
1740 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Adaptive Adapters: An Efficient Way to Incorporate
BERT Into Neural Machine Translation

Junliang Guo , Zhirui Zhang , Linli Xu, Boxing Chen , and Enhong Chen , Senior Member, IEEE

Abstract—Large-scale pre-trained language models (e.g., BERT)
have attracted great attention in recent years. It is straightforward
to fine-tune them on natural language understanding tasks such
as text classification, however, effectively and efficiently incorpo-
rating them into natural language generation tasks such as neural
machine translation remains a challenging problem. In this paper,
we integrate two pre-trained BERT models from the source and
target language domains into a sequence-to-sequence model by in-
troducing light-weight adapter modules. The adapters are inserted
between BERT layers and tuned on downstream tasks, while the
parameters of BERT models are fixed during fine-tuning. As pre-
trained language models are usually very deep, inserting adapters
into all layers will result in a considerable scale of new parameters.
To deal with this problem, we introduce latent variables to decide
whether using adapters or not in each layer, which are learned
during fine-tuning. In this way, the model is able to automatically
determine which adapters to use, therefore hugely promoting the
parameter efficiency and decoding speed. We evaluate the pro-
posed framework on various neural machine translation tasks.
Equipped with parallel sequence decoding, our model consistently
outperforms autoregressive baselines while reducing the inference
latency by half. With automatic adapter selection, the proposed
model further achieves 20% speedup while still outperforming
autoregressive baselines. When applied to autoregressive decoding,
the proposed model can also achieve comparable performance with
the state-of-the-art baseline models.

Index Terms—Pre-trained language model, adapter, neural
machine translation.

I. INTRODUCTION

IN recent years, Pre-trained Language Models (PLMs) [1]–
[5] have achieved outstanding performance on many natural

language understanding tasks such as text classification and

Manuscript received January 4, 2021; revised April 3, 2021; accepted April
22, 2021. Date of publication April 30, 2021; date of current version May
28, 2021. This work was supported in part by the National Natural Science
Foundation of China under Grant U20A20229, by Anhui Provincial Natural
Science Foundation under Grant 2008085J31, and by Alibaba Group through
Alibaba Research Intern Program. The associate editor coordinating the review
of this manuscript and approving it for publication was Dr. Sakriani Sakti.
(Corresponding author: Linli Xu)

Junliang Guo and Enhong Chen are with the Anhui Province Key Laboratory
of Big Data Analysis and Application, School of Computer Science and Tech-
nology, University of Science and Technology of China, Hefei 230026, China
(e-mail: guojunll@mail.ustc.edu.cn; cheneh@ustc.edu.cn).

Zhirui Zhang and Boxing Chen are with Alibaba Damo Academy, Hangzhou
310052, China (e-mail: zhirui.zzr@alibaba-inc.com; boxing.cbx@alibaba-
inc.com).

Linli Xu is with the Anhui Province Key Laboratory of Big Data Analysis
and Application, School of Computer Science and Technology, University of
Science, and Technology of China, Hefei 230026, China and also with IFLYTEK
Co., Ltd, Hefei Anhui , China (e-mail: linlixu@ustc.edu.cn).

Digital Object Identifier 10.1109/TASLP.2021.3076863

reading comprehension [6], [7]. The deployment of these PLMs
typically consists of two steps. Firstly, the PLM is pre-trained
on large scale corpora in a self-supervised manner, then the
model is fine-tuned on downstream tasks with task-specific loss
functions and datasets. Fine-tuning a PLM on natural language
understanding tasks are straightforward, usually by treating the
PLM as a feature extractor and introducing a new classifica-
tion module above it. However, on natural language genera-
tion tasks which are mostly based on the sequence-to-sequence
framework (e.g., neural machine translation (NMT) [8], [9] and
text summarization [10]), how to incorporate PLMs remains a
challenging problem.

In the literature, several recent works [11]–[14] have tried
to incorporate BERT, which is one of the most successful rep-
resentatives of PLMs, into natural language generation tasks,
mainly by leveraging the feature representations encoded by
BERT. And most of them only utilize the pre-trained BERT
model either on the source side or the target side. Given the
sequence-to-sequence framework as the backbone model, we
explore utilizing the pre-trained BERT models from both the
encoder and decoder sides to maximize the use of pre-trained
information, and therefore promote the final performance. How-
ever, it is non-trivial to achieve this goal, due to the challenges
summarized below.

On the encoder side, simply initializing the encoder with a
pre-trained BERT model and then fine-tuning it on downstream
tasks does not bring improvements, and sometimes even hurts
the performance [14]. We blame it to the catastrophic forgetting
problem [15] when fine-tuning pre-trained models on complex
downstream tasks with rich resources (e.g., machine translation).
On the decoder side which is usually conditioned on the encoder
representations and trained in an autoregressive manner, it is nat-
urally non-trivial to marry it with the unconditionally and non-
autoregressively pre-trained BERT model. In addition, given
the enormous parameter scale of recent pre-trained language
models [5], fine-tuning the whole model is parameter inefficient
while being unstable and fragile on small datasets [16].

To tackle these challenges, in our preliminary work [17],
we introduce light-weight neural network components named
adapters, based on which we propose a new paradigm of in-
corporating BERT into the sequence-to-sequence framework.
Specifically, we first choose two pre-trained BERT models from
the source/target side respectively, and consider them as the
encoder/decoder. For example, on the WMT14 English-German
machine translation task, we take bert-base-cased as the
encoder and bert-base-german-cased as the decoder.

2329-9290 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:32:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8360-5483
https://orcid.org/0000-0003-1385-3742
https://orcid.org/0000-0002-3170-4858
https://orcid.org/0000-0002-4835-4102
mailto:guojunll@mail.ustc.edu.cn
mailto:cheneh@ustc.edu.cn
mailto:zhirui.zzr@alibaba-inc.com
mailto:boxing.cbx@alibaba-inc.com
mailto:linlixu@ustc.edu.cn

GUO et al.: ADAPTIVE ADAPTERS: AN EFFICIENT WAY TO INCORPORATE BERT INTO NEURAL MACHINE TRANSLATION 1741

Then, we introduce adapter layers and insert them into each
BERT layer to achieve the adaptation to new tasks. While
fine-tuning on task-specific datasets, we freeze the parameters
of BERT layers and only tune the adapter layers. We design
different architectures for adapters. Specifically, we stack two
feed-forward networks as the encoder adapter, mainly inspired
from [18]; and an encoder-decoder attention module is consid-
ered as the decoder adapter. Considering that BERT utilizes
bi-directional context information and ignores conditional de-
pendency between tokens, we build our framework on a parallel
sequence decoding algorithm named Mask-Predict [19] to make
the most of BERT and keep the consistency between training and
inference.

In this way, the proposed framework (termed as Adapter-
Bert Networks, AB-Net) achieves the following benefits. 1) By
introducing the adapter modules, we decouple the parameters
of the pre-trained language model and task-specific adapters,
therefore bypassing the catastrophic forgetting problem. And
the conditional information can be learned through the cross-
attention based adapter on the decoder side; 2) Our model is
parameter efficient and robust while tuning as a benefit from
the lightweight nature of adapter modules. In addition, thanks
to parallel decoding, the proposed framework achieves better
performance than autoregressive baselines while doubling the
decoding speed; 3) Each component in the framework can be
considered as a plug-in unit, making the framework very flexible
and task agnostic. For example, our framework can be adapted to
autoregressive decoding straightforwardly by only incorporating
the source-side BERT encoder and adapters while keeping the
original Transformer decoder.

