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Abstract

Automatically solving math word problems is a crucial task
for exploring the intelligence levels of machines in the gen-
eral AI domain. It is highly challenging since it requires
not only natural language understanding but also mathemat-
ical expression inference. Existing solutions usually explore
sequence-to-sequence models to generate expressions, where
the problems are simply encoded sequentially. However, such
models are generally far from enough for understanding prob-
lems as similar to humans and lead to incorrect answers. To
this end, in this paper, we propose a novel Hierarchical Math
Solver (HMS) to make deep understanding and exploita-
tion of problems. In problem understanding, imitating hu-
man reading habits, we propose a hierarchical word-clause-
problem encoder. Specifically, we first split each problem into
several clauses and learn problem semantics from the local
clause level to the global problem level. Then, in clause un-
derstanding, we propose a dependency-based module to en-
hance clause semantics with the dependency structure of the
problem. Next, in expression inference, we propose a novel
tree-based decoder to generate the mathematical expression
for the answer. In the decoder, we apply a hierarchical atten-
tion mechanism to enhance the problem semantics with con-
text from different levels, and a pointer-generator network to
guide the model to copy existing information and infer ex-
tra knowledge. Extensive experimental results on two widely
used datasets demonstrate that HMS achieves not only better
answers but also more reasonable inference.

Introduction
Building machines to automatically solve math word prob-
lems (MWP) is a crucial issue in artificial intelligence (AI)
and natural language processing (NLP), which has attracted
much attention for a long history. It is of great significance
to serve as a good testbed to evaluate the intellectual abili-
ties of machines, such as language understanding and logi-
cal reasoning. Therefore, successfully solving MWP can be
considered as a milestone towards general AI in the broad
domains (Zhang et al. 2019). Besides, it can also be used
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Problem A rectangle is 4 cm wide, and its length 
is 3 cm longer than its width. What is 
the perimeter of the rectangle? 

Answer 22 
Expression 2× (4+3+4) 

 

Figure 1: An example of MWP.

to evaluate problem representations in online education sys-
tems, where great progress has been achieved (Huang et al.
2017b; Yin et al. 2018, 2019).

A typical example of math word problems is illustrated
in Figure 1. Generally, the problem is described in natural
language narratives (A rectangle is ...) and then asks a corre-
sponding question (What is the ...?) for the answer (i.e., 22).
To solve this problem, we should first read and translate it
into a mathematical expression composed of numbers (e.g.,
4, 3) and operators (e.g., “+” and “×”). During this process,
the machine mainly requires two key abilities: (1) language
comprehension to understand the meaning of problems de-
scribing quantity relations (e.g., length, width and perime-
ter); (2) mathematical inference to generate the right expres-
sion in a fine-grained logic.

There is much effort in solving math word problems
from early rule-based approaches (Fletcher 1985), statisti-
cal machine learning (Hosseini et al. 2014), semantic pars-
ing (Koncel-Kedziorski et al. 2015) to recent sequence-to-
sequence (seq2seq) methods (Wang et al. 2019; Xie and Sun
2019). In the literature, seq2seq methods have shown strong
competitiveness in that they do not need any human inter-
vention. Specifically, existing seq2seq methods mainly fo-
cus on the inference ability to generate expressions, where
the problem is often simply encoded as a sequence of words
by one single vector. In such a way, models are far from
enough to understand problems as similar to humans be-
cause they only notice the straightforward effect of the word
order (e.g., “longer” being after “cm” and before “than”),
while ignoring the complicated structure among words in the
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problem (e.g., relations among “3”, “longer” and “width”).
Therefore, they generally lack the ability to understand prob-
lems, which may confuse important quantity relations, and
result in incorrect answers. To this end, we hope to improve
the MWP solver by imitating human reading habits.

