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ABSTRACT
The contexts and cultures have a direct impact on student learning
by affecting student’s implicit cognitive states, such as the prefer-
ence and the proficiency on specific knowledge. Motivated by the
success of context-awaremodeling in various fields, such as recom-
mender systems, in this paper, we propose to study how to model
context-aware features and adapt them for more precisely diag-
nosing student’s knowledge proficiency. Specifically, by analyzing
the characteristics of educational contexts, we design a two-stage
framework ECD (Educational context-aware CognitiveDiagnosis),
where a hierarchical attentive network is first proposed to repre-
sent the context impact on students and then an adaptive optimiza-
tion is used to achieve diagnosis enhancement by aggregating the
cognitive states reflected from both educational contexts and stu-
dents’ historical learning records. Moreover, we give three imple-
mentations of general ECD framework following the typical cogni-
tive diagnosis solutions. Finally, we conduct extensive experiments
on nearly 52 million records of the students sampled by PISA (Pro-
gramme for International Student Assessment) from 73 countries
and regions. The experimental results not only prove that ECD is
more effective in student performance prediction since it can well
capture the impact from educational contexts to students’ cogni-
tive states, but also give some interesting discoveries regarding the
difference among different educational contexts in different coun-
tries and regions.
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1 INTRODUCTION
It is a common notion that context features usually influence peo-
ple’s implicit states to make a difference in their explicit behav-
iors [12]. For instance, contexts are essential to infer customers’
preference on specific items and redirect the consumption behav-
iors [33]. Similarly, in the domain of education, a better modeling
in the educational contexts (e.g., those features from school, home
or person [2, 16]) is also of significant importance to understand-
ing students’ learning process [24], analyzing their knowledge pro-
ficiency and further helping improve equity in education [28].

Indeed, governments may wonder if the education policy [14]
for education reform works, teachers may be curious about the ef-
fect of different teaching methods in class [29], and parents may
be interested in the influence of their involvement in children’s
study [25]. As shown in Figure 1, in students’ learning process,
the educational contexts influence students’ traits which then re-
flect in the cognitive states, and finally result in the difference be-
tween their performance (i.e., response results). Since diagnosing
the cognitive states of each student (more specifically, quantify-
ing the proficiency level of the student on specific knowledge con-
cepts, e.g., Carbon Dioxide, ranging from 0 to 1) is one of the most
fundamental tasks in intelligent education [23, 36], a number of
existing methods have tried to improve the accuracy of diagnostic
results by fully exploiting the students’ explicit response records
(e.g., introducing the difficulty of exercise [6], the related knowl-
edge concepts [7, 30, 35], the exercise texts [4, 36]), and the exer-
cise relations [38] or considering more exceptions (e.g., slip and
guess [5, 21]) in students’ learning process. However, to the best
of our knowledge, the problem of how educational contexts affect
student’s knowledge proficiency is still underexplored.

In this paper, to quantify the influence from educational con-
texts to students’ knowledge proficiency and then diagnose the
cognitive states of each student more precisely, we propose a fo-
cused study on introducing educational context features into the
cognitive diagnosis process. By analyzing the characteristics of ed-
ucational contexts, we find several domain and technical challenges
along this line. Firstly, the educational contexts may involve con-
tents fromdifferent aspects (e.g., parents’ education, school resource,
personal interest), which is hard to be analyzed uniformly. Those
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Figure 1: An illustration of students’ learning process.
inspire us to model the contexts influence by aspects respectively.
Secondly, as shown in Figure 1, the educational contexts should be
modeled by influencing students’ latent traits and are not directly
concerned with specific knowledge concepts, while student states
through cognitive diagnosis should then connect to the knowledge
concepts. Thirdly, different students may get different influence
even from the same educational context. For instance, while edu-
cational context “get tutoring” is generally a positive context for
students’ learning, truant students may get less positive feedback
from “tutoring” and hardworking students can get more. As a re-
sult, the influence intensity of context should be personalized in
terms of the different fitness between context and students’ char-
acter. Finally, educational contexts may interact with each other
while influencing students. For instance, the effect of context “get
tutoring” will be affected by other educational contexts, e.g., par-
ents’ support, student’s attitude and home ESCS (Economic, Social
and Cultural Status) [18].Therefore, how to construct andmine the
inherent relevance among different contexts is worth exploring.

To address the challenges mentioned above, we design a novel
Educational context-aware Cognitive Diagnosis (ECD) framework.
Generally, ECD has two stages, namely, the educational context
modeling stage and the diagnosis enhancement stage. In the educa-
tional contextmodeling stage, the diverse contexts are first grouped
into several fields by their content, then a hierarchical attentive
network is proposed to represent the personalized influence from
each context, and the students’ external traits reflected by educa-
tional contexts will be generated. In the diagnosis enhancement
stage, the students’ external traits are adaptively integrated with
their inner traits. In this way, the student states can be refined,
and our general ECD framework is well defined to be implemented
by combining with existing cognitive diagnosis solutions. For in-
stance, we can have ECD-IRT by combining with IRT [6], ECD-
MIRT with MIRT [30] and ECD-NeuralCD with NeuralCD [36], re-
spectively. Finally, we conduct extensive experiments on nearly
52 million records of the students sampled by PISA (Programme
for International Student Assessment) from 73 countries and re-
gions over the world. The experimental results not only prove that
ECD is more effective in student performance prediction since it
can well capture the impact from educational contexts to students’
cognitive states, but also show the superior interpretability of the
ECD framwork. For instance, we give some interesting discoveries
regarding the different influence from different educational con-
texts in different countries and regions.