As the pre-trained BERT models are usually very deep (12 lay-
ers for bert-base models while 24 layers for bert-large
models), inserting adapters into every BERT layer will bring a
non-negligible number of new parameters. In addition, recently,
several works [20], [21] have illustrated that some layers in deep
Transformers can be pruned with little loss of performance. From
this point, in this paper, we investigate whether it is necessary to
insert adapters into every BERT layer. Specifically, we introduce
latent variables to decide whether to use an adapter or not at
each layer, which is learned with a probabilistic method. While
inference, the adapters are selected by the discrete decisions
sampled from the latent variables, which are learned in an
end-to-end way by utilizing the Gumbel-Softmax approxima-
tion [22] while training. The latent variables are optimized with
variational inference [23], and we can also control the number
of adapter layers by introducing an extra loss function. In this
way, we achieve automatic pruning of adapter layers, which
hugely reduces the parameter scale of adapters as well as the
decoding latency of the model while inference. In addition, the
selection decisions learned by the model also reveals instructive
information, for example, different languages prefer to insert
adapters into different BERT layers.

In experiments, we evaluate our framework on various
neural machine translation tasks. The proposed AB-Net
achieves 36.49/33.57 BLEU scores on the IWSLT14
German-English/WMT14 German-English translation tasks,
achieving 3.5/0.88 improvements over traditional autoregressive
baselines with half of the inference latency. Equipped with

automatically selecting and utilizing half of adapter layers, the
inference speed of the model is further accelerated by 20%,
while still outperforming the corresponding autoregressive
baselines. When adapting to autoregressive decoding, the
AB-Net achieve 30.60/43.56 BLEU scores on the WMT14
English-German/English-French translation tasks, on par with
the state-of-the-art baseline models.

The rest of this paper is organized as follows. In Section II,
we introduce related works and backgrounds. The proposed
framework is introduced in Section III, followed by extensive
experimental results and analyses in Section IV. Finally, Sec-
tion V concludes the paper.

II. RELATED WORK

A. Pre-Trained Language Models

Pre-trained Language Models (PLMs) aim at learning pow-
erful and contextual language representations from a large text
corpus by self-supervised learning [1]–[5], [24]–[26], and they
have remarkably boosted the performance of standard natural
language understanding tasks such as the GLUE benchmark [6].
BERT [3] is one of the most popular pre-training approaches,
whose pre-training objective consists of masked language mod-
eling (MLM) and next sentence prediction. The idea of MLM
has been applied widely to other tasks such as neural machine
translation [19]. Given an input sentence x = (x1, x2, . . ., xn),
MLM first randomly chooses a fraction (usually 15%) of tokens
in x and substitutes them by a special symbol [MASK], then
predicts the masked tokens by the residual ones. Denote xm as
the masked tokens and xr as the residual tokens, the objective
function of MLM can be written as:

LMLM(xm|xr; θenc) = −
|xm|∑
t=1

log p(xm
t |xr; θenc), (1)

where |xm| indicates the number of masked tokens.
Among the alternative pre-training methods, UniLM [25] ex-

tends BERT with unidirectional and sequence-to-sequence pre-
dicting objectives, making it possible to fine-tune the pre-trained
model for natural language generation tasks. XLM [27] achieves
cross-lingual pre-training on supervised parallel datasets with
a similar objective function as MLM. MASS [28] proposes
a sequence-to-sequence monolingual pre-training framework
where the encoder takes the residual tokens xr as input and
the decoder predicts the masked tokens xm autoregressively.
BART [29] adopts a similar framework and trains the model as
a denoising autoencoder. Although achieving impressive results
on various natural language tasks, these models are equipped
with large-scale training corpora, therefore are time and resource
consuming to train from scratch. In this paper, we focus on
leveraging public pre-trained BERT models in the sequence-
to-sequence framework.

B. PLMs in Sequence-to-Sequence Framework

There exist several recent works trying to incorporate
pre-trained language models, or specifically, BERT, into the
sequence-to-sequence framework, which are mainly focused
on leveraging the feature representations of BERT. Knowledge

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:32:52 UTC from IEEE Xplore. Restrictions apply.

1742 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

distillation [30], [31] is applied in [11]–[13] to transfer the
knowledge from BERT to either the encoder [12] or decoder
side [11], [13]. Extra attention based modules are introduced
in [14] to fuse the BERT representation with the encoder rep-
resentation. Most of these methods only incorporate BERT on
either the source side or the target side. Our framework, on the
other hand, is able to utilize the information of BERT from both
sides.

Directly fine-tuning the pre-trained language models requires
delicately tuning hyper-parameters such as the learning rate [32],
which is also unstable and sensitive as studied in Section IV-E.
Therefore, we introduce adapters to deal with this problem.
Adapters are usually light-weight neural networks added into
internal layers of pre-trained models to achieve the adaptation
to downstream tasks, and have been successfully applied to
fine-tune vision models [33], language models [34], [35] and
multilingual machine translation models [18], [36]. Different
from these works, we explore combining two pre-trained models
from different domains into a sequence-to-sequence framework
with the help of adapters.

C. Parallel Decoding

Parallel sequence decoding hugely reduces the inference
latency by neglecting the conditional dependency between
output tokens, based on novel decoding algorithms including
non-autoregressive decoding [37]–[40], insertion-based decod-
ing [41], [42] and Mask-Predict [19], [43]. In Mask-Predict, the
framework is trained as a conditional masked language model
as:

LCMLM(ym|yr, x; θenc, θdec) = −
|ym|∑
t=1

log p(ymt |yr, x; θenc, θdec),

(2)
where (x, y) is a sample of parallel training pairs from the
dataset, ym and yr are the masked/residual target tokens, θenc and
θdec are the parameters of the encoder and decoder respectively.
During inference, the model iteratively generates the target
sequence in a mask-and-predict manner, which fits well with
the bi-directional and conditional independent nature of BERT.
Inspired by that, we conduct training and inference of our model
in a similar way, which is introduced in Section III-D.

D. Network Pruning on Transformers

Network pruning [44] on deep neural networks, which aims
at removing redundant parameters of deep and large neural
networks without a significant drop of performance, has been
widely studied in recent years, especially on computer vision
tasks as well as convolutional neural networks [45]–[49]. On
the Transformer based networks, related works have studied to
prune the multi-head attention components [50] or the entire
layer [20], as well as dynamically selecting layers in very deep
models [51], [52]. In addition, various works have been proposed
to compress the pre-trained language model BERT [53]–[56]
with knowledge distillation [30]. Inspired by the layer selection
method in deep Transformers [52], in this paper, we propose
to automatically select and prune adapter layers in inference, to

achieve further improvement of the decoding speed and enhance
the interpretability of our model.

III. FRAMEWORK

In this section we will first introduce the proposed framework
of fine-tuning BERT with adapters (termed as Adapter-Bert
Networks, AB-Net), followed with the adapter selection compo-
nent, which is illustrated in Figure 1. We start with the problem
definition.

Problem Definition Given two pre-trained BERT models
XBERT and YBERT on the source side and the target side respec-
tively, we aim at fine-tuning them in a sequence-to-sequence
framework by introducing adapter modules, on a parallel train-
ing dataset (X ,Y) which consists of pairs of source and target
sequences (x, y) ∈ (X ,Y). The loss function of our framework
is defined in a similar way as the conditional MLM loss intro-
duced in Equation (2):

L(ym|yr, x; θAENC, θADEC) =

−
|ym|∑
t=1

log p(ymt |yr, x; θAENC, θADEC), (3)

where θAENC and θADEC indicate the parameters of encoder
adapters and decoder adapters respectively.

A. Adapter-Bert Networks

The architecture of BERT [3] is akin to a Transformer en-
coder [9], which is constructed by self-attention, feed-forward
layers, layer normalization [57] and residual connections [58].
We denote a BERT layer block as XBERT(·) or YBERT(·).