However, it is non-trivial along this line due to the follow-
ing challenges. First, instead of directly putting all words
together, humans usually read problems part by part (e.g.,
sentence) to understand the semantic meanings. In this way,
they can pay much attention to local details (e.g., numbers
in Figure 1) and easily combine them together for the global
goal (i.e., “What is ...?”). How to mimic such a procedure
in MWP is challenging. Second, for understanding the lo-
cal meaning of each part (sentence), words are often de-
pendent on other headwords and provide supplementary de-
tails. As shown in Figure 1, number “3” describes the nu-
meric difference (i.e., “longer”) between the “length” and
“width”, which is highly necessary for solving the prob-
lem. Although humans can capture such semantic depen-
dency without much effort, machines may struggle with that.
Third, in the inference, the ability to translate logic in local
semantics into an expression segment does matter, e.g., “3
cm longer” should be projected to “+3” in expression gen-
eration. Last, the solver often requires human knowledge
in the math domain, which is not given in the problem. In
Figure 1, the inference requires rectangle perimeter formula
“2× (NUM+NUM)” in addition to learning “length” and
“width” from the problem, where the number “2” is inferred
from human knowledge. How to exploit such knowledge re-
mains much open.

To address the challenges above, in this paper, we pro-
pose a novel Hierarchical Math Solver (HMS) to make deep
understanding and exploitation for solving MWP. In prob-
lem understanding, motivated by human reading habits, we
propose a novel hierarchical word-clause-problem encoder.
Specifically, we split the problem into several clauses so that
our encoder can learn the whole problem semantics from lo-
cal clauses to global problem considering inter-clause rela-
tions (e.g., descriptions of the same entity) on the basis of
word semantics intuitively. Then in local clause understand-
ing, we develop a dependency-based module to enhance the
semantics with intra-clause relations. Here, we construct a
dependency tree for each clause to preserve semantic struc-
tures (e.g., dependency) in the problem. Next, in expression
inference, we propose a novel tree-based decoder to gener-
ate the mathematical expression for the answer in a recur-
sive way. The decoder first extracts related context informa-
tion and then predicts each symbol to generate the expres-
sion. In context extraction, We apply a hierarchical atten-
tion mechanism to explicitly enhance the problem semantics
with context from different levels. Then in symbol predic-
tion, a pointer-generator network is incorporated to guide the
model to copy existing information and infer extra knowl-
edge for the expression. Finally, we conduct extensive ex-
periments on the two largest datasets in the domain. The ex-
perimental results demonstrate that HMS can achieve better
solutions to answers as well as more reasonable inference.

Related Work
In this section, we review studies on automatic MWP solv-
ing and make a brief introduction to dependency and pointer-
generator network in NLP tasks.
Math Word Problem. Studies on MWP solver have a
long history dating back to the 1960s (Feigenbaum, Feld-
man et al. 1963; Bobrow 1964). In the literature, MWP
solvers can be roughly divided into four categories: rule-
based methods, statistical machine learning methods, se-
mantic parsing methods and deep learning methods. Specif-
ically, rule-based methods relied on manually crafted rules
to match predefined problem templates, such as (Fletcher
1985) and (Yuhui et al. 2010). Machine learning methods
achieved great success in many fields (Liu et al. 2011; Zhao
et al. 2017) and were also widely used in MWP solvers. Sta-
tistical machine learning methods selected and completed
predefined expression templates with traditional machine
learning methods (e.g., SVM), such as (Kushman et al.
2014) and (Roy and Roth 2017). Semantic parsing meth-
ods mapped problem text to structured logic forms and in-
ferred the answer with logic rules, such as (Shi et al. 2015)
and (Huang et al. 2017a). These methods required tremen-
dous human effort on feature engineering and annotation and
lacked generality, which led to a restricted application. With
the advantages of automatic feature extraction and strong
generality, deep learning methods especially seq2seq mod-
els have been widely used in recent studies (Wang, Liu, and
Shi 2017; Huang et al. 2018; Wang et al. 2019; Xie and Sun
2019; Wang et al. 2018c; Zhang et al. 2020). For example,
Wang et al. (2019) applied a recursive neural network to
predict missing operators on templates predicted by seq2seq
model, and Xie and Sun (2019) proposed a goal-driven tree-
structured decoder to exploit the tree structure of mathe-
matical expressions. To model quantity relations in prob-
lems, Zhang et al. (2020) constructed graphs for quantity-
related features to enhance problem understanding. In recent
years, more difficult mathematical problems were also tack-
led (Huang et al. 2020) in addition to traditional MWP.

