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ABSTRACT
Learning informative representations for educational questions is
a fundamental problem in online learning systems, which can pro-
mote many applications, e.g., difficulty estimation. Most solutions
integrate all information of one question together following a super-
vised manner, where the representation results are unsatisfactory
sometimes due to the following issues. First, they cannot ensure
the presentation ability due to the scarcity of labeled data. Then,
the label-dependent representation results have poor feasibility
to be transferred. Moreover, aggregating all information into the
unified may introduce some noises in applications since it cannot
distinguish the diverse characteristics of questions. In this paper,
we aim to learn the disentangled representations of questions. We
propose a novel unsupervised model, namely DisenQNet, to di-
vide one question into two parts, i.e., a concept representation that
captures its explicit concept meaning and an individual represen-
tation that preserves its personal characteristics. We achieve this
goal via mutual information estimation by proposing three self-
supervised estimators in a large unlabeled question corpus. Then,
we propose another enhanced model, DisenQNet+, that transfers
the representation knowledge from unlabeled questions to labeled
questions in specific applications by maximizing the mutual infor-
mation between both. Extensive experiments on real-world datasets
demonstrate that DisenQNet can generate effective and meaning-
ful disentangled representations for questions, and furthermore,
DisenQNet+ can improve the performance of different applications.

CCS CONCEPTS
• Information systems→ Information extraction; • Comput-
ing methodologies → Knowledge representation and reasoning.
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1 INTRODUCTION
Online learning systems, such as coursera.org, edX.org and xue-
tangx.com, have attracted a large number of learners around the
world [1]. In 2020, the Covid19 pandemic has impact promoted
the proliferation of online learning. According to the statistics of
Cousera (https://www.coursera.org/), over 77 million users are now
learning and practicing on the platform.

Nowadays, online learning systems collect millions of learning
materials (e.g., course and question), and facilitate many personal-
ized applications to improve learning experiences of students [1, 18,
36]. On one hand, students can select suitable courses or questions
to acquire knowledge according to their needs, e.g., selecting similar
questions to review required concepts after answering one ques-
tion incorrectly [18, 21, 27]. On the other hand, systems personalize
necessary services based on students’ feedbacks, e.g., recommend-
ing easier questions if noticing that students are struggling with
current materials [14, 24]. To support such services, it is necessary
to well organize the learning materials in advance [4], especially
educational questions. This brings out a fundamental research topic
of question understanding in AI education [30, 35], with the goal
of learning informative representations of educational questions.

In the literature, focusing on different question-based applica-
tions, such as difficulty estimation [14, 24] and similarity analy-
sis [18, 21], many efforts have been developed for understanding
question content by taking advantage of natural language process-
ing (NLP) techniques. In general, they design different models to
learn question representations as syntactic patterns or semantic en-
codings, which are directly optimized in specific application tasks.
For example, Qiu et al. [24] extracted semantic representations of
multiple-choice questions to predict the difficulty. Though they
have gained some achievements, there exist some limitations in
practical systems as follows. First, existing models follow super-
vised manner, which requires sufficient labeled data (e.g., difficulty
or similarity in Figure 1) for optimization. However, getting high-
quality labels for questions is extremely hard in practice because
experts to be competent should acquire enough professional knowl-
edge (so we cannot take crowdsourcing inmany traditional domains
like e-commerce) [37]. As indicated in the literatures, for example,
labeling similar questions should understand their psychological
purpose [18] and calculating the difficulty scores even requires
being examined in standard tests (e.g., GRE test) [5, 26]. Therefore,
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Figure 1: Three educational question examples. Blue con-
tents show they are related to “Function” concept. Green
parts present their personal information. Right red labels
tell us that Q1 is harder than Q2 and Q2 is similar to Q3.

such models cannot ensure the representation ability sometimes
due to the scarce labels. Second, their representation results are task-
dependent, which has poor feasibility to be applied across different
applications [6]. That is to say, we have to design different models to
represent same questions for different applications. Third, although
Yin et al. [36] pre-trained question representations to enhance the
model ability with unlabeled data, all existing solutions equally
represent a certain question as one unified vector, where all the
information are integrated together. However, questions with same
concepts (e.g., “Function”) can be quite different from its content
to show personal properties (e.g., difficulty) [14]. For example in
Figure 1, question Q1 is harder than Q2 as it has more complicated
expressions. Therefore, if we cannot distinguish such differences, it
may introduce some noises and mislead the applications.