To fine-tune BERT for natural language generation, we intro-
duce adapter layers and insert them into each BERT layer. On the
encoder side, we follow [18] and simply construct the adapter
layer with layer normalization as well as two feed-forward
networks with non-linearity between them:

Z = W1 · (LN(H)), HAENC = H +W2 · (ReLU(Z)), (4)

where H and HAENC are the input and output hidden states of the
adapter respectively, LN indicates layer normalization, W1 and
W2 are the parameters of the feed-forward networks. The only
hyper-parameter brought by this module is the dimension dAenc

of the internal hidden state Z, through which we can flexibly
control the capacity and efficiency of adapter layers. Denoting
the encoder adapter layer as AENC(·), for each encoder layer in
the framework, the hidden state is computed as:

HE
l+1 = AENC(XBERT(HE

l)), (5)

where HE
l is the output hidden state of the l-th encoder layer.

And we take the hidden state HE of the last encoder layer as the
representation of the source sequence.

As for the decoder, the introduced adapter modules should
be able to model the conditional information from the source
side. Therefore, we adopt the multi-head cross-attention com-
puted over the encoder output and decoder input as the adapter.
Denote the attention-based adapter as ADEC(Q,K, V) where
Q,K, V indicate the query, key and value matrices respectively,
it consists of the attention module, feed-forward layers, layer

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:32:52 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: ADAPTIVE ADAPTERS: AN EFFICIENT WAY TO INCORPORATE BERT INTO NEURAL MACHINE TRANSLATION 1743

Fig. 1. An illustration of the proposed framework. Blue blocks constitute the pre-trained BERT models which are frozen during fine-tuning, and orange blocks
represent the adapter components which are inserted into each BERT layer and trained during fine-tuning. x and yr represent the source sequence and the residual
target sequence in Equation (3) respectively. M and N indicate the number of layers of the encoder and decoder.z = (z0, . . ., zN−1) indicates the latent variables
regarding layer selection sampled from the distribution p(z), and we illustrate the adapter selection on the decoder.For simplicity, we omit some architecture details
such as layer normalization and residual connections.

normalization and residual connections. The attention module
is computed as follows,

ATTN(Q,K, V) = softmax

(
QKT

√
dk

)
V, (6)

where dk is the hidden dimension of the key matrix K. We
follow [9] and implement the multi-head version of the attention
module. In our framework, the query vector is from the decoder
side (denoted as HD

l) while the key and value vectors are both
from the encoder side (denoted as HE). In our experiments, the
hidden dimension of encoder and decoder representations are
the same, therefore we have dq = dk = dv = dAdec.

Following the attention layer are the feed-forward layers:

FFN(H) = ReLU(HW1 + b1) ·W2 + b2, (7)

where W1 ∈ RdAdec×dFFN ,W2 ∈ RdFFN×dAdec , b1 ∈ RdFFN , b2 ∈
RdAdec are the parameters to learn in the FFN layers, and
the internal dimension dFFN is set to be consistent with the
Transformer baseline. Along with layer normalization (LN)
and residual connections, the computation flow of the proposed
decoder adapter can be written as:

Ĥ = LN
(
ATTN(YBERT(HD

l), HE , HE) + YBERT(HD
l)

)
,

HD
l+1 = LN

(
FFN(Ĥ) + Ĥ

)
. (8)

For simplicity, given the decoder adapter ADEC, the hidden
output of the encoder HE , and the hidden output HD

l of the

l-th decoder layer, the hidden state of the (l + 1)-th layer is
calculated as:

HD
l+1 = ADEC(YBERT(HD

l), HE , HE). (9)

By introducing and carefully designing the adapter modules
on the encoder and decoder, our framework is able to utilize
the pre-trained information from both sides as well as build the
conditional dependency, making it possible to apply the model
to natural language generation tasks.

B. Adapter Layer Selection

As discussed in Section I, some layers in deep Transformer
models can be pruned without severely hurting the performance.
Similarly, we conjecture that some adapter layers can also be
pruned because not all adapters play important roles while fine-
tuning. Therefore, we propose a probabilistic method to let the
model automatically decide to select and use adapter layers. We
follow the notations in [52].

Specifically, we introduce a discrete latent variable zl ∼ p(z)
for the l-th adapter layer, sampled from a Bernoulli distribution
B(βl), where βl is the probability for selecting the l-th adapter
layer. zl ∈ {0, 1} and zl = 1 indicates selecting and utilizing
the l-th adapter layer while zl = 0 indicates skipping it. More
formally, take the adapter on the decoder side as an example,
with adapter layer selection, the computation flow described in

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:32:52 UTC from IEEE Xplore. Restrictions apply.

1744 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Equation (9) is re-written as:

HD
l+1 =

{
ADEC(YBERT(HD

l), HE , HE), if zl = 1
YBERT(HD

l). if zl = 0
(10)

Denote the trainable parameters of the AB-Net as θ =
(θAENC, θADEC), the prediction of the target sequence ym in Equa-
tion (3) reduces to:

p(ym|yr, x; θ, z) =
∫
z

p(ym|yr, x; θ, z)p(z)dz. (11)

The above integral of the marginal likelihood is intractable
for most deep neural networks, therefore we utilize variational
inference and maximize the evidence lower bound (ELBO) [59]
of the above equation,

log p(ym|yr, x) ≥
Eqφ(z)[log pθ(y

m|yr, x, z)]−DKL(qφ(z) ‖ p(z)).

(12)

The first RHS term is akin to the original prediction loss of our
framework defined in Equation (3), except for the expectation
over the latent variable z. In the second RHS term,DKL indicates
the KL-divergence, qφ(z) is an approximation of the true poste-
rior, and we choose the uniform prior as p(z) in our experiments
to avoid introducing prior preference of selecting or skipping
adapter layers, but let the model learn to decide it.

To make the model differentiable in end-to-end training, we
utilize the Gumbel-Softmax reparameterization [22] to deal with
qφ(z). The i-th sample zl(i) in the l-th layer latent variable zl is
generated as:

zl(i) =
exp((βl(i) + g(i))/τ)∑

j∈{0,1} exp((βl(j) + g(j))/τ)
,

g(i)
i.i.d∼ Gumbel(0, 1) for i ∈ {0, 1},

(13)

where τ ∈ (0,∞) is the hyper-parameter that controls the tem-
perature, and τ → 0 indicates the samples become one-hot. The
Gumbel Distribution Gumbel˜(0, 1) can be sampled using the
inverse transform sampling of an auxiliary random uniform
variable u(i) ∼ Uniform(0, 1) and g(i) = − log(− log u(i)). In
this way, the layer selection probability β can be learned by the
model while training in an end-to-end way.

To achieve model pruning and inference speedup, in addition
to Equation (12), we also introduce a loss function to restrict
the number of selected layers. Given the latent variables z =
(z0, . . ., zN−1) which are sampled independently across all the
N layers and the target layer number K, the loss function is
defined based on the L2 distance

LK(z) =‖
N−1∑
l=0

zl −K ‖2 . (14)

Rewrite Equation (12) and integrate the proposed loss functions,
our framework is trained by minimizing the following objective,

L(ym|yr, x; θ, φ) = Eqφ(z)[− log pθ(y
m|yr, x, z)]

+ μDKL(qφ(z) ‖ p(z)) + ηLK(z), (15)

where μ and η are hyper-parameters that control the weights of
different loss functions.

C. Discussion

Different from most previous works that plainly utilize BERT
as a feature extractor [11], [12], [14], we directly exploit BERT
as the encoder and decoder to make the most of pre-trained
models. Comparing with the related works that also utilize
adapter modules while fine-tuning [18], [34], [35], we do not
constrain the architectures of adapters to be fixed, but adopt
different architectures on the encoder and decoder sides. In
addition, we can easily extend the architectures of adapters to
adjust to different downstream tasks. For example, while our
framework is designed for parallel decoding, it is straightforward
to transform it to traditional autoregressive decoding by extend-
ing the cross-attention based adapter to a traditional Transformer
decoder. We show in Table IV that our autoregressive variant is
able to achieve strong performance.