Although great success has been achieved, complex lan-
guage structures of the problem were not considered in most
of these seq2seq models, where the problem was simply en-
coded as a sequence of words by a RNN model such LSTM
and GRU, which was far from enough for accurate and ef-
ficient problem modeling. Better results can be achieved
with better modeling and representations of complex prob-
lem structures (Wang et al. 2018a).
Dependency Parsing in NLP. Dependency parsing, pro-
posed in (Tesnière 1959), is a basic task in NLP, which aims
to extract and explain relations between units in a sentence
such as words and phrases. The result of dependency pars-
ing can be demonstrated with a dependency tree, where each
node represents a word in the sentence. In the dependency
tree, the child is dependent on the parent and can be viewed
as details of the parent, such as the modifier, qualifier of a
noun and the subject, object of a verb. The dependency tree
is highly corresponding to the semantics of the sentence,
thus dependency parsing is helpful in sentence understand-
ing and is widely used in NLP tasks such as machine transla-
tion (Bastings et al. 2017; Wu et al. 2018; Yang et al. 2020).
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Pointer-Generator Network. Pointer network was pro-
posed to address problems where the number of target
classes of output depends on the length of the input (Vinyals,
Fortunato, and Jaitly 2015). It has the ability to copy words
directly from the input as output. Pointer-generator net-
work combines the pointer network and traditional seq2seq
model, thus is able to copy words from source text as well as
generate new words from the vocabulary. It is widely used
in NLP tasks such as text summarization (Gu et al. 2016;
See, Liu, and Manning 2017; Sun et al. 2018). In MWP
solvers, the pointer-generator network has been used to copy
numbers from problems to avoid generating invalid numbers
from other problems (Huang et al. 2018).

Hierarchical Math Solver
In this section, we first formally introduce the MWP task and
then describe the details of our proposed HMS framework.

Problem Definition
Generally, a math word problem P is defined as a se-
quence of n word tokens and numeric values: P =
{p1, p2, · · · , pn}, where pi is either a word token (e.g.,
“length” and “width” in Figure 1) or a numeric value (e.g.,
“3” and “4”). We denote the numeric values set for problem
P as NP (e.g., {3, 4}). These numeric tokens are mapped
to a special token “NUM” in problem solving for we do not
care the value of these tokens.

The answer sP to problem P is the numeric value (e.g.,
“22”) of the required unknown variable derived from P by
a mathematical expression EP . Expression EP is defined
as a sequence of m operators, numeric constants and nu-
meric variables from problem P : EP = {y1, y2, · · · , ym},
where yi comes from a decoding target vocabulary VP for
problem P . The decoding target vocabulary is composed
of the operators set VO (e.g., {+, -, ×, ÷}), numeric con-
stants set VC (e.g., {1, 2, π}) and NP , which is denoted as
VP = VO ∪ VC ∪NP (e.g., {+, -, ×, ÷, 1, 2, π, 3, 4}). Note
that VP differs in different P due to varied NP .

Given the input sequence of problem P , the goal of solv-
ing math word problem is to learn a model that reads tokens
from P and generates the output sequence of the expression
ÊP = {ŷ1, ŷ2, · · · , ŷm} towards the answer sP for P .

Model Overview
Motivated by human MWP solving, we propose a novel
Hierarchical Math Solver (HMS) composed of a hierarchi-
cal encoder and a tree-based decoder following seq2seq ar-
chitecture, which is shown in Figure 2. Specifically, given a
MWP P , in problem understanding, the hierarchical word-
clause-problem encoder (three levels in the encoder) splits
the problem into several clauses (red boxes) and generate
problem representations from the local clause level (green
boxes) to the global problem level (orange boxes) on the
basis of word-level semantics (blue boxes). In expression
inference, the tree-based decoder generates the expression
ÊP according to problem representation with a hierarchical
attention mechanism (red arrows in decode module) and a
pointer-generator network (blue arrows).