To this end, we argue that an ideal question representation model
should satisfy three desirable abilities: 1) It can get rid of the labels in
specific tasks, which can be optimized by learning questions on their
own. 2) It should distinguish the diverse characteristics of questions
inherent by an explicit way. 3) The learned representations should
be flexible for being applied in different downstream tasks.

In this paper, we propose a novel unsupervised model, namely
DisenQNet, for question representation learning. In DisenQNet, we
aim to disentangle one question into two parts: a concept represen-
tation and an individual representation. Specifically, we develop
three self-supervised estimators to optimize two disentanglements.
First, we learn the question semantics by maximizing the mutual
information between itself and our two disentangled representa-
tions. Second, we enforce the concept representation with explicit
meaning by making prediction of its concepts. Third, we propose an
adversarial process to ensure two disentanglements independent so
that the individual one can preserve the question personality itself.
Particularly, DisenQNet can be optimized by learning questions on
their own without any additional annotations.

In addition, we propose another enhanced model, namely Dis-
enQNet+, that applies our learned representations to several ap-
plication tasks. Specifically, since our individual disentanglement
especially leaves the personal information of one question without
concept, it can be adapted to improve the representation ability
of supervised models in different tasks even if owning very lim-
ited labeled data. We achieve this goal by maximizing the mutual
information between the unsupervised representations and the su-
pervised representations so that the knowledge can be transferred
from DisenQNet to supervised models in different applications.

We perform extensive experiments on three datasets. We em-
pirically show that DisenQNet can generate meaningful disentan-
gled representations of educational questions, and DisenQNet+ can

improve the performance on domain-specific applications includ-
ing difficulty estimation and similarity analysis. To the best of our
knowledge, this is the first few attempts to learn disentangled repre-
sentations for educational questions by distinguishing the concept
and individual effects via mutual information estimation.

2 RELATEDWORK
In this section, we summarize the related work as follows.

Question Understanding. Online learning systems can collect
abundant educational materials, e.g., courses and questions, so that
provide several intelligent services, such as searching target ques-
tions and personalized recommendation [1, 19, 21], which attracts
many participations from the public. It is necessary to help systems
organize such materials, and thus triggers a fundamental issue in AI
education of question understanding. In the earlier time, scholars try
to design fine-grained rules or grammars to understand questions,
where they can be organized by specific structures like semantic
trees or templates [9]. However, such structures require manually
design with strong expertise and cost much time, but could only
match very limited questions with weak abilities. Obviously, they
are not suitable for online systems nowadays that contain millions
of question resources. Therefore, recent advances try to automati-
cally understand question textual content with semantic represen-
tations via natural language processing techniques, and support
several applications, such as difficulty estimation [14, 24], similarity
search [18, 21, 27], question solving [15] and student performance
prediction [19]. For example, Qiu et al. [24] extracted semantic rep-
resentations of multiple-choice questions to predict their difficulty
properties. Liu et al. [18] proposed an attention model to evaluate
the similarities of question pairs integrated with the heterogeneous
information. Though achieving some success, most of them gen-
erally follow a supervised manner, which suffer from two main
problems. First, the models require enough labeled data to ensure
the performance. However, labeling educational questions is hard
in practice because experts to be competent should acquire enough
professional knowledge. For example, estimating the difficulties of
GRE questions require organizing the exams with volunteers [5].
Such effort is even harder than traditional domains, such as news,
e-commerce [37], where crowdsourcing fails in practice. Second,
the learned question representations are task-specific, which are
incapable of being applied cross tasks. In other words, we should
design many complicated models for different tasks.