Meanwhile, integrating two large scale pre-trained models
into a sequence-to-sequence framework also introduces non-
negligible issues. The main limitation is the extra computation
cost brought by the enormous pre-trained parameters. Fortu-
nately, thanks to the lightweight and flexible adapter modules,
the scale of parameters that require training in our framework
is smaller than that of an autoregressive Transformer model.
Additionally, with the proposed layer selection method, we can
only utilize a part of adapters while inference, which is able to
reduce the computation cost as well as accelerate the decoding
speed when deployed on real-world applications. We have also
explored heuristic ways to adjust the scale of adapters. For
example, while training, instead of inserting adapter layers to
all BERT layers, we can only insert them into the top layers
to speed up training. While still outperforming autoregressive
baselines, this heuristic adapter selection method is inferior to
the proposed latent adapter selection, illustrating the benefits
of letting the model learn to select. We can also reduce the
hidden dimensions of adapters to control the parameter scale
with negligible degradation of performance. A thorough study
is conducted regarding the flexibility of adapters in Section IV-E.
It can be shown that, at the inference stage, even with two large
pre-trained models introduced, our framework based on parallel
decoding can still achieve faster decoding speed than traditional
autoregressive baselines.

D. Training and Inference

We mainly follow the training and inference paradigm used
in [19]. To decode the target sequence in parallel, the model
needs to predict the target length conditioned on the source
sequence, i.e., modeling P (|y||x). We add a special [LENGTH]
token to the encoder input, and take its encoder output as the
representation, based on which the target length is predicted.
The length prediction loss is added to the word prediction
loss in Equation (15) as the final loss of our framework. In
Equation (15), given a training pair (x, y), we randomly mask a
set of tokens in y with [MASK], and the number of the masked
tokens |ym| is uniformly sampled from 1 to |y| instead of being
computed by a fixed ratio as BERT [3]. The masked tokens are
denoted as ym while the residual tokens are denoted as yr,

While inference, the target sequence is generated iteratively in
a mask-and-predict manner. Specifically, after the length of the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:32:52 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: ADAPTIVE ADAPTERS: AN EFFICIENT WAY TO INCORPORATE BERT INTO NEURAL MACHINE TRANSLATION 1745

TABLE I
AN ILLUSTRATION OF THE PROPOSED MODEL WITH DIFFERENT NUMBER OF DECODING ITERATIONS k ON THE TEST SET OF THE IWSLT14 DE-EN

TASK. “##” INDICATES THE SEGMENT SYMBOL OF WORDPIECE TOKENS

TABLE II
THE BLEU SCORES OF THE PROPOSED AB-NET AND THE BASELINE METHODS ON THE IWSLT14 DE-EN, WMT16 RO-EN AND WMT14 EN-DE/DE-EN TASKS.

THE PER-SENTENCE DECODING LATENCY AND THE NUMBER OF TRAINED PARAMETERS ON THE WMT14 EN-DE TASK ARE ALSO REPORTED

TABLE III
THE PERFORMANCE OF THE PROPOSED AB-NET ON IWSLT14 LOW-RESOURCE

LANGUAGE PAIRS. MASK-PREDICT AS WELL AS THE AUTOREGRESSIVE

TRANSFORMER-BASE MODEL ARE CONSIDERED AS BASELINES

TABLE IV
THE RESULTS OF MACHINE TRANSLATION WITH AUTOREGRESSIVE DECODING

OF OUR FRAMEWORK AND BASELINE METHODS

target sequence is predicted by the encoder, the decoder input
is initialized with the [MASK] symbol at all positions. After
the prediction process of the decoder, a number of tokens with
the lowest probabilities in the decoder output are replaced by
[MASK]. The obtained sequence is taken as the decoder input
of the next iteration until the stop condition is hit. The number of
masked tokens at each iteration follows a linear decay function
utilized in [19], i.e.,

|ym| =
⌊
|y| · T − t

T

⌋
, (16)

where 	·
 indicates the floor function, and T is the upper bound
of the iteration times while t indicates the number of the current
iteration. We set T = 10 over all tasks, therefore after the initial
iteration when all positions are predicted, we will then mask
90%, 80%, . . ., 10% tokens in following iterations. And for each
iteration, we only update the probabilities of masked tokens
while keeping the probabilities of unmasked tokens unchanged.
As for the stop condition, the final result is obtained either when
the upper bound of iterations is reached, or the obtained target
sequence do not change between two consecutive iterations. In
Table I we provide an illustration of the decoding process of our
model, where the underlined words indicate the masked words
in the next iteration.

IV. EXPERIMENTS

We mainly conduct experiments on neural machine trans-
lation to validate our framework. We evaluate the proposed
AB-Net in Section IV-B, and we provide detailed analyses on
the proposed adapter selection module in Section IV-D. We also
explore the autoregressive variant of AB-Net in Section IV-C,
followed with ablation studies in Section IV-E.

A. Experimental Setup

Datasets. We evaluate our framework on benchmark datasets
including IWSLT14 German → English (IWSLT14 De-En),1

WMT14 English ↔ German translation (WMT14 En-De/De-
En)2, and WMT16 Romanian → English (WMT16 Ro-En).3

1https://wit3.fbk.eu/
2https://www.statmt.org/wmt14/translation-task
3https://www.statmt.org/wmt16/translation-task

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:32:52 UTC from IEEE Xplore. Restrictions apply.

https://wit3.fbk.eu/
https://www.statmt.org/wmt14/translation-task
https://www.statmt.org/wmt16/translation-task

1746 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

We further show the generality of our method on several
low-resource datasets including IWSLT14 English ↔ Ital-
ian/Spanish/Dutch (IWSLT14 En ↔ It/Es/Nl). We additionally
consider WMT14 English → French translation (WMT14 En-
Fr) for autoregressive decoding. We follow the dataset configura-
tions of previous works strictly. For IWSLT14 tasks, we adopt the
official split of train/valid/test sets. For WMT14 tasks, we utilize
newstest2013 and newstest2014 as the validation and
test set respectively. For WMT16 tasks, we use newsdev2016
and newstest2016 as the validation and test set. For autore-
gressive decoding, we consider WMT16 Ro-En augmented with
back translation data4 to keep consistency with baselines [14].

Model Configurations. We mainly build our framework on
bert-base models (nlayers = 12, nheads = 12, dhidden = 768,
dFFN = 3072). Specifically, for English we use bert-base-
uncased on IWSLT14 and bert-base-cased on WMT
tasks. We use bert-base-german-cased for German
and bert-base-multilingual-cased for all other lan-
guages. We tokenize and segment each word into wordpiece
tokens with the internal preprocessing code in BERT5 using
the same vocabulary as pre-trained BERT models, resulting in
vocabularies with 30 k tokens for each language. It is worth
noting that the dictionary of bert-base-multilingual-
cased is much larger than other pre-trained models as it
consists of the common tokens among 104 languages. For
each low-resource language considered in our experiments, di-
rectly loading the whole embedding matrix of the multilingual
BERT model will waste a lot of GPU memory. Therefore we
only consider tokens that appear in the training and validation
set, and manually modify the checkpoint of the multilingual
BERT to omit the embeddings of unused tokens. In this way,
we obtain dictionaries that contain 24 k/16 k/17 k/16 k to-
kens for Ro/It/Es/Nl respectively, which ultimately save around
77 M parameters in average. When extending to autoregres-
sive decoding, we utilize bert-large-cased (nlayers = 24,
nheads = 16, dhidden = 1024, dFFN = 4096) for English to keep
consistency with [14]. For adapters, on the encoder side, we set
the hidden dimension between two FFN layers as dAenc = 2048
for WMT tasks and 512 for IWSLT14 tasks. On the decoder
side, the hidden dimension of the cross-attention module is set
equal to the hidden dimension of BERT models, i.e.,dAdec = 768
for bert-base models and dAdec = 1024 for bert-large
models. For the hyper-parameters w.r.t adapter selection, we
apply an anneal strategy to μ and η in Equation (15) which
control the weights of the KL-divergence loss and the layer
number loss, i.e., the training depends more on the original
prediction loss function at the early stage, and then progressively
considers the layer selection process. The values of μ and η
both start from 0 and are limited to 0.1 after 10 k training
steps. We train our framework on 1/8 Nvidia 1080Ti GPUs for
IWSLT14/WMT tasks, and it takes 1/7 days to finish the training.