Word-Clause-Problem Hierarchical Encoder
In problem understanding, imitating human problem reading
from local to global, we split the problem into clauses, and
learn problem semantics from clauses to the whole problem.

Specifically, given a problem P , we split the problem
into m clauses CP = {C1, C2, · · · , Cm} (red boxes in
encoder in Figure 2) as units for local semantics, where
Ci = {pi1, pi2, · · · , pil} is a subsequence of words from
P (e.g., “A rectangle ... wide”, “and its ... width”). The rea-
son is that semantics in a clause is relatively complete (i.e.,
contains almost all necessary semantic elements) and simple
(i.e., describes only one relation). Many complex methods
can be applied for an accurate split of clauses, but here we
split by commas and periods for simplification.

Given the clause partition of the problem, we propose
a novel word-clause-problem hierarchical encoder to gen-
erate semantic representations for words, clauses and the
whole problem respectively from the local to the global in
a bottom-up manner.
Context-Enriched Word Embedding. Given a problem
P = {p1, p2, · · · , pn}, in word level the encoder aims to
learn meaning representation hs for each word ps enriched
with contextual information of sequential relations.

Specifically, the decoder first maps each word to-
ken ps to an embedding vector xs pre-trained with
word2vec (Mikolov et al. 2013). Then the decoder learns
the contextual representation hs for word ps (blue boxes)
with a bidirectional GRU (blue arrows in encoder). We adopt
bidirectional GRU for its ability to exploit contextual infor-
mation from both directions. The generation of hs can be
formulated as follows:

hf
s = GRUf (h

f
s−1,xs), hb

s = GRUb(h
b
s+1,xs), (1)

hs = hf
s + hb

s. (2)

The representation contains semantics of the word itself and
information of the context, which serves as the basis of prob-
lem understanding in clause and problem levels. More ad-
vanced techniques can be applied for better word-level rep-
resentations, and we adopt the simple one for simplification.
Dependency-Enhanced Clause Module. After obtaining
the representation hs for each word ps in word level and cor-
responding partition Ck for each clause, in clause level the
encoder aims to model local clause semantics cdk enhanced
with intra-clause semantic relations, which are often repre-
sented as semantic dependency.

To capture the dependency in the clause, we construct a
dependency tree Tk = {tk1, tk2, · · · , tkl} for the clause Ck

with stanford corenlp toolkit (Manning et al. 2014), which
is shown in Figure 3. In dependency tree Tk, each node tki
represents a word from Ck, and each word except the root is
dependent on its parent and provides a supplementary detail
to the parent. For example, “rectangle” is dependent on its
parent “perimeter” and describes the subject of “perimeter”.
Thus, to get the dependency-enhanced clause semantics, we
can exploit the structure of the dependency tree.

To this end, we propose a dependency-based module to
learn enhanced clause semantics by enriching words with lo-
cal details from the children following the dependency tree,
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Figure 2: Overview of proposed HMS framework. Decoding process goes from y0 to y6 in a recursive manner.
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Attention

Clause Encoding
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Figure 3: Dependency-based module for clause level. En-
coding process goes on dependency tree in a bottom-up
manner from leaves to root.

which is shown in Figure 3. Specifically, given dependency
tree Tk (on the left) for the kth clause Ck (at the bottom),
for leaf nodes (e.g., “rectangle”) with no child to provide
further details, corresponding word-level representations are
enough to model the semantics. Formally, enriched repre-
sentation (green boxes) hd

l = hl for leaf node tl (dark cyan
arrows), where hl denotes word-level representation for tl
(blue boxes). Then for inner nodes (e.g., “perimeter”), the
encoder applies an attention mechanism to select related and
meaningful detailed semantics from children to merge into
the word representations. Formally, for each child node tc of
inner node tp, the semantic representation hp for tp is ini-
tialized with its word-level representation (gray arrows) and
enriched representation hd

c for tc (green boxes for the chil-

dren) has merged semantics from its children if any. Then
the enriched representation hd

p for tp is generated by atten-
tion mechanism (orange arrows) as follows:

Sac(hp,h
d
c) = wT

csReLU(Wca[hp,h
d
c ] + bca), (3)

wc =
exp(Sac(hp,h

d
c))∑

i exp(Sac(hp,h
d
i ))

, (4)

hr
p =

∑
c

wch
d
c , (5)

hd
p = ReLU(Wco[hp,h

r
p] + bco). (6)

The enriched representation of each node contains the se-
mantics of local details and the structure of the dependency
tree, which provides a more accurate understanding of the
corresponding word.