2 RELATEDWORK
The related researches can be grouped into following categories.
Context-aware Modeling. Context-aware user modeling plays
an important role in information retrieval (IR) [31] related tasks,
ranging from web search [13], recommendation [22, 39] to online
advertising [41]. Following, we take context-aware recommenda-
tion as an example for better illustration, and there are generally
two main streams. Researchers in the first stream processed the
contextswith probabilistic graphical models, like the Latent Dirich-
let Allocation (LDA) related ones [19, 42]. The work in the sec-
ond stream usually adopt neural networks to get deep represen-
tations of context [10], where the interaction learning of various
contexts and the extendablility of the methods are the major focus.
For instance, Wide & Deep [3] jointly considers both memoriza-
tion and generalization abilities with its Wide and Deep architec-
ture. It adopts Deep Neural Network (DNN) as Deep part for gen-
eralization ability and generalizes linear model as Wide part for
memorization ability. Besides, DeepFM [9] and NFM [11] combine
neural Factorization Machine (FM) with DNN where neural FM in-
troduces the interaction of different features. Then, DCN [37] and
xDeepFM [17] design specific network module to capture high or-
der interactions. And AFM [40] and AutoInt [34] conduct atten-
tion on features’ interactions. In summary, context-aware model-
ing has been successfully applied to enhance the quality of ser-
vice in user preference prediction related fields. However, from
this data-driven perspective, the problem of how contexts affect
people’s knowledge proficiency is still underexplored.
Educational Context Analysis. Educational context is mainly
discussed in the education domain, where the researchers often
propose a set of assumptions to get a qualitative analysis of the
influence from environment on students’ learning process. For in-
stance, the social cognitive theory [24] has already introduced the
idea of interaction between environment and study. Recently, a
number of works use professor-defined profiles to collect target
educational contexts and analyze the results with traditional sta-
tistical methods. Since educational contexts have complex content
from various of topics, most of these works focus on several spe-
cific contexts, including features from various aspects, like coun-
try (e.g., education policy [14]), school (e.g., school teaching [29],
school climate [16]), home (e.g., parents involvement [25]), person
(e.g., epistemological belief [2]) and so on. However, due to the in-
explicit and complex influence mechanism of educational context
on student performance, the traditional analysis methods usually
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Table 1: Educational context examples.

Aspect Context examples

Home

Highest education degree of parents

Parents involvement in children’s study

Home Economic, Social and Cultural Status (ESCS)

School

Method of school teaching and learning

Teacher’ attitude to teaching and students

Information and Communication Technology (ICT)

Person

Duration in early childhood education

Whether students have a grade repetition experience

Science activities experience out of school

can not build a quantitative relationship between educational con-
texts and specific student’s learning states.
Cognitive Diagnosis. Cognitive diagnosis is a fundamental task
in intelligent education. Most of existing methods can be classified
into two types based on the data/information exploited, namely
raw-response type and exercise information enhanced type. The
raw-responsemethods only use students’ numeric response records
to infer their states, such as Item Response Theory (IRT) [6] and
Probabilistic Matrix Factorization method (PMF) [35]. Specifically,
IRT adopts a logistic-like function to describe integrated knowl-
edge state of students, in which probability of right response 𝑃
is denoted as the interaction of student’s proficiency level 𝜃 , the
exercise difficulty 𝛼 and discrimination 𝛽 . The assumption lies in
that the higher level of student’s proficiency, the higher probability
that she will correctly response the exercise, and a simple version
of IRT is represented as:

𝑃 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑎(𝜃 − 𝑏)), (1)
where the parameters 𝜃 , 𝛼 and 𝛽 are learned by fitting the stu-
dents’ historical response data. One step further, the exercise infor-
mation enhanced methods [20] could introduce extra information
from exercises. To be specific, MIRT [30] extends the dimension of
scalar parameters in IRT (e.g., 𝜃 and 𝛽) to the number of knowl-
edge concepts. DINA [5] adopts the exception assumptions, i.e.,
slip and guess. FuzzyCDF [21] further takes the partially correct
responses on subjective problems into consideration with fuzzy set
theory. More still, Deep Learning Enhanced Item ResponseTheory
(DIRT) [4] consides extracting the exercises’ text materials with
elaborately designed network to restrict the exericise-related pa-
rameters. Besides, Neural cognitive diagnosis (NeuralCD) [36] is
an extendable framework, and it models complex interaction be-
tween students and exercise by neural network. Generally, these
existing methods just exploit students’ historical response logs or
exercise-related information for diagnosing the cognitive states of
each student, and can not handle the educational contexts.
3 PRELIMINARIES
In this section, we give a brief introduction of the educational con-
text, the datasets and a formal definition of the educational context-
aware cognitive diagnosis problem.
Educational Context Description Educational context refers to
the various features related to the students’ learning process, which
may come from different aspects. Table 1 lists several examples of
educational contexts, whichmay contain different feature answers.
For instance, answers to “Highest education degree of parents”

Figure 2: Student average score by mother’s education.

(a) Pearson heatmap (b) Correlation distribution

Figure 3: The correlations between context features.
may include “1 (General senior)”, “2 (Vocational senior)” , “3 (Ju-
nior)” , “4 (Primary)” and “5 (Not complete Primary)”, respectively.