Baselines. We denote the proposed framework as AB-Net,
and to make a fair comparison with baseline models, we also
consider a variant of our model that only incorporates BERT

4http://data.statmt.org/rsennrich/wmt16_backtranslations/ro-en
5https://github.com/huggingface/transformers/blob/master/src/

transformers/tokenization_bert.py

on the source-side with encoder adapter layers and denote it as
AB-Net-Enc. We apply the adapter selection on the decoder side
for main results, as the decoder is more crucial for the inference
speed. We set K = 6 in Equation (14) to encourage the model
to select and prune half of the inserted adapters, and we denote
this variant as AB-Net w/ ADEC Selection. In Section IV-E,
we will conduct a more thorough study regarding the perfor-
mance of selecting adapters on the encoder or the decoder side.
With parallel decoding, we consider Mask-Predict [19] as the
backbone training and inference algorithm, based on which we
re-implement BERT-Fused [14] and take it as the main baseline,
denoted as BERT-Fused NAT. With autoregressive decoding
where BERT is utilized only on the source-side, we compare
our framework with BERT-Fused [14], BERT-Distilled [13] and
CT-NMT [12] with their reported scores.

Inference and Evaluation. For parallel decoding, we utilize
sequence-level knowledge distillation [31] on the training set
of WMT14 En-De/De-En tasks, to keep consistency with [19].
This technique has been proved by previous non-autoregressive
models that it can produce less noisy and more deterministic
training data [37]. We use the raw training data for all other tasks.
While inference, we generate multiple translation candidates by
taking the topB length predictions into consideration, and select
the translation with the highest probability as the final result. We
setB = 4 for all tasks. And the upper bound of iterative decoding
is set to 10. For autoregressive decoding, we use beam search
with width 5 for all tasks. We utilize BLEU scores [60] as the
evaluation metric. Specifically, we use multi-bleu.perl
and report the tokenized case-insensitive scores for IWSLT14
tasks and tokenized case-sensitive scores for WMT tasks.

B. Results

The results of the proposed AB-Net with parallel decoding
are listed in Table II, where “∗” indicates the results obtained
by our implementation, “/” indicates the corresponding result is
not provided. The autoregressive Transformer model withbase
configuration [9] is also compared as a baseline. In addition to
BLEU scores, we also report the per-sentence decoding latency
on the newstest2014 test set as well as the number of trained
parameters on the WMT14 En-De task. As can be observed from
Table II, with parallel decoding, Mask-Predict achieves con-
siderable inference speedup but also suffers from performance
degradation at the same time. Equipped with pre-trained BERT
models from both sides, our framework obtains a huge perfor-
mance promotion compared with Mask-Predict. In addition, we
also outperform the autoregressive baseline Transformer-Base
by a firm margin with similar scales of trainable parameters,
while achieving 2.38 times speedup regarding the inference
speed. Compared with BERT-Fused NAT [14] which utilizes
BERT only on the encoder side, our framework as well as
the BERT-encoder-only variant AB-Net-Enc both achieve better
performance with less parameters to train, illustrating that the in-
troduced adapter modules are able to leverage more information
in a more efficient way.

As for the proposed adapter selection method, with utiliz-
ing half of the decoder adapters (K = 6 versus 12 layers in
bert-base models), the decoding speed of the model is

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:32:52 UTC from IEEE Xplore. Restrictions apply.

http://data.statmt.org/rsennrich/wmt16_backtranslations/ro-en
https://github.com/huggingface/transformers/blob/master/src/transformers/tokenization_bert.py

GUO et al.: ADAPTIVE ADAPTERS: AN EFFICIENT WAY TO INCORPORATE BERT INTO NEURAL MACHINE TRANSLATION 1747

further accelerated by 20% with slight drop of performance
between 0.66% and 3.10%. Comparing with the autoregressive
baseline, AB-Net with decoder adapter selection still achieves
better performance on all tasks with around 3 times speedup of
the inference speed except WMT14 En-De. As the pre-trained
BERT model on English is more powerful than that on German,
the decoder adapters are more crucial for the WMT14 En-De
task, and thus selecting and pruning them will lead to more
performance drop than other translation tasks.

Regarding the scale of trained parameters, we can notice that
AB-Net-Enc actually introduces more parameters than AB-Net
which utilizes BERT from both sides. The reason lies in the
embedding layer. By incorporating BERT through adapters, the
proposed framework gets rid of training the giant embedding
layer which usually introduces ˜15 M parameters to train on
each side if embeddings are not shared. Comparing with BERT-
Fused NAT [14], our framework is able to save ˜26% parameters
while incorporating information from both sides, providing a
more cost-effective solution for leveraging pre-trained models
based on adapters. Equipped with the proposed adapter selection
method, the introduced parameters can be further pruned by
32% while inference, which also promotes the efficiency of the
proposed framework.

Results on Low-Resource Language Pairs We also study
the performance of AB-Net on three low-resource language pairs
in the IWSLT14 dataset. Results on both directions are shown
in Table III. The proposed AB-Net consistently outperforms the
compared baselines among various language pairs, demonstrat-
ing the generality of our method.

C. Exploration on Autoregressive Decoding

Here we explore the application of AB-Net on autoregressive
decoding. As the bidirectional and conditional independent na-
ture of BERT prevents it from being applied to autoregressive
decoding, to show the flexibility of the proposed framework, we
directly use AB-Net-Enc as the autoregressive variant, whose
encoder is initialized with the source-side BERT model and
equipped with encoder adapter layers, while the decoder is an
autoregressive Transformer Decoder. We compare our model
with three fine-tuning baselines including BERT-Fused [14],
BERT-Distilled [13] and CT-NMT [12]. Results are shown in
Table IV, where we directly copy the best results reported in
baseline papers. And Transformer-Big indicates Transformer
with transformer-big configuration. Our framework out-
performs the Transformer-Big baseline over all three translation
tasks, with improvements from 1.33 to 2.75 BLEU scores. And
we achieve comparable performance with the state-of-the-art
baseline BERT-Fused [14].

D. Analyses on Adapter Selection

We provide detailed analyses on the proposed adapter se-
lection method in this section. We conduct experiments on the
IWSLT14 De-En task.

Selection on AENC and ADEC. As we only conduct adapter
selection on the decoder side for main results, here we explore
the alternatives of adapter selection on the encoder side as well
as the decoder side. Results are shown in Table V, where we set

TABLE V
THE RESULTS OF SELECTING AENC AND ADEC ON THE TEST SET OF

IWSLT14 DE-EN

Fig. 2. The results of adapter layer selection and BERT layer selection when
varying the number of target layersK. The x-axis indicates the inference speedup
w.r.t the autoregressive model, and the y-axis indicates the BLEU score of
translation results, which are all evaluated on the test set of the IWSLT14 De-En
translation task.

K = 6 both for the encoder and the decoder adapter selection,
and Δ indicates the change of BLEU scores of model variants
compared with AB-Net. We can observe that conducting encoder
adapter selection reduces the translation performance more
harshly than decoder adapter selection, possibly due to the error
propagation from the encoder to the decoder. Recently some
works also point out that the final performance of NAT models
relies more on the encoder than the decoder [43]. Therefore, in
our framework, we only conduct decoder adapter selection for
main results.

We also compare the proposed adapter selection method with
heuristic selection policy, i.e., only inserting adapters to the top
6 layers of the pre-trained BERT model. Results are shown in
the bottom half of Table V, and large performance gaps can be
observed between the heuristic methods and the proposed layer
selection methods, which demonstrates the effectiveness of our
method.