Question Pre-training. To deal with the problems of super-
vised solutions above, pre-training, as a kind of typical unsuper-
vised techniques, can make use of large-scale unlabeled data to en-
hance the representation ability for different data structures, such
as text [8] and image [10]. Since we focus on how to learn question
representation from its textual content, we generally review some
NLP efforts. Generally, representative methods can be divided into
two categories: feature-based methods, where text is represented
by some sorts of feature extractors as fixed vectors [22, 23], and
pre-training based methods, where parameters of models are pre-
trained on corpus and then fine-tuned in specific tasks [7, 8, 13].
Specially, BERT [7, 8] and GPT [25] are two of the most successful
methods, which have already performed impressively in many clas-
sic NLP tasks including question-answering machine translation,



etc, and continuously upgraded in recent years. To the best of our
knowledge, Yin et al. [36] made the first attempt to pre-train the
representations of educational questions from the heterogeneous
data. In summary, the main goal of pre-training methods is to make
full use of large corpus, which try to integrate all the information
together to learn one unified representation for each input. How-
ever, in practical learning systems, students try to distinguish the
differences of questions, e.g., questions with same concepts but
have inconsistent difficulty levels. Therefore, these pre-training
methods may be unsatisfactory.

Mutual Information. Mutual information is a fundamental
quantity for measuring the dependency between random vari-
ables [3, 17]. Since the mutual information is historically difficult
to compute for high-dimensional variables, recent works employ
several non-linear estimators based on deep neural networks to
maximize mutual information for representation learning in many
domains, such as image [3, 12], graph [31, 32] and recommenda-
tion [29]. For example, Hjelm et al. [12] proposed Deep InfoMax to
learn image representations via Jensen-Shannon divergence. Velick-
ovic et al. [32] and Sun et al. [31] proposed DGI and InfoGraph
for graph learning in terms of generating node level embeddings
and graph level embeddings, respectively. On the basis, Sanchez
et al. [28] employed mutual information estimation to learn image
disentangled representations with the shared ones and exclusive
ones via pairwise instance learning.

Our work targets at representation learning for educational ques-
tions. We try to propose an unsupervised model to disentangle one
question by distinguishing its concept meaning and individual in-
formation via mutual information estimation on its own. We also
propose a principle way to transfer our learned representations in
several downstream tasks, and therefore, provide a solid backbone
in use of questions in online learning systems.

3 PRELIMINARIES
In this section, we present the formal problem definition and intro-
duce some basic knowledge of mutual information.

3.1 Problem Definition
We focus on two problems. First, we define unsupervised represen-
tation learning problem for educational questions. Then, we present
question-based application tasks in online learning systems.

3.1.1 Unsupervised Question Representation Learning. Let Q de-
note a set of N questions Q = {q1,q2, · · · ,qN }. Each question
q ∈ Q is given as its text content with a sequence of M word to-
kens q = {x1,x2, · · · ,xM }, along with the concepts k ∈ K , where
|K | is the number of all concepts in the system. Please note that
each exercise may contain multiple concepts as shown in Table 1.
Traditionally, the representation learning for a certain question
is to output one unified d-dimensional vector (d ≪ N ), which
should capture as much information as possible. However, as we
mentioned in Section 1, questions with same concepts can be quite
different, so that it is worthwhile to distinguish such differences
in an explicit way. Therefore, our goal of disentangled question
representation learning transforms to output two d-dimensional
vectors including one vk ∈ Rd referring to its concept information
and the other vi ∈ Rd capturing the individual characteristics.

3.1.2 Question-based Supervised Tasks. The original question set
Q can be divided into two subsets QL and QU . Specifically, QL =

{q1,q2, · · · ,qL} represents the labeled questions whose properties
have been obtained by expertise or organizations, i.e., {y1,y2, · · · ,yL}.
Comparatively, QU = {q1,q2, · · · ,qU } is the unlabeled questions
whose properties remain unknown. Specifically,Q = QL ∪QU , and
|QL | ≪ |QU | in most cases. In real-world scenarios, the properties
can be specified with different labels, e.g., the difficulty level of one
specific question or the similarity score between a pair1. Given both
QL and QU , our general goal of supervised task can be formulated
as learning a model to predict the properties of unknown questions.
In this paper, we focus on two representative supervised application
tasks including difficulty estimation and similarity analysis, which
will be discussed in detail in Section 5.3.

3.2 Mutual Information
In this subsection, we briefly introduce some related basic knowl-
edge of mutual information. In information theory, mutual informa-
tion I (X ,Y ) measures the dependence between two random vari-
ables X ∈ X and Y ∈ Y, which can be expressed as the decrease of
the uncertainty in one given the other:

I (X ;Y ) = H (X ) − H (X |Y ) = H (Y ) − H (Y |X ), (1)

where, H (X ) and H (X |Y ) are the Shannon entropy and the condi-
tional entropy of X given Y , respectively. Generally, Eq. (1) is equiv-
alent to the Kullback-Leibler (KL) divergence between the joint dis-
tribution P(X ,Y ) and the product of two marginals P(X ) ⊗ P(Y ) as:
I (X ;Y ) = DKL(P(X ,Y )| |P(X ) ⊗ P(Y )). Intuitively, I (X ;Y )=0 means
variables X and Y are independent, and the larger the value is, the
stronger the dependence they have.