The generation of enriched semantic representations is
performed following the dependency tree in a bottom-up
manner from leaves to the root. Thus, the enriched repre-
sentation of root node contains local semantics for all words
in the clause enhanced with information of the structure of
the whole dependency tree, so we take the representation of
the root as the local semantic representation for the clause
cdk = hd

root.
Inter-Clause Relation-Enhanced Problem Module. After
modeling the local semantics for clause cdk, in problem level
the encoder aims to generate the global semantic represen-
tation for the whole problem from the local clause seman-
tic representations. Note that the clause-level representations
rely absolutely on intra-clause information without consid-
eration of relations between clauses, which contain cross-
clause quantity relations for problem understanding such as
descriptions of the same entity in different views (e.g., the
value of the width and the relation between the length and
the width in Figure 1). Thus, in problem level the encoder is
required to enhance clause representations with inter-clause
relations and generate the representation of the global se-
mantics for the whole problem.

To achieve the goal, given clause-level representation cdk
(green boxes in Figure 2) for the kth clause Ck, the encoder
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first applies positional encoding with a learnable embedding
PE to get position-enriched representation cpk with sequen-
tial relations between clauses as follows:

cpk = cdk + PE(k). (7)

Then the encoder applies a self-attention mechanism to
model relevance between clauses and enhance clause repre-
sentations with semantic information from related clauses.
For clause Ck with representation cpk and each clause cps ,
the enhanced representation csk (orange boxes) is generated
as follows:

Sas(c
p
k, c

p
s) = wT

ssReLU(Wsa[c
p
k, c

p
s ] + bsa), (8)

ws =
exp(Sas(c

p
k, c

p
s))∑

i exp(Sas(c
p
k, c

p
i ))

. (9)

crk =
∑
s

wsc
p
s , (10)

csk = ReLU(Wso[c
p
k, c

r
k] + bso). (11)

The enhanced representation for each clause contains both
local semantics within the clause and global semantics from
other clauses in the problem. Therefore, we take the repre-
sentation for the question clause, which serves as the central
part with the goal of the problem and is usually the last one,
as the global representation for the whole problem hs = csm
(last orange box with red label).

Tree-Based Expression Decoder
After understanding the local details and the global goal of
problem P , in expression inference, to exploit tree structure
of the expression, we propose a novel tree-based decoder
to generate prefix expression ÊP following the Goal-driven
Tree-Structured (GTS) framework (Xie and Sun 2019). The
expression generation is converted to the expression tree
construction, the symbol is predicted according to the goal
vector q given to each node, and the structure is predicted
by goal decomposition in a top-down recursive manner.

Specifically, the goal vector (purple boxes in Figure 2) of
the root node q0 is initialized with the global representation
of the problem hs (black arrow between the encoder and de-
coder). The goal vectors for other nodes are generated by
goal decomposition in a top-down recursive manner (purple
arrows). If the predicted symbol (dark cyan boxes) for node
êtp is an operator, the decoder adds two children to the node.
The decoder first generates a new goal vector from that of
êtp and makes prediction on the left child. After the whole
left subtree is predicted, the decoder generates the goal vec-
tor and makes prediction on the right child with left subtree
embedding (orange arrows in the decoder). Goal decompo-
sition for one branch ends when the predicted symbol is not
an operator (i.e., variables or constants). More details about
goal decomposition are available in (Xie and Sun 2019).

Given goal vector q for node êt, the decoder first gener-
ates context vector c according to the goal vector with the hi-
erarchical attention mechanism for local semantics exploita-
tion (red arrows in decode module), and then predicts sym-
bol ŷ according to goal and context vectors with the pointer-
generator network for knowledge inference (blue arrows).