Effect of K. We vary K in Equation (14) to study the effect of
the number of selected layers. Results are shown in Figure 2.
Clearly, increasing K promotes the translation performance,
but also slows the decoding speed. Setting K = 4 drastically
decreases the performance, indicating that a small K will cause
the loss of necessary information. Choosing a K ≥ 6 results in
similar performance, and we choose K = 6 for main results for
a trade-off between the translation accuracy and the decoding
speed.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:32:52 UTC from IEEE Xplore. Restrictions apply.

1748 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Fig. 3. An illustration of the decoder adapter layer selection samples at different epochs while training as well as while inference. We provide samples for the
WMT14 En-De/De-En translation tasks. The x-axis indicates different layers and the y-axis indicates different stages.

Selection of BERT Layers. Instead of only selecting adapter
layers, it is straightforward to extend our method to also selecting
BERT layers, by re-writing Equation (10) as:

HD
l+1 =

{
ADEC(YBERT(HD

l), HE , HE), if zl = 1
HD

l . if zl = 0
(17)

Results on selecting BERT layers are shown in Figure 2. When
BERT layers are also selected and pruned during inference,
the decoding speed of our model can be further improved with
slightly sacrificing the performance. Specifically, by only select-
ing and utilizing 4 BERT layers as well as adapter layers, the
proposed framework achieves over 3.5 times inference speedup
and comparable translation performance with the autoregres-
sive baseline. In this way, we verify the effectiveness and the
generality of the proposed adapter selection method, which
provides solutions for both effectiveness preferred and efficiency
preferred scenarios.

Analysis of the Latent Variable z. In Figure 3, we provide a
visual illustration of the learned latent variable z which controls
adapter layer selections. We can observe that as the training
proceeds, the latent variable successfully learns certain adapter
layer selection policy, and the model follows the learned policy in
inference. Interestingly, in different tasks, the model has various
preferences on which layers to select. For example, on WMT14
En-De the model tends to skip the adapters on bottom layers
but utilizes adapters on top layers, which indicates that the early
hidden representations may be less important and do not need the
transformation by adapters. While on WMT14 De-En, the model
prefers adapters on both bottom and top layers but skip them
on middle layers. The different preferences illustrate that the
proposed method can be generally applied to different tasks, and
the learned selection policies may provide guidance for analyses
on the interpretability of deep Transformer models, and we leave
that for future work.

E. Ablation Study on AB-Net

In this subsection, we further conduct ablation studies regard-
ing the scale of adapters, the proposed different components, dif-
ferent fine-tuning strategies and baselines with back-translation.
Experiments are conducted on the IWSLT14 De-En dataset with
parallel decoding.

Ablations on the Scale of Adapters. We investigate the influ-
ence of the scale of adapters in Figure 4. Specifically, we fix
the scale of the decoder adapter and tune the hidden dimension
of the encoder adapter dAenc in a wide range (26 to 210). We

Fig. 4. The study on the scale of encoder adapters. Blue lines with the left
y-axis indicate BLEU scores while red lines with the right y-axis indicate
the number of parameters to train on the encoder side. Trm indicates the
Transformer-Base model. Best view in color.

TABLE VI
THE ABLATION STUDY ON DIFFERENT COMPONENTS OF THE PROPOSED

MODEL CONDUCTED ON THE TEST SET OF IWSLT14 DE-EN

also plot the number of trained parameters on the encoder side
in our framework and in the Transformer-Base model to make a
comparison. From Figure 4, we find that our framework is robust
to the scale of adapters, e.g., halving the dimension from 29 to
28 only results in a drop of 0.4 BLEU score. Compared with
the autoregressive Transformer baseline, our framework is able
to achieve better performance with only 5% parameters to train
(getting 34.81 score when dAenc = 64), illustrating the efficiency
of adapters.

Ablations on the Different Proposed Components. In Table VI,
we study the influence of different components in our framework
including the pre-trained BERT models (XBERT and YBERT) and
adapter layers (AENC and ADEC), where “Decoder” indicates a
traditional Transformer decoder and × indicates the setting with
no convergence reached during training. We can find that without
utilizing adapters on either side, the model cannot converge
during training, indicating the necessity of the adapter modules.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:32:52 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: ADAPTIVE ADAPTERS: AN EFFICIENT WAY TO INCORPORATE BERT INTO NEURAL MACHINE TRANSLATION 1749

Fig. 5. (a): Results of different fine-tuning strategies. (b): Results of baselines trained with extra monolingual data via back-translation. All settings are evaluated
on the validation set of the IWSLT14 De-En task.

Comparison With Different Fine-Tuning Strategies. In addi-
tion to the proposed model which freezes the BERT components
and only tunes the adapters while training, we also consider the
variant that fine-tunes the full model in AB-Net (AB-Net FB), or
trains AB-Net from scratch (AB-Net SC). We train all variants
for 50 epochs and evaluate on the validation set of IWSLT14
De-En. Results are shown in Figure 5 a, where AB-Net converges
significantly faster than AB-Net FB, and AB-Net SC does not
converge. When fine-tuning the full model, more GPU memory
is required because more gradient states need to be stored,
therefore we have to halve the batchsize to fit the model into
GPUs, which slows down the training process. With the same
batchsize, AB-Net saves 29% GPU memory and 26% wall-clock
training time compared with AB-Net FB. Moreover, we find
that directly fine-tuning BERT is very unstable and sensitive to
the learning rate, while only tuning the adapters alleviates this
problem and is relatively more robust.

Comparison With Back-Translation. Back-translation is a
simple yet effective data augmentation method in NMT [61],
[62]. While we leverage BERT models which are pre-trained
with extra monolingual data, we also consider baselines trained
with extra monolingual data via back-translation to construct
fair comparisons. Specifically, we first train an AT model on the
IWSLT14 En-De task (with a 28.96 BLEU score), and then use
it to generate additional training pairs on the English Wikipedia
data, which is a subset of the training corpus of BERT. Results
are shown in Figure 5b. We can find that the gains brought by
back-translation are limited, and adding over 1 M monolingual
data samples actually brings a performance drop. In addition,
comparing with our method, back-translation requires training
another model and decoding a large amount of monolingual data,
which is time consuming.

V. CONCLUSION

In this paper, we propose a new paradigm of incorporating
BERT into text generation tasks with a sequence-to-sequence
framework. We initialize the encoder/decoder with a pre-trained
BERT model on the source/target side, and insert adapter layers

into each BERT layer. While fine-tuning on downstream tasks,
we freeze the BERT models and only train the adapters.
Instead of utilizing all inserted adapters in each BERT layer,
we propose an adapter layer selection method to let the model
automatically determine which adapter to use,thus accelerating
the inference speed with little loss of performance. We build our
framework on a parallel decoding method named Mask-Predict
to match the bidirectional and conditional independent nature
of BERT, and extend it to traditional autoregressive decoding
in a straightforward way. The proposed framework is flexible
and efficient, and achieves strong performance on neural
machine translation while doubling the decoding speed of the
Transformer baseline. In addition, the framework avoids the
catastrophic forgetting problem and is robust when fine-tuning
pre-trained language models.

In the future, our framework can be extended from two
perspectives. Firstly, we will try to combine two different pre-
trained models together in our framework, such as a BERT
encoder and a GPT/XLNet decoder, to explore more possibilities
on autoregressive decoding. Secondly, it is interesting to extend
the proposed adapter layer selection method to multilingual or
multi-domain scenarios, such as multilingual neural machine
translation. Instead of introducing an adapter for each lan-
guage/domain, we can encourage the model to utilize a small
number of adapters and share the adapters among different
languages/domains, and therefore achieve the reduction of the
parameter scale with little loss of performance.

REFERENCES

[1] M. E. Peters et al., “Deep contextualized word representations,” in Proc.
2018 Conf. North Amer. Ch. Asso. Comput. Linguist.: Hum. Langu. Tech-
nol., vol. 1, Jun. 2018, pp 2227–2237.