However, directly computing the mutual information I (X ;Y ),
if variables X and Y are continuous and high-dimensional, is ex-
tremely difficult [3]. Therefore, Belghazi et al. [3] developed a non-
linear neural network estimator MINE to measure a tight lower
bound of it, which is based on the Donsker-Varadhan representation,
a dual representation of KL-divergence as:

Î
(DV )

θ := DKL(P(X ,Y )| |P(X ) ⊗ P(Y ))

:= EP(X ,Y ) [Tθ (x ,y)] − logEP(X )P(Y )

[
eTθ (x,y)

]
, (2)

where Tθ (x ,y) : X × Y → R is the neural network approximator
with parameters θ . In practice, using estimator in Eq. (2) is not
stable because it is sensitive to negative samples. To overcome this
problem, noticing that the representation learning work does not
focus on the precise value ofmutual information, but onmaximizing
it, Hjelm et al. [12] introduced a approximate Jensen-Shannon (JS)
divergence based estimator as:

Î
(JS )
θ := D JS (P(X ,Y )| |P(X ) ⊗ P(Y ))

:= EP(X ,Y ) [−sp(−Tθ (x ,y))] − EP(X )P(Y ) [sp(Tθ (x ,y))] , (3)

where sp(x) = log(1 + ex ) is the softplus function.
In this paper, we employ this method in a principle way as

we focus on learning representations for educational questions.
Readers who are interested in mutual information can refer to the
literature [3, 12, 17] for more details.
1Please refer to [26] for more useful question properties like discrimination etc.
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Figure 2: DisenQNet. Left part shows the model architecture. Right part illustrates three estimator details for optimization.
4 METHODOLOGY
4.1 DisenQNet
We propose a novel unsupervised model, namely DisenQNet, for
our first problem of question representation learning. Different
from most existing models which integrate all the information to-
gether [18, 36], our DisenQNet tries to distinguish both the concept
information and individual characteristics of one question in an ex-
plicit way. Figure 2 illustrates its general model architecture, which
consists of the question encoder and self-supervised optimization.

4.1.1 Question Encoder. We disentangle the final question repre-
sentation into two parts, i.e., the concept representation vK that
captures its concept information and the individual representation
vI that preserves the personal characteristics, i.e., rq = (vK ,vI ).

Given a certain question q = {x1,x2, · · · ,xM }, we initialize
each of them {xn } by a d0-dimensional word embedding, i.e., V =
{v1,v2, · · · ,vM ,vm ∈ Rd0 }. Then, we perform a text encoder, via a
neural network, i.e., fθ : Rd0×M → Rdq , to generate its integrated
semantic representation vq from its content input V :

vq = fθ ({vm : vm ∈ V }). (4)

Note that the text encoder fθ can be specified with several models
like CNN, LSTM etc. We do not emphasize their differences and
implement it by TextCNN [16], as it is computationally efficient.

After that, we try to split this integrate semantics vq into two
disentangled representations, i.e., the concept representation vK
and the individual representation vI . As shown in Figure 1, such
two disentanglements may focus on different content in the ques-
tion. For example, some informative words like “odd function” tell
what concepts the question Q1 has, and therefore, contribute more
to the concept part. Comparatively, mathematical expressions like
“f(-1)=2” bring the detailed information of itself. Therefore, we per-
form two attention networks to capture such differences in the
modeling. Specifically, the two networks are established with same
architecture but different parameters, so as to quantify the domi-
nant contents on the target disentanglements, guiding the modeling.
As the representative, for obtaining the concept representation vK ,
the corresponding attention network can be formulated as:

vK =
∑M

j=1 α jvj , α j = Softmax(MLP(vj ,vq )), (5)

where α j represents the weight score of word x j to the concept
vector vK , which is normalized by Softmax function. MLP is the
multi-layer perception network that captures the distance between
two vectors (vj ,vq ). The individual presentation vI is generated
with another attention network similarly.