In fact, educational context features are usually difficult to col-
lect. Fortunately, we now can address this issue with the help of
OECD’s Programme for International Student Assessment (PISA).
PISA is one of the most famous worldwide testing programme,
which is honored as Olympic Games in testing project and attracts
nearly one hundred regions or countries to take part in. Specifi-
cally, PISAmeasures 15-year-olds’ ability to use their reading,math-
ematics and science knowledge and skills to meet real-life chal-
lenges. Besides, it releases questionnaires to collect the students’
educational contexts (like those contexts in Table 1) andmake anal-
ysis [27]. Generally, the PISA puts out every three years with grow-
ing scale and releases the data and technical reports successively in
the following three years. In this paper, we take the public dataset
of PISA 20151 as an example, which focus on science assessment.

With the guidance of technical report in “PISA 2015 Results”
[28], we select the students’ questionnaire context data and sci-
ence cognitive data from different regions to compose three subset
datasets (i.e., Asia, Europe and America) and their statistical infor-
mation will be given in the experimental part (Section 5.1.1). To
intuitively understand the characteristics of educational contexts,
we analyze the relationship between educational contexts and stu-
dent performance. In Figure 2, we visualize the distribution of stu-
dents’ average score with their answers to the context of “highest
level of schooling completed bymother”.We can find that mother’s
education level is positively correlated to students’ average score.

However, a small number of students with answer of “Not com-
plete primary” may still have high average score, whichmeans they
are less influenced by this negative educational context feature.
Therefore, the influence of the same educational context can be
personalized. We also briefly analyze the correlation distribution
between context features. Specifically, except the contexts with
digital answers (e.g., ”Learning time”), there are also natural or-
dinal relation in many contexts of non-digital answers (e.g., ”Not
1http://www.oecd.org/pisa/data/2015database/
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Figure 4: Overview of ECD Framework .
complete Primary - Primary - Junior - Senior” for ”Education level”,
”Strongly disagree - Disagree - Agree - Strongly agree” for ”Good
class atmosphere”). We coded those context answers to numbers by
their order and then compute the Pearson correlation coefficient
between the coded answers of different contexts, and two contexts
are treated as correlated if the coefficient is greater than 0.3. We vi-
sualize Pearson coefficient between context features in Figure 3(a)
, which shows inherent relevance between contexts. Moreover, we
summarize the correlation distribution of contexts in Figure 3(b),
where most educational contexts are correlated with others.
ProblemDefinition.We formally introduce the educational context-
aware cognitive diagnosis problem.

Suppose we have N students, T educational context questions,
and M exercises in a learning system, which can be represented
as S = {𝑠1, 𝑠2, ..., 𝑠𝑁 }, Q = {𝑞1, 𝑞2, ..., 𝑞𝑇 }, E = {𝑒1, 𝑒2, ..., 𝑒𝑀 } re-
spectively. The logs 𝑅, consisting of educational context question
response records 𝑅𝑞 and exercise response records 𝑅𝑒 , are denoted
as set of triplet (𝑠, 𝑞, 𝑟𝑞) and (𝑠, 𝑒, 𝑟𝑒 ) respectively, where 𝑠 ∈ S,
𝑒 ∈ E, 𝑞 ∈ Q, 𝑟𝑞 is the response (e.g., ”General senior”) that stu-
dent 𝑠 answered on educational context question 𝑞 (e.g., ”Highest
education degree of parents”) and 𝑟𝑒 is the score (transferred to
percentage) that student 𝑠 got on exercise 𝑒 . Then the problem can
be formally defined as:

Definition 3.1. Educational context-aware cognitive diagnosis:
Given students’ logs 𝑅 = {𝑅𝑞, 𝑅𝑒 }, our goal is to infer students’
proficiency on knowledge concepts (i.e., student states in Figure 1)
through student performance (i.e., exercise answering) prediction.

4 EDUCATIONAL CONTEXT-AWARE
COGNITIVE DIAGNOSIS FRAMEWORK

In this section, we first give an overview of the two-stage Educa-
tional context-aware Cognitive Diagnosis (ECD) architecture, and
then describe these two stages in detail.
4.1 Model Overview
Generally, the exercise answering process can be formulated as:

𝑟 = 𝐹 (𝜃, 𝜙𝑒 ), (2)
where 𝑟 refers to student response (score or correctness), 𝜃 denotes
student’s knowledge proficiency, 𝜙𝑒 denotes the exercise parame-
ters 𝑒 (e.g., difficulty 𝑏, discrimination 𝑎). 𝐹 denotes the manually
designed cognitive behavior function (e.g., item response function

in IRT, Eq.(1)) that models the interaction between student and
exercise parameters and output the response. Considering the ed-
ucational contexts of a student, we further divide 𝜃 into two parts:

𝜃 = 𝐺 (𝜃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , 𝜃𝑖𝑛𝑛𝑒𝑟 ), where 𝜃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝐻 (𝐶), (3)
where 𝜃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is the student external traits affected by educational
contexts, 𝜃𝑖𝑛𝑛𝑒𝑟 is the student inner traits that traditional cognitive
diagnosis concerns and𝐺 denotes the influence function of the two
student traits. 𝐶 is the educational context of the student, and 𝐻
denotes the influence function of educational context on student
external traits 𝜃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 , which we mainly focus on in this work.