[2] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Im-
proving language understanding by generative pre-training,” 2018,
[Online]. Available: https://s3-us-west-2.amazonaws.com/openai-assets/
researchcovers/languageunsupervised/language understanding paper.pdf

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “ Bert:Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Conf. North Amer. Ch. Asso. Comput. Linguist.: Hum. Langu. Technol.,
vol. 1, Jun. 2019, pp. 4171–4186.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:32:52 UTC from IEEE Xplore. Restrictions apply.

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language ignorespaces understanding ignorespaces paper.pdf

1750 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

[4] Z. Yang et al., “Generalized autoregressive pretraining for language un-
derstanding,” in Proc. Adv. Neural Inf. Process. Syst., Jun. 2019, pp. 5754–
5764.

[5] T. B. Brown. et al., “Language models are few-shot learners,” Adv. Neural
Informat. Proce. Syst., vol. 33, pp. 1877–1901, 2020.

[6] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“Glue: A multi-task benchmark and analysis platform for natural language
understanding,” in Proc. EMNLP Work. Blackbox NLP: Anal. Inter. Neural
Netw. NLP, Nov. 2018, pp. 353–355.

[7] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100000 questions
for machine comprehension of text,” in Proc. Conf. Empirical Methods
Nat. Lang. Proc., Nov. 2016, pp. 2383–2392.

[8] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 3rd Int. Conf. Learn. Represent.,
2015.

[9] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., Jun. 2017, pp. 5998–6008.

[10] R. Nallapati et al., “Abstractive text summarization using sequence-to-
sequence rnns and beyond,” in Proc. 20th SIGNLL Conf. Comput. Nat.
Lang. Learn., Aug. 2016, pp. 280–290.

[11] R. Weng, H. Yu, S. Huang, S. Cheng, and W. Luo, “Acquiring knowledge
from pre-trained model to neural machine translation,” Thirty-Fourth AAAI
Conf. Art. Intel., pp. 9266–9273, 2020.

[12] J. Yang et al., “Towards making the most of bert in neural machine
translation,” Thirty-Fourth AAAI Conf. Art. Intel., pp. 9378–9385, 2020.

[13] Y.-C. Chen, Z. Gan, Y. Cheng, J. Liu, and J. Liu, “Distilling the knowledge
of bert for text generation,” Proc. 58th Ann. Meet. Asso. Comput. Linguist.,
pp. 7893–7905, Jul. 2020.

[14] J. Zhu et al., “Incorporating bert into neural machine translation,” 8th Inter.
Conf. Learn. Represent., Feb. 2020, arXiv:2002.06823.

[15] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychol. Learn.
Motivation. Elsevier, Jan. 1989, vol. 24, pp. 109–165.

[16] C. Lee, K. Cho, and W. Kang, “Mixout: Effective regularization to finetune
large-scale pretrained language models,” 8th Inter. Conf. Learn. Represent.
ICLR, 2020 Addis Ababa, Ethiopia, Apr. 2020, arXiv:1909.11299.

[17] J. Guo, Z. Zhang, L. Xu, H.-R. Wei, B. Chen, and E. Chen, “Incorporating
bert into parallel sequence decoding with adapters,” Adv. Neural Inf.
Process. Syst., vol. 33, pp. 10843–10854, Oct. 2020.

[18] A. Bapna, N. Arivazhagan, and O. Firat, “Simple, scalable adaptation
for neural machine translation,” in Proc. 2019 Conf. Empirical Methods
in Natural Lang. Proc. 9th Int. Joint Conf. Nat. Lang. Proc. (EMNLP-
IJCNLP), Nov. 2019, pp. 1538–1548.

[19] M. Ghazvininejad, O. Levy, Y. Liu, and L. Zettlemoyer, “Mask-predict:
Parallel decoding of conditional masked language models,” in Proc. Conf.
Empirical Methods Natural Lang. Process. 9th Int. Joint Conf. Natural
Lang. Process. , Apr. 2019, pp. 6114–6123.

[20] A. Fan, E. Grave, and A. Joulin, “Reducing transformer depth on de-
mand with structured dropout,” 8th Int. Conf. Learn. Represent., 2020,
arXiv:1909.11556.

[21] M. A. Gordon, K. Duh, and N. Andrews, “Compressing bert: Studying the
effects of weight pruning on transfer learning,” Proc. 5th Work. Repres.
Learn. NLP, pp. 143–155, Feb. 2020, arXiv:2002.08307.

[22] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-
softmax,” 5th Int. Conf. Learn. Repres., 2017, arXiv:1611.01144.

[23] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” J. Amer. Stat. Assoc., vol. 112, no. 518,
pp. 859–877, Apr. 2017.

[24] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI Blog,
vol. 1, no. 8, p. 9, Feb. 2019.

[25] L. Dong et al., “Unified language model pre-training for natural language
understanding and generation,” in Proc. Adv. Neural Inf. Process. Syst.,
May 2019, pp. 13042–13054 .

[26] Y. Liu et al., “Roberta: A. robustly optimized bert pretraining approach,”
Jul. 2019, arXiv:1907.11692.

[27] G. Lample and A. Conneau, “Cross-lingual language model pretraining,”
Adv. Neural Info. Proc. Syst., pp. 7057–7067, 2019, arXiv:1901.07291.

[28] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu, “Mass: Masked sequence
to sequence pre-training for language generation,” in Proc. 36th Int. Conf.
Machine Learn., vol. 97, 2019, pp. 5926–5936.

[29] M. Lewis et al., “Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehension,” in Proc.
58th Ann. Meet. Asso. Comput. Linguist., 2020, pp. 7871–7880.

[30] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” Mar. 2015, arXiv:1503.02531.

[31] Y. Kim and A. M. Rush, “Sequence-level knowledge distillation,” in Proc.
Conf. Empirical Methods Nat. Lang. Proc., Jun. 2016, pp. 1317–1327.

[32] S. Rothe, S. Narayan, and A. Severyn, “Leveraging pre-trained checkpoints
for sequence generation tasks,” Trans. Assoc. Comput. Linguistics, vol. 8,
pp. 264–280, Jun. 2020.

[33] S.-A. Rebuffi, H. Bilen, and A. Vedaldi, “Learning multiple visual domains
with residual adapters,” in Adv. Neural Inf. Process. Syst., May 2017,
pp. 506–516.

[34] N. Houlsby et al., “Parameter-efficient transfer learning for NLP,” in Proc.
36th Inter. Conf. Machine Learn., vol. 97, 2019, pp. 2790–2799.

[35] R. Wang et al., “K-adapter: Infusing knowledge into pre-trained models
with adapters,” Feb. 2020, arXiv:2002.01808.

[36] B. Ji, Z. Zhang, X. Duan, M. Zhang, B. Chen, and W. Luo, “Cross-lingual
pre-training based transfer for zero-shot neural machine translation,” in
Proc. 34th AAAI Conf. Art. Intell., Apr. 2020, pp. 115–122.

[37] J. Gu, J. Bradbury, C. Xiong, V. O. Li, and R. Socher, “Non-autoregressive
neural machine translation,” 6th Inter. Conf. Learn. Represent., 2018,
arXiv:1711.02281.

[38] J. Guo, X. Tan, D. He, T. Qin, L. Xu, and T.-Y. Liu, “Non-autoregressive
neural machine translation with enhanced decoder input,” in Proc. 33rd
AAAI Conf. Artif. Intell., Jul. 2019, pp. 3723–3730.

[39] Z. Sun, Z. Li, H. Wang, D. He, Z. Lin, and Z. Deng, “Fast structured de-
coding for sequence models,” in Adv. Neural Inf. Process. Syst., Oct. 2019,
pp. 3011–3020.

[40] J. Guo, X. Tan, L. Xu, T. Qin, E. Chen, and T.-Y. Liu, “Fine-tuning by
curriculum learning for non-autoregressive neural machine translation,” in
Proc. 34th AAAI Conf. Art. Intell., Apr. 2020, pp. 7839–7846.

