the private
component, we expect to validate the ability of private components

to capture personalized information. Specifically, we choose the

conventional training methods, i.e., centralized and distributed

training process for user modeling with our methods to analyze the

rationality of embeddings in user models on clustering impressions.

Specifically, we visualize the user characteristics from Eq. 8 after

reducing their dimension by t-SNE [36]. For better illustration, we

choose 5 clients with the most data. In particular, we annotate the

cluster centers of users on figures of HPFL-R and HPFL.

Figure 5 and Figure 6 illustrate the user characteristics on both

datasets. Through the visual representation of the figures, we come

to the following conclusions: (1) On both datasets, private compo-

nents in user models are not distinguishable in centralized training

process, while distributed training process may enhance the gath-

ering effect. (2) In MovieLens, the aggregation effect, even in the

distributed training method, is not noticeable, since the IID distri-

butions weaken personality of the clients. Under such severe case,

our HPFL-R and HPFL method that process private components,

still capture the personalized information, which shows that on

both types of distributions, our methods have advantages to mine

peculiarity of clients from user characteristics in user modeling. (3)

Though our methods can capture personalized characteristics for

users, we also notice the presence of mixed clusters from different

clients in HPFL-K and HPFL, while clusters in HPFL-R are purer. It

shows that public components share information and promote col-

laboration among clients while private component tends to capture

the uniqueness of users for each client.

6 CONCLUSION
In this paper, we designed a novel federated user modeling frame-

work, called Hierarchical Personalized Federated Learning (HPFL).

It enables federated learning to be applied in user modeling tasks

with inconsistent clients. Specifically, it is a client-server archi-

tecture. In client, we proposed a fine-grained personalized update

strategy for personalized user model update, and a differentiated

component aggregation strategy was explored in server to flexibly

fuse heterogeneous user models. Our results on real-world user

modeling tasks showed that HPFL outperforms existing federated

learning methods, which demonstrated HPFL is more suitable in

wide user modeling scenarios.

In the future, we will consider the data characteristics to improve

the federated strategy for more elaborate framework design. We are

also willing to design a platform and apply the technical details of

HPFL to applications to solve practical problems in user modeling.
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