As Figure 4 shows, the overall architecture of ECD framework
consists of two stages: educational context modeling stage and di-
agnosis enhancement stage. In educational context modeling stage,
we design attention networks tomodel the influence of educational
contexts on 𝜃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 . Specifically, we first group the diverse educa-
tional contexts into several fields and simulate personalized influ-
ence respectively with the context filtering layer. Then, we model
the inherent relevance among different fields in context interac-
tion layer. After that, the context aggregation layer captures field
level personality and generate the external student traits 𝜃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 .
In the diagnosis enhancement stage, we combine𝜃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 and𝜃𝑖𝑛𝑛𝑒𝑟
(Eq.(3)) and then output the predicted score with the cognitive be-
havior function (Eq.(2)). After training with students’ logs 𝑅, we
will get 𝜃 of each student as the diagnostic results.
4.2 Educational Context Modeling
In the educational context modeling stage, we design a hierarchi-
cal attentive network to model the personalized and inherently
relevant influence of educational contexts on students. The whole
network consists of four layers: embedding layer, context filtering
layer, interaction layer and aggregation layer.
4.2.1 Embedding layer. This layer is used to assign trainable em-
beddings to each educational context entry 𝑢 𝑗 and each student 𝑠𝑡 .
We assign each context entry with an influence key vector 𝒄𝑘 ∈
R𝑑1 and an influence value scalar 𝑐𝑣 , which indicate the latent fea-
ture of the context entry and its influence intensity respectively.
For each student 𝑠𝑡 , we assign a trainable student latent character
vector 𝒙𝑡 ∈ R𝑑1 to capture 𝑠𝑡 ’s fitness of different context entries.
𝑑1 is the vector dimension manually set. It is worth noting that
different context entries (e.g., ”Female” and ”Male”) of the same
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Figure 5: Context Embedding and Filtering Layers.
context feature (e.g., ”Student Gender”) will not appear in a single
student. As a result, for𝑚 different context features, each student
would have at most𝑚 context entries.
4.2.2 Context filtering layer. Theeducational contextsmay involve
features from different aspects, causing it unsuitable to model their
influence uniformly. Therefore, we group the educational context
entries into 𝑈 context fields C = {C1, C2, . . . , C𝑈 } according to
their content, where C𝑖 = {𝑐𝑖1, 𝑐𝑖2, . . . , 𝑐𝑖𝑚𝑖 }. Generally, a context
field C𝑖 contains𝑚𝑖 context entries for𝑚𝑖 context features.

Then, with the consideration of personalizing the context influ-
ence for each student, we use attention mechanism to obtain the
weights of different context entries. Figure 5 shows the attention
based filtering method applied in each context field. We first calcu-
late the cosine similarity between the student character 𝒙𝑡 and the
context influence key vectors 𝒄𝑘𝑖 = (𝒄𝑘𝑖1; 𝒄

𝑘
𝑖2; . . . ; 𝒄

𝑘
𝑖𝑚𝑖

):
𝒘𝑖 = Softmax(𝑠𝑖𝑚(𝒙𝑡 , 𝒄𝑘𝑖 )), (4)

where 𝑠𝑖𝑚 denotes the cosine similarity function, and the weights
in 𝒘𝑖 reflect the student’s fitness on different context entries. Fi-
nally, the influence of each educational context field is generated
with the weighted-summation of different features in the field:

𝑣𝑖 =
∑𝑚𝑖

𝑗=1
𝑤𝑖
𝑗 ∗ 𝑐

𝑣
𝑖 𝑗 , 𝒌𝑖 =

∑𝑚𝑖

𝑗=1
𝑤𝑖
𝑗 ∗ 𝒄

𝑘
𝑖 𝑗 , (5)

where𝑤𝑖
𝑗 is the 𝑗-th weight in𝒘𝑖 . The influence intensity 𝑣𝑖 is the

overall influence intensity from context field C𝑖 on student 𝑠𝑡 be-
fore considering the relevance among different fields. The influ-
ence type 𝒌𝑖 describes the personalized latent feature of C𝑖 .
4.2.3 Context interaction layer. To model the inherent relevance
between different educational context fields, we introduce a self-
attention module in the interaction layer. As shown in Figure 6,
after the context filtering layer, we get the influence type 𝒌𝑖 and
intensity 𝑣𝑖 of educational context field C𝑖 , which are both person-
alized from Eq. (5). By applying the self-attention mechanism to
the 𝒌𝑖 and sharing the weights to 𝑣𝑖 , we can simulate the person-
alized inherent relevance between educational context fields.

𝒘𝑖 = Softmax(𝑠𝑖𝑚(𝒌𝑖 , 𝒌)), 𝑖 ∈ {1, ...,𝑈 },
where 𝒌 = (𝒌1; 𝒌2; . . . ; 𝒌𝑈 ), (6)

𝒌 ′𝑖 =
∑𝑈

𝑗=1
𝑤𝑖, 𝑗 ∗ 𝒌 𝑗 , 𝑣 ′𝑖 =

∑𝑈

𝑗=1
𝑤𝑖, 𝑗 ∗ 𝑣 𝑗 . (7)

4.2.4 Context aggregation layer. After the interaction layer, we
have obtained the educational context field representations with
consideration of both personalization in feature level and inher-
ent relevance in field level. In context aggregation layer, we utilize
another attention module to assemble the influence from differ-
ent context fields and finally get the student external trait 𝜃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 .
Again, the student’s latent vector 𝒙𝑡 is used to calculate the simi-
larities between 𝒌 ′𝑖 to ensure the personality in context fields:

Figure 6: Context Interaction and Aggregation Layers.
𝒘 ′ = Softmax(𝑠𝑖𝑚(𝒙𝑡 , 𝒌 ′)),
where 𝒌 ′ = (𝒌 ′1; 𝒌

′
2; . . . ; 𝒌

′
𝑈 ),

(8)

𝜃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =
∑𝑈

𝑖=1
𝑤 ′
𝑖 ∗ 𝑣

′
𝑖 . (9)

The student’s external trait 𝜃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is a global and imperceptible
influence on students’ cognitive states, while the students’ inner
trait 𝜃𝑖𝑛𝑛𝑒𝑟 inferred from student exercise logs is the local reflec-
tion of students’ ability or knowledge proficiency (depending on
the chosen cognitive diagnosis model). Therefore, we need to take
them both into consideration.
4.3 Diagnosis Enhancement
In this stage, we integrate the external student trait reflected by
educational contexts with existing cognitive diagnosis models.