Hierarchical Context Generation. Given goal vector q, in
context generation, the decoder aims to extract context rep-
resentation related to the goal from semantic representations
of the problem to assist symbol prediction. To enable the
translation of logic in local semantics in each clause, it is
required to enhance global problem semantics of goal with
explicit local details from words and clauses.

To achieve the goal, we propose a hierarchical attention
mechanism to explicitly exploit problem semantics from the
word and clause levels. Specifically, the decoder first models
relevance between the goal vector q and each clause-level
representation csk as follows:

Sc(q, c
s
k) = wT

scReLU(Wac[q, c
s
k] + bac). (12)

Then the decoder models relevance between the goal vector
q and each word hk,t in the kth clause as follows:

Sw(q,hk,t) = wT
swReLU(Waw[q,hk,t] + baw). (13)

The context vector c is finally generated as follows:

c =
∑
k

wc
k(c

s
k +

∑
t

ww
k,t · hk,t), (14)

where

wc
k =

exp(Sc(q, c
s
k))∑

i exp(Sc(q, c
s
i ))

, (15)

ww
k,t =

exp(Sw(q,hk,t))∑
i exp(Sw(q,hk,i))

. (16)

The context vector is explicitly incorporated with the word
and clause level semantics, which helps symbol prediction
by providing related local details to the global target seman-
tics of the goal. The hierarchical manner helps query rel-
evant words by reducing the influence of irrelevant words
through searching unrelated clauses with smaller weights,
which are less likely to contain relevant words.
Symbol Prediction with Knowledge inference. Given goal
vector q and context vector c for the tree node, in symbol
prediction, the decoder aims to generate symbol ŷ from de-
coding target vocabulary. Expression generation requires the
decoder to be able to copy existing variables from the prob-
lem (e.g., “3” and “4” in Figure 1), and infer extra knowl-
edge (e.g., “2” and “×”), which is reflected as constants and
operators from the external vocabulary.

To this end, we apply a pointer-generator network follow-
ing (Huang et al. 2018) in symbol prediction. Specifically,
the decoder first predicts the probability of symbol being ex-
tra knowledge from the external vocabulary as follows:

Pgen = σ(wpg[q, c] + bpg). (17)

Then the probability distribution for quantities Yp copied
from the problem is predicted as follows:

P p(Yp) = Softmax(wT
psReLU(Wpa[q, c,hYp

] + bpa)),
(18)

where hYp
denotes word-level representations for quantities

Yp. The probability distribution for external symbols Yg in-
ferred from knowledge is predicted as follows:

P g(Yg) = Softmax(wT
gsReLU(Wga[q, c, eYg

] + bga)),
(19)
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where eYg denotes learnable embeddings of external sym-
bols Yg . Then the combined probability distribution for all
symbols Y is calculated as follows:

P c(Y = y) =

{
(1− Pgen) ∗ P p(y) y ∈ Yp
Pgen ∗ P g(y) y ∈ Yg

(20)

The predicted symbol ŷ is generated according to probabil-
ity distribution P c. The prediction splits the search space
into two parts and performs a weighted search on them with
explicitly predicted probabilities (usually close to 0 or 1 if
well-trained), which helps infer knowledge and copy infor-
mation by reducing the confusion on the type of the symbol
to predict and noise from another part of the search space.

The generated expression is composed of symbols pre-
dicted following the construction of the expression tree in a
top-down manner, which can be viewed as a pre-order tra-
verse on the whole predicted expression tree.

Model Training
For each problem P in the training dataset and correspond-
ing target expressionEP = {y1, y2, · · · , ym}, the lossL can
be defined as minimizing the sum of negative log-likelihood
of probabilities of m target symbols:

L =

m∑
t=1

−logPc(yt|y1, y2, · · · , yt−1, P ). (21)

Experimental Study
In this section, we conduct experiments on two widely used
datasets for the MWP task and compare our proposed HMS
framework with baseline models for MWP.