4.1.2 Self-supervised optimization. Now, we discuss how to op-
timize DisenQNet to learn two desirable disentanglements. The
challenge here is that we can only extract the unique question
characteristics itself without any additional explicit labels. Thus, as
shown in Figure 2, we propose three estimators with self-supervised
objectives to guide model learning including mutual information
(MI) estimator, concept estimator and disentangling estimator.

MI Estimator. First, our learned disentangled representations,
i.e., rq = (vK ,vI ), should capture the given question information
in all. We perform the MI estimator on the given question, which
maximizes the estimated mutual information between the concate-
nation rq and the question contentV . As illustrated in Figure 2, we
perform this MI maximization on each wordvj ∈ V in the question,
in which every local word information can be estimated with the
global concatenation rq smoothly. This objective can be expressed
as maximizing the JS-divergence based estimator (Eq. (3)) as:

LMI = Î
(JS )
θ1

(rq ,V ) =
1
M

∑M

j=1
{
EP(rq,vj )

[
−sp(−Tθ1 (rq ,vj ))

]
− EP(rq )P(vj )

[
sp(Tθ1 (rq ,vj ))

] }
, (6)

where the approximatorTθ1 is designed with a multi-layer fully con-
nected network. In practice, it is not easy to directly get P(rq )P(vj ),
but we take the similar technique in [12, 31] to achieve that by
shuffling either of them in a batch sampling from P(rq ,vj ).

Concept Estimator. Next, we ensure our concept representation
vK with the explicit concept meaning of the given question. As
shown in Figure 2, we perform the concept estimator to predict its
given one-hot concept encoding k ∈ {0, 1} |K | by hϕ1 (vK ), where
the network hϕ1 : Rd → R |K | projects the concept disentangle-
ment vK into the prediction. Therefore, this estimator is defined as
minimizing the binary cross-entropy (BCE) objective:

LCP =
1
|K |

∑ |K |

j=1(kj log(hϕ1 (vK )j ) + (1 − kj ) log(1 − hϕ1 (vK )j )).

(7)
Disentangling Estimator. Last, the disentangling estimator pre-

serves the personal characteristics of the given question in its indi-
vidual representation vI . Recall the example in Figure 1, questions
with the same concepts (“Function”) are different reflected by their
properties (e.g., difficulty). Along this line, our ideal individual rep-
resentation vI must not contain the information captured by the
concept one vK , and should be independent with vK . Therefore,
our intuitive goal here is to minimize the mutual information be-
tween vK and vI . However, as Sanchez et al. [28] suggested, we
cannot directly achieve this goal by minimizing Eq. (3) since the
estimator fails to converge when minimizing. As an alternative, in
this work, we propose an adversarial process that minimizes the



distance between the joint distribution P(vK ,vI ) and the marginals
P(vK )P(vI ). Specifically, as shown in Figure 2, our adversarial pro-
cess contains two components. First, we train a discriminator DΦ to
classify the sampled representations drawn from the joint P(vK ,vI )
as the real and samples drawn from the marginals P(vK )P(vI ) as
the fake. Then, we train our DisenQNet that can fool the discrimi-
nator DΦ by shuffling the individual representations of samples in
a batch from P(vK ,vI ). During this process, our DisenQNet tries
to generate the combined disentanglements (vK ,vI ) that look like
drawn from P(vK )P(vI ), and therefore, ensures the independence
as we desire. More formally, we express such adversarial objective
which is similar to WGAN with spectral normalization [2] since it
is more stable in the learning process:

LDis = EP(vk ,vi )
[
Dϕ (vk ,vi )

]
− EP(vk )P(vi )

[
Dϕ (vk ,vi )

]
. (8)

By combining Eq. (6), Eq. (7) and Eq. (8), our final objective of
DisenQNet is defined with the hyper-parameters λ1, λ2, and λ3as:

LDisenQNet = −λ1LMI + λ2LCP + λ3LDis . (9)

The overall objective can be minimized using SGD with the Adam
optimizer. We will specify the details in the experiments.

In summary, our DisenQNet has the following advantages. First,
it learns question representations only with the characteristics
themselves without requiring additional labels, where large corpus
of unlabeled questions could bewell leveraged to enhance the