Specifically, we first represent the inner trait 𝜃𝑖𝑛𝑛𝑒𝑟 with a stu-
dent latent vector. Then, we choose an adaptive optimization of
personalized weight-added method (𝐺 in Eq. (3)) to aggregate the
student‘s external and inner traits as the students’ final states.

𝜃 = 𝑑𝑡 ∗ 𝜃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 + (1 − 𝑑𝑡 ) ∗ 𝜃𝑖𝑛𝑛𝑒𝑟 , (10)
where 𝑑𝑡 is the trainable weight personalized for each student 𝑠𝑡 ,
and𝜃 ,𝜃𝑐𝑜𝑛𝑡𝑒𝑥𝑡 ,𝜃𝑖𝑛𝑛𝑒𝑟 are the student’s final knowledge proficiency,
student’s external trait extracted from educational contexts and
student’s inner trait inferred from response records respectively.
We adopt existing cognitive diagnosis models as 𝐹 in Eq. (2). The
prediction of students’ responses on exercises is formulated as:

𝑟 = CDMethod(𝜃, 𝜙𝑒 ), 𝜙𝑒 = {𝑏, ...}, (11)
where CDMethod denotes existing cognitive diagnosismodels, like
IRT [6], MIRT [30] and NeuralCD [36], 𝜙𝑒 denotes the parameters
related to the exercise (e.g., exercise difficulty 𝑏) in the adopted
traditional cognitive diagnosis model.
4.4 Model Learning
With the summarization of the whole model in Figure 4, during
model learning, we train the parameters in context modeling 𝜙𝑐 =
[{𝒄𝑘𝑖 𝑗 , 𝑐

𝑣
𝑖 𝑗 }, 𝒙𝑡 ], weight variable 𝑑𝑡 and parameters in existing meth-

ods 𝜙𝑒 and 𝜃𝑖𝑛𝑛𝑒𝑟 . We apply the multi-learning methods to handle
it. Specifically, like the common methods in two-classify task, we
use the cross entropy as the loss function.

𝑙𝑜𝑠𝑠 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑟, 𝑙𝑎𝑏𝑒𝑙), (12)
where 𝑟 is the predictions of the model and 𝑙𝑎𝑏𝑒𝑙 is the ground
truth of the students’ responses on the exercises. In order to get all
the parameters well-trained, we adjust the loss function as:

𝑙𝑜𝑠𝑠𝑐 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑟𝑐 , 𝑙𝑎𝑏𝑒𝑙), (13)
𝑙𝑜𝑠𝑠𝑒𝑥𝑖𝑠𝑡 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑟𝑒𝑥𝑖𝑠𝑡 , 𝑙𝑎𝑏𝑒𝑙), (14)

𝑙𝑜𝑠𝑠 ′ = 𝑙𝑜𝑠𝑠 + 𝛼 ∗ 𝑙𝑜𝑠𝑠𝑐 + 𝛽 ∗ 𝑙𝑜𝑠𝑠𝑒𝑥𝑖𝑠𝑡 , (15)
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Table 2: Results on student performance prediction.

Asia Europe America
Model AUC RMSE ACC AUC RMSE ACC AUC RMSE ACC
Random 0.499 0.578 0.499 0.500 0.577 0.501 0.502 0.577 0.501
NeuralCD 0.714 0.490 0.658 0.718 0.476 0.659 0.712 0.495 0.665

DeepFM-NeuralCD 0.728 0.488 0.660 0.745 0.455 0.688 0.743 0.472 0.661
NFM-NeuralCD 0.722 0.483 0.660 0.718 0.494 0.667 0.717 0.486 0.652
ECD-NeuralCD 0.745 0.468 0.677 0.770 0.443 0.700 0.764 0.445 0.699

IRT 0.734 0.460 0.675 0.741 0.456 0.687 0.736 0.455 0.678
DeepFM-IRT 0.736 0.459 0.673 0.753 0.450 0.689 0.768 0.443 0.701
NFM-IRT 0.724 0.464 0.670 0.752 0.452 0.679 0.771 0.441 0.703
ECD-IRT 0.757 0.449 0.689 0.760 0.447 0.699 0.773 0.439 0.703
MIRT 0.669 0.484 0.622 0.696 0.493 0.650 0.691 0.475 0.655

DeepFM-MIRT 0.744 0.460 0.676 0.741 0.454 0.684 0.738 0.459 0.678
NFM-MIRT 0.736 0.463 0.665 0.757 0.452 0.692 0.755 0.449 0.688
ECD-MIRT 0.786 0.435 0.704 0.790 0.432 0.710 0.795 0.427 0.715

Table 3: The statistics of datasets from PISA.