Experimental Setup
Datasets. We use two widely used datasets for the MWP
task in our experiments: Math23K and MAWPS.

• Math23K (Wang, Liu, and Shi 2017) is a dataset contain-
ing 23,162 Chinese math word problems for elementary
school students with only one unknown variable.

• MAWPS (Roy and Roth 2017) combines several pub-
lished math word problem datasets using MAWPS sys-
tem (Koncel-Kedziorski et al. 2016). The dataset contains
problems with one or more unknown variables. We se-
lect 2,373 problems with only one unknown variable and
a target expression.

The statistics of the two datasets are shown in Ta-
ble 1. The average clause number and expression length of
Math23K are much longer than MAWPS, which shows that
the Math23K dataset is more difficult than MAWPS.
Baselines. We compare our proposed model with the fol-
lowing baseline models:

• DNS (Wang, Liu, and Shi 2017) applies seq2seq model to
directly map input problems to output expressions.

• Math-EN (Wang et al. 2018b) addresses the problem of
duplicated equations by equation normalization.

Dataset Math23K MAWPS
Num. Problems 23,162 2,373

Avg. problem length 29 30
Avg. Num. clauses 3.75 3.27
Avg. expr. length 5.55 3.87

Table 1: Statistics of datasets.

Math23K MAWPS
DNS 0.581 0.595

Math-EN 0.667 0.692
T-RNN 0.669 0.668

GROUP-ATT 0.695 0.761
GTS 0.743 0.786
HMS 0.761 0.803

HMS w/o hierarchy 0.750 0.788
HMS w/o dependency 0.755 0.791

HMS w/o pointer-generator 0.756 0.789

Table 2: Accuracy of HMS and baseline models.

• T-RNN (Wang et al. 2019) applies recursive neural net-
work to predict the missing operators of the predicted ex-
pression template.

• GROUP-ATT (Li et al. 2019) uses several attention
mechanisms to extract different features in the problem.

• GTS (Xie and Sun 2019) proposes a goal-driven tree-
structured neural network to generate the expression.

Implementation Details.1 Our model is implemented us-
ing PyTorch. The dimension of word embedding vectors
is 128 and the dimensions of all other hidden vectors are
512. The word embeddings are initialized with pre-trained
word2vec vectors learned from the training dataset. Words
with less than 5 occurrences are converted to a special token
“UNK”. Other parameters are initialized by Kaiming initial-
ization (He et al. 2015). We apply dropout in our model with
a probability of 0.5. We use Adam optimizer with an initial
learning rate of 0.001 to optimize the loss function (Eq. 21).
The learning rate is halved every 20 epochs. The mini-batch
size is set to 64, and our model is trained for 80 epochs.

Since the Math23K dataset has provided a partition when
published, we simply follow its original setup. For MAWPS,
we apply the 5-fold cross-validation.

Overall Result
We use accuracy as the evaluation metric. The prediction is
considered correct if the calculated value of the predicted
expression equals the answer. Table 2 reports the accuracy
of our proposed model and baseline models on the two
datasets. There are several observations. First, our model
outperforms all the baseline models, which demonstrates
that HMS can effectively understand the problem by exploit-
ing dependency and modeling semantics in different levels
hierarchically, and thus enhance expression inference. Next,

1Our code is available at https://github.com/bigdata-ustc/hms.

4237



Expr. length 3- 5 7 9 11 13+
# Instances 174 522 191 66 34 13

Table 3: Number of test instances over expression length.
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Figure 4: Accuracy over expression length.

DNS has the worst performance, which shows that the ex-
ploitation of related features in MWP (e.g., the tree struc-
ture of the expression and semantic relations in the prob-
lem) is of great importance in the task. Last, the accuracies
in MAWPS are higher than those in Math23K, especially for
models with higher performance. This is due to the higher
difficulty of Math23K from longer expressions and prob-
lems and fewer instances for each expression template.