[41] M. Stern, W. Chan, J. Kiros, and J. Uszkoreit, “Insertion transformer:
Flexible sequence generation via insertion operations,” in Proc. 36th Inter.
Conf. Machine Learn., vol. 97, 2019, pp. 5976–5985.

[42] J. Gu, C. Wang, and J. Zhao, “Levenshtein transformer,” in Adv. Neural
Inf. Process. Syst., 2019, pp. 11179–11189 .

[43] J. Guo, L. Xu, and E. Chen, “Jointly masked sequence-to-sequence model
for non-autoregressive neural machine translation,” in Proc. 58th Annu.
Meeting Assoc. Comput. Linguistics, 2020, pp. 376–385.

[44] Y. LeCun, J. Denker, and S. Solla, “Optimal brain damage,” Adv. Neural
Inf. Process. Syst., vol. 2, pp. 598–605, 1989.

[45] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” 5th Inter. Conf. Learn. Represent., 2017,
arXiv:1608.08710.

[46] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity
in deep neural networks,” Adv. Neural Inf. Process. Syst., Aug. 2016,
vol. 29, pp. 2074–2082.

[47] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep
neural networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 1389–
1397.

[48] G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger, “Con-
denseNet: An efficient densenet using learned group convolutions,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognition, Oct. 2018, pp. 2752–
2761.

[49] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell, “Rethinking the
value of network pruning,” 7th Int. Conf. Learn. Represent., 2019,
arXiv:1810.05270.

[50] E. Voita, D. Talbot, F. Moiseev, R. Sennrich, and I. Titov, “Analyzing
multi-head self-attention: Specialized heads do the heavy lifting, the rest
can be pruned,” in Proc. 57th Conf. Asso. Comput. Linguist., ACL, vol. 1,
Florence, Italy, Jul. 2019, pp. 5797–5808.

[51] N.-Q. Pham, T.-S. Nguyen, J. Niehues, M. Müller, S. Stüker, and A.
Waibel, “Very deep self-attention networks for end-to-end speech recog-
nition,” INTERSPEECH 20th Ann. Conf. Int. Speech Commun. Assoc., pp.
66–70, 2019.

[52] X. Li, A. C. Stickland, Y. Tang, and X. Kong, “Deep transformers with la-
tent depth,” in Proc. Conf. Empirical Methods Nat. Lang. Proc.: Findings,
2020, pp. 4163–4174.

[53] R. Tang, Y. Lu, L. Liu, L. Mou, O. Vechtomova, and J. Lin, “Distilling task-
specific knowledge from bert into simple neural networks,” Mar. 2019,
arXiv:1903.12136.

[54] X. Jiao et al., “Tinybert: Distilling bert for natural language understand-
ing,” in Proc. Conf. Empirical Methods Nat. Lang. Process.: Findings,
2020, pp. 4163–4174.

[55] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled version
of bert: Smaller, faster, cheaper and lighter,” Oct. 2019, arXiv:1910.01108.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:32:52 UTC from IEEE Xplore. Restrictions apply.

GUO et al.: ADAPTIVE ADAPTERS: AN EFFICIENT WAY TO INCORPORATE BERT INTO NEURAL MACHINE TRANSLATION 1751

[56] L. Hou, Z. Huang, L. Shang, X. Jiang, X. Chen, and Q. Liu, “Dynabert:
Dynamic bert with adaptive width and depth,” Adv. Neural Inf. Process.
Syst., vol. 33, pp. 9782–9793, Apr. 2020.

[57] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” Jul. 2016,
arXiv:1607.06450.

[58] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[59] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2nd
Inter. Conf. Learn. Represent., 2014, arXiv:1312.6114.

[60] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for
automatic evaluation of machine translation,” in Proc. 40th Annu. Meeting
Assoc. Comput. Linguistics, Jul. 2002, pp. 311–318.

[61] S. Edunov, M. Ott, M. Auli, and D. Grangier, “Understanding back-
translation at scale,” Proc. Conf. Empirical Methods Nat. Lang. Proc.,
pp. 489–500, 2018.

[62] Z. Zhang, S. Liu, M. Li, M. Zhou, and E. Chen, “Joint training for neural
machine translation models with monolingual data,” Proc. Thirty-Second
AAAI Conf. Arti. Intel., 2018.

Junliang Guo received the B.E. degree in 2016 in
computer science from the University of Science
and Technology of China, Hefei, China, where he is
currently working toward the Ph.D. degree with the
School of Computer Science and Technology, under
the advisory of Professor Linli Xu. He has authored
or coauthored several papers in refereed conference
proceedings, such as NeurIPS, ACL, AAAI, IJCAI
and ICDM. His research interests include machine
learning, specifically in sequence modeling and rep-
resentation learning, and their applications in natural

language processing and heterogeneous types of data, such as networks.

Zhirui Zhang received the Ph.D. degree from the
University of Science and Technology (USTC), in
2019, supervised by Prof. Enhong Chen from USTC
and Prof. Harry Shum from Microsoft Research Asia.
He is currently an Algorithm Expert with Language
Technology Lab, Alibaba DAMO Academy. He has
authored or coauthored more than Ten papers in refer-
eed confereces and journals, including ACL, EMNLP,
NAACL, NeurIPS, AAAI and TASLP. His general
research interests include natural language process-
ing, machine learning and reinforcement learning,

specifically in machine translation, dialogue systems, and natural language
generation.

Linli Xu received the B.Sc. degree in computer sci-
ence from the University of Science and Technol-
ogy of China, Hefei, China, in 2002 and the Ph.D.
degree in computer science from the University of
Waterloo, Waterloo, ON, Canada, in 2007. She is
currently a Professor with the School of Computer
Science, University of Science and Technology of
China. She has authored or coauthored more than
30 papers at top-tier journals and conferences. Her
general research interests include machine learning,
with research interests on unsupervised learning and

semi-supervised learning, multi-task learning and transfer learning, neural meth-
ods and applications, and optimization. She is a Member of the Anhui Province
Key Laboratory of Big Data Analysis and Application. She was the recipient of
the Best Overall Paper Honorable Mention of the 26th International Conference
on Machine Learning in 2009.

Boxing Chen received the Ph.D. degree from the
Chinese Academy of Science, Beijing, China. He
is currently a Senior Staff Algorithm Engineer with
the Machine Intelligence Lab, DAMO Academy of
Alibaba Group. Prior to Alibaba, he was a Research
Officer with National Research Council Canada, Ot-
tawa, ON, Canada, a Senior Research Fellow with
the Institute for Infocomm Research, Singapore, a
Postdoc with FBK in Italy, and a Postdoc with the
University of Grenoble, Grenoble, France. He has
coauthored more than 60 papers in the NLP confer-

ences and journals. He was the recipient of The Best Paper Award from MT
Summit 2013 and The Best Paper Award Nomination from ACL 2013. He was
an Area Chair for ACL, EMNLP and NLPCC. His team ranked the first place
more than 20 times in various MT competitions, such as WMT2018, WMT
2017, NIST2012 OpenMT, IWSLT2007, and IWSLT2005.

Enhong Chen (Senior Member, IEEE) received the
Ph.D. degree from the University of Science and
Technology of China, Hefei, China. He is currently
a Professor and the Vice Dean of the School of
Computer Science, University of Science and Tech-
nology of China. He has authored or coauthored
more than 100 papers in refereed conferences and
journals, including IEEE Trans. KDE, IEEE Trans.
MC, KDD, ICDM, NIPS, and CIKM. His general
research interests include data mining and machine
learning, social network analysis, and recommender

systems. He was on program committees of numerous conferences, including
KDD, ICDM, SDM. He was the recipient of the Best Application Paper Award
on KDD-2008, the Best Research Paper Award on ICDM-2011, SDM-2015 and
KDD-2018. His research is supported by the National Science Foundation for
Distinguished Young Scholars of China.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 07:32:52 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