Datasets Students Educational
contexts

Context
records

Exercise Exercise
records

Asia 76,609 300 14,586,482 260 2,172,516
Europe 69,016 300 18,127,964 260 1,952,577
America 62,091 300 14,205,515 260 1,746,899

where 𝑟𝑐 denotes the prediction with only the students’ external
trait from educational contexts (the weight variable in Eq. (10) 𝑑𝑡
= 1), 𝑟𝑒𝑥𝑖𝑠𝑡 denotes the predictions with only existing methods (the
weight variable in Eq. (10) 𝑑𝑡 = 0). 𝛼 , 𝛽 are hyper parameters that
trade off these three losses, and 𝑙𝑜𝑠𝑠 ′ is the final loss function.
5 EXPERIMENTS
We conduct experiments to demonstrate the effectiveness of ECD
frameworkwith several baselines. Besides, based on ECD,we deeply
analyze the influence of educational context features on students’
learning states, make discussion on some typical observations. 2

5.1 Experimental Setup
5.1.1 Data partition and preprocessing. Theoverall PISA 2015 dataset
contains more than 0.5 million students from 73 different countries
and regions. We further extract three datasets from PISA 2015 by
area, namely Asia, Europe, America. In each dataset, we have 300
different questions related to different educational context features
and get students’ response records on totally 260 science cognitive
exercises, respectively. Specially, we filter out the students whose
records are less than 20 to ensure that there is sufficient data for
training. Further, in our datasets, the questionnaire problems are
manually grouped into fields (𝑈 = 23) according to their content
and the guidance in reports of PISA 2015 [26]. Some basic statis-
tics of these datasets are shown in Table 3. Finally, we radomly
partition all the datasets into 80%/20% for training/testing.
5.1.2 Baseline Approaches. To verify the influence of educational
context features on students’ performances, we present three im-
plementations based on ECD framework that combine typical diag-
nosis methods. In particular, we implement ECD-IRT, ECD-MIRT
and ECD-NeuralCD following IRT, MIRT, NeuralCD, respectively.

• IRT [6]: IRT is a cognitive diagnosis method which mod-
els the cognitive processes from students’ exercising records
with a logistic-like function.

• MIRT [30]: MIRT is a vairant of basic IRT model, where it
extends the latent trait value of each student in IRT to a
multi-dimension knowledge proficiency vector.

2Our code of ECD is available at https://github.com/bigdata-ustc/ECD.

• NeuralCD [36]: NeuralCD is a deep neural cognitive diagno-
sis framework which models the interaction from students’
exercising records with a multilayer perceptron (MLP).

Specifically, to demonstrate the effectiveness of context model-
ing in our ECD, we compare it with two typical context modeling
methods widely used in context-aware recommendation works.

• DeepFM [9]: DeepFMutilizes a neural factorizationmachine
to learn the interaction of features in bit wise. Then it com-
bines the output of the two parts as the final result.

• NFM [11]: NFMuses a neural factorizationmachine tomodel
the features’ interaction in vector wise and pass the output
to a DNN module to get the final result.

Besides, since PISA datasets are new to cognitive diagnosis task,
we also compare with the basic random algorithm which predicts
the students’ scores randomly from𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(0, 1).
5.1.3 Metrics. The performance of cognitive diagnosis models is
difficult to evaluate as we can’t obtain the true knowledge profi-
ciency of students. Following existing works, we evaluate these
models indirectly through the results of students’ performance pre-
diction, from both regression and classification perspectives. As a
regression task, we quantify the distance between the predicted
and actual scoreswith RootMean Square Error (RMSE).The smaller
the values are, the better the results have. Treating the problem
as a classification task, where a record with score 1(0) indicates a
positive (negative) instance, we adopt Area Under an ROC Curve
(AUC) and Prediction Accuracy (ACC) to measure the effective-
ness [1, 32], and the larger values are, the better the results have.
5.1.4 ECD Setting. We specify the experimental setups in ECD,
including ECD framework settings and diagnosis model settings.
In ECD, for all implementations, that is ECD-IRT, ECD-MIRT and
ECD-NeuralCD, we set the dimensions of student type vector and
context influence type vector as 10 and assign the similarity mea-
sure in attention mechanismwith cosine similarity. In addition, for
diagnosis models, typical 2-PL model of IRT [6] and MIRT [30] are
respectively adopted to ECD-IRT, ECD-MIRT, and origin settings
of NeuralCD are applied in ECD-NeuralCD following [36].
5.1.5 Training Setting. To set up the training process, we initialize
the parameters with Xavier initialization [8], which fill the weights
with randomvalues sampled from𝑁 (0, 𝑠𝑡𝑑2), where 𝑠𝑡𝑑 =

√
2

𝑛𝑖𝑛+𝑛𝑜𝑢𝑡 ,
𝑛𝑖𝑛 is the number of neurons feeding into the weights, and 𝑛𝑜𝑢𝑡 is
the number of neurons the results is fed to. Besides, we set themini
batches as 128 and select different weight variables 𝛼 and 𝛽 and 𝑙𝑟
(learning rate) for different models (i.e., 𝛼 = 4, 𝛽 = 0, 𝑙𝑟 = 0.005 for
IRT-based models, 𝛼 = 0, 𝛽 = 4, 𝑙𝑟 = 0.001 for MIRT-based models
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Table 4: Results of ablation experiment.

Asia Europe America
Model AUC RMSE ACC AUC RMSE ACC AUC RMSE ACC
ECD-NeuralCD 0.745 0.468 0.677 0.770 0.443 0.700 0.764 0.445 0.699
- Filtering 0.743 0.469 0.669 0.764 0.445 0.699 0.762 0.445 0.699
- Interaction 0.736 0.471 0.665 0.752 0.451 0.687 0.746 0.463 0.684
- Aggregation 0.738 0.465 0.668 0.747 0.456 0.678 0.747 0.450 0.690
ECD-IRT 0.757 0.449 0.689 0.760 0.447 0.699 0.773 0.439 0.703
- Filtering 0.745 0.456 0.680 0.752 0.451 0.695 0.757 0.447 0.694
- Interaction 0.745 0.455 0.677 0.756 0.449 0.694 0.768 0.442 0.699
- Aggregation 0.739 0.456 0.680 0.755 0.450 0.688 0.754 0.448 0.687
ECD-MIRT 0.786 0.435 0.704 0.790 0.432 0.710 0.795 0.427 0.715
- Filtering 0.781 0.440 0.695 0.787 0.433 0.706 0.788 0.434 0.709
- Interaction 0.779 0.443 0.695 0.787 0.433 0.708 0.788 0.433 0.704
- Aggregation 0.773 0.443 0.698 0.777 0.438 0.700 0.763 0.442 0.692

Figure 7: 𝑥𝑡 vectors colored with average score.