Model Discussion
Ablation Study. To investigate the effect of each compo-
nent in our model: hierarchical encoder, dependency-based
module and pointer-generator network, we conduct abla-
tion studies. The results are shown in Table 2. Specifically,
“HMS w/o hierarchy” directly applies word-level encoding
without the hierarchical encoder. “HMS w/o dependency”
implements clause-level encoding with self-attention on
word-level representations without dependency-based mod-
ule. We observe that the accuracy of our model degrades
when any component is missing, which means that all com-
ponents are helpful and complementary in the problem un-
derstanding and expression generation.
Performance over Expression and Problem Length. To
investigate the performance of our model with the increasing
length of expressions and problems, we report the number of
test instances over different expression and problem lengths
in Table 3 and 4, and the accuracies of corresponding test
instances compared with the GTS model in Figure 4 and 5
respectively. Since similar experiment results are observed
on the two datasets, we only report results on Math23K in
the following experiments for simplification. There are sev-
eral observations. First, generally, the performance of each
model degrades with the increasing length of expressions,
which is reasonable due to increasing difficulty. Second, the
difference between the performance of the two models also
decreases with the increasing length of expressions. For high
difficulty, both models do not work well, thus the differ-
ence is not obvious, which is reasonable. But exceptions are

Problem. length 19- 20-29 30-39 40-49 50+
# Instances 160 354 289 135 62

Table 4: Number of test instances over problem length.
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Figure 5: Accuracy over problem length.

found for problems with very long expressions. The reason
may be that the number of test instances of these groups
is not enough, and the occasional factors have a great im-
pact on the results, which may be not representative. Similar
trends are observed in performance over different problem
lengths that the accuracy and difference between the two
models decrease with the increasing problem length and cor-
responding increasing difficulty.
Performance over Clause Number. To investigate the per-
formance of models with the increasing number of clauses
in the problem, similarly, we report the number of test in-
stances over different clause number in Table 5 and corre-
sponding accuracies compared with the GTS model in Fig-
ure 6. There are several observations. First, the performance
of each model degrades with the increasing clause number
due to increasing difficulty. Second, in group “6” and “7”
where the performance drops sharply due to complex prob-
lems, our model outperforms GTS obviously, which proves
that the hierarchical encoder is able to capture more seman-
tics from complex problems. Last, for test instances with
only 1 clause where the main difference between the two
models is the dependency-based module, our model outper-
forms GTS and proves the effectiveness of the module.
Case Study. Further, we conduct case studies on expressions
generated by our model and GTS and provide three cases in
Table 6. For convenience, we convert the prefix expression
generated by models to infix form. We can get the follow-
ing observations from the cases: (1) In case 1, GTS con-
fuses “n1” and “n2” with similar context but from different
clauses, and our model avoids this problem by incorporating
clause details “afternoon” and “morning” with each variable
through the hierarchical attention mechanism; (2) In case 2,
GTS confuses the relations between “sunny days”, “rainy
days” and “cloudy days”, and our model addresses this prob-
lem and figures out the correct relations by modeling depen-
dency between them; (3) In case 3, GTS confuses the type of
the required symbol and mistakenly predicts problem vari-
able “n1” in a node requiring an external symbol, and our
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# Clause 1 2 3 4 5 6 7 8+
# Instances 38 80 297 326 175 52 17 15

Table 5: Number of test instances over clause number.
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Figure 6: Accuracy over clause number.

model solves this problem by explicitly predicting that an
external symbol is required and thus inferring “×” from ex-
tra knowledge with less noise from problem variables.

Conclusion
In this paper, we proposed a novel Hierarchical Math Solver
(HMS) to deeply exploit problem semantics for solving
math word problems. We proposed a hierarchical word-
clause-problem encoder and a dependency-based module to
understand problem semantics, and a tree-based recursive
decoder with hierarchical attention mechanism and pointer-
generator network to generate expressions. Experimental re-
sults on the datasets and further discussions showed the ef-
fectiveness of our model and its components, especially our
proposed hierarchical encoder and dependency-based mod-
ule, which were able to model complex semantics in long
problems and help expression generation. For further study,
there exist many more relations in problems to investigate
that may be helpful in solving MWP. Meanwhile, the ex-
ploitation of human knowledge is still rough and simple,
where exists great room for improvement in future study.
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