Figure 8: Attention weight and coded response of context
features for different students.
and 𝛼 = 1, 𝛽 = 1, 𝑙𝑟 = 0.005 for NeuralCD-based models). All mod-
els are implemented by PyTorch using Python, and all experiments
are run on a Linux server with Tesla K80 GPU.
5.2 Experimental Results
5.2.1 Student Performance Prediction. Theoverall performances is
shown in Table 2, there are several key observations: Firstly, in gen-
eral, context modeling methods (e.g., DeepFM-MIRT, NFM-MIRT,
ECD-MIRT) outperform the original cognitive diagnosis methods
(e.g., MIRT). It indicates that the abundant educational context fea-
tures deserve consideration for cognitive diagnosis. Secondly, our
proposed ECD framework performs better than DeepFM or NFM
method on all the cognitive diagnosis methods in three datasets. It
notes that our method can model educational contexts more effec-
tively. Thirdly, our ECD methods have a stable great improvement
on all the cognitive diagnosis methods in three datasets, while the
performances of DeepFM and NFM methods are unstable and not
always positive for the student performance prediction task. As
mentioned before, there are critial diverse content, personalized in-
fluence and inherent relevance challenges in educational context
modeling. In our opinion, modeling contexts with consideration of
all the characteristics contributes the superiority of ECD.
5.2.2 Ablation. To verify the effectiveness of all the three layers
in ECD framework, i.e., context filtering, context interaction and
context aggreration, we conduct the ablation experiments. Specif-
ically, we successively replace each layer with an ordinary aggre-
gation layer, which simply averages the inputs, while maintain the
other two layers. Table 4 reports the results of each case, which we
conclude as following. Firstly, no matter which layer is replaced,
final performances decrease to some degree. It shows every layer

Figure 9: The distribution of 𝑑𝑡 values.

contributes to the final performances, which indicates the effective-
ness of these attentive modules modeling personized influence and
inherent relevance. Secondly, final performances suffer the great-
est damage when the context aggregation layer is replaced, which
indicates personalization in context field level plays the most im-
portant role in our educational context modeling.
5.2.3 Parameter Analysis. In our work, we define student latent
character vector, and students from different character will receive
different influence from the same educational context. One intu-
ition is that students with high performance may be affected by
positive contexts more. For instance, a hardworking students may
get more positive influence from the educational context “get tu-
toring” than a truant student. Further to observe the relationship
between student character and student performance, we visualize
the student character vectors after reducing their dimension by t-
SNE [15] and color each vector by the corresponding student’s av-
erage response score in Figure 7. It is noting that the distribution of
students’ character vector has close relationship with the students’
average score, which proofs the personalization characteristic of
educational contexts may reflect to students’ general ability and
the students will receive different influence from the same context.

Besides, as mentioned in Section 4.2, variable 𝑑𝑡 denotes the
weights of influence from context features. We visualize the dis-
tribution of 𝑑𝑡 values for different models and regions in Figure 9.
Specifically, we first summarize the distribution of 𝑑𝑡 in all regions
for each ECD model in Figure 9(a), 9(b), and 9(c). Further, we ana-
lyze the 𝑑𝑡 values of students from six specific regions across Asia,
Europe and America in Figure 9(d). We can find that distribution of
𝑑𝑡 values from basic cognitive diagnosis methods or regions vary
slightly. Moreover, for all models, most students have a 𝑑𝑡 value in

Research Track Paper KDD ’21, August 14–18, 2021, Virtual Event, Singapore

2426



Figure 10: Distribution of average knowledge proficiency.
[0.4,0.6], which means both the context influence and the historic
exercise records are not ignorable for a general diagnosis.
5.2.4 Attention Visualization. In ECD framework, we use an at-
tention mechanism in context filtering layer to model the impor-
tance of different context features. To verify the effectiveness of
the context filtering layer, we analyze the relationship between at-
tention weights of educational context features and students’ per-
formances. Here, we visualize an example of ten different students’
context features from educational context field “home ESCS” in Fig-
ure 8. Specially, the former 5 students (No. 0-4) have low average
scores while the last 5 students (No. 5-9) have a high level perfor-
mances. Then, we note the responses on the widely focused con-
text “Books” and other focused responses, which is coded to num-
ber 1-6. Specifically, the context “Books” refers the problem “How
many books are there in you home?”, and the higher number refers
to the more books. Apparently, there is a correlation between the
students’ answers and their performances that more books have
a more positive influence on students’ performances. As the Fig-
ure 8 shows, the low score level students have higher attention on
the negative answers (e.g. 1, 2) and the positive answers (e.g. 4,5,6)
weight more in high score level students. Besides, it is worth not-
ing that there are not always many books for some students with
high scores (No. 8-9). In this case, some other features, like “Televi-
sions” and “Musical instruments”, maymake a positive influence for
students just as the samples shown in Figure 8. This indicates that
the attention mechanism in context filtering layer can reasonably
model the personalized influence of different features on students.
5.2.5 Cognitive States Visualization. To indicate the effectiveness
of our ECD framework, we compare the average diagnosis results
of regions with the PISA report [26]. Specifically, in the PISA re-
port, the science literacy of students have been evaluated as scores
in region level. Typically, we take four representative regions from
different continents, i.e., Singapore, Japan, United States and France
as example, where the scores are 556, 538, 496, 495, respectively. In
each region, we first compute the average knowledge proficiency
of students: 𝜃𝑔 =

∑𝑛
𝑖=1 𝜃𝑖
𝑛 , (𝑔 ∈{𝑆𝑖𝑛𝑔𝑎𝑝𝑜𝑟𝑒 , 𝐽𝑎𝑝𝑎𝑛,𝑈𝑆𝐴 and 𝐹𝑟𝑎𝑛𝑐𝑒}),

where 𝑔 denotes the region, 𝑛 denotes the numbers of students and
𝜃𝑖 refers the knowledge proficiency of 𝑖-th student. Here we take
the final 𝜃 (Eq. (10)) from ECD-NeuralCD as an example. Then we
visualize the distribution of 𝜃𝑟 in all knowledge concepts in Figure
10. We can find that the order of regions are consistent with the
report of PISA. Moreover, we also visualize 𝜃𝑔 of 6 specific knowl-
edge concepts in Figure 11 to intuitively reflect the difference. Sim-
ilarly, the 𝜃𝑈𝑆𝐴 and 𝜃𝐹𝑟𝑎𝑛𝑐𝑒 is lower than 𝜃𝑆𝑖𝑛𝑔𝑎𝑝𝑜𝑟𝑒 and 𝜃 𝐽 𝑎𝑝𝑎𝑛
in all six concepts. Besides, compared with 𝜃𝐹𝑟𝑎𝑛𝑐𝑒 , 𝜃𝑈𝑆𝐴 is lower
in concepts of “Nanoparticles”, “Bacteria” and “Carbon Dioxide” but

Figure 11: Visualization of average knowledge proficiency.
higher in “Urban Heat Island Effect”, “Radiotherapy” and “Geother-
mal Energy”. Genernally, ECD can further discriminate these spe-
cific difference in knowledge concepts between regions, while the
assessment in region level keeps consistent with the PISA report.
5.3 Discussion
In addition to promote student diagnosis, we also wonder the im-
portance of different educational contexts. As menthioned in Sec-
tion 4.2, different educational contexts will be aggregated in the
context aggregation layer with an attention module. For specific
student, the attention weight of a certain context denotes its im-
portance. Following this line, we record the 3 most important con-
texts for each student and summarize the results by region in Table
5, where contexts of different aspects are noted with different color
(i.e., red for home, blue for school and black for person).

Here are some interesting and instructive observations. Firstly,
context “Parent education” are focused in China and Korea. In our
opinion, that can be concerned with the similar local tradition in
education. For instance, national college entrance exam plays an
important role in the students’ education in China and Korea. It
puts a heavy stress on students and even their parents. In other
regions, “Parent education” does not attract a wide attention. How-
ever, that does not mean the education contexts of home aspect
can always be ignored. On the contrary, all regions give much at-
tention in educational context “home ESCS (Economic, Social and
Cultural Status )“, which suggests the considerable impact of fam-
ily support in learning process. Similarly, in school aspect, contexts
”School learning” and ”Teaching attitude” shows difference between
regions from Aisa and the others, while ”School ICT ” and ”ICT Us-
age” play an important role in all regions ( data of the two contexts
is lack in USA). All those note that the educational resources are
vital for the student learning. Finally, compared with other envi-
ronment context features, contexts of person aspect weights less
in most regions, which indicates that external features are gener-
ally more important. This inevitably alert us to worry about and
attach importance to educational fairness.
6 CONCLUSION
In this paper, we presented a novel framework ECD for students’
cognitive diagnosis, which is also a quantitive perspective for ed-
ucational context understanding. Specifically, we first designed a
two-stage solution with a hierarchical attentive network modeling
the influence of educational contexts and an adaptive optimization
for student traits aggregation.Then, we implemented three specific
models with different existing methods under the framework, (i.e.,
ECD-IRT, ECD-MIRT, ECD-NeuralCD). Besides, we conducted ex-
tensive experiments on real-world datasets to demonstrate the ef-
fectiveness as well as interpretability of ECD framework. Finally,
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Table 5: Important educational contexts in different regions.
Regions Context

Uinted States “Home ESCS”, “School learning”, “Teacher Attitude”, “Self-efficacy”
Uinted Kindom “Home ESCS”, “School learning”, “Teacher Attitude”, “School ICT”, “ICT Usage”, “Self-efficacy”

France “Home ESCS”, “School learning”, “Teacher Attitude”, “School ICT”, “ICT Usage”
Germany “Home ESCS”, “School learning”, “Teacher Attitude”, “School ICT”, “ICT Usage”

Italy “Home ESCS”, “School learning”, “Teacher Attitude”, “School ICT”, “ICT Usage”
Singapore “Home ESCS”, “School ICT”, “ICT Usage”, “Interest on science”, “Self-efficacy”

Japan “Home ESCS”, “School ICT”, “ICT Usage”, “Self-efficacy”
Korea “Parent education”, “Home ESCS”, “School ICT”, “ICT Usage”
China “Parent education”, “Home ESCS”, “School ICT”, “ICT Usage”

we analyzed and discussed the difference of influencial context fea-
tures for students from different regions with our ECD framework.
We hope this work will lead to more studies in the future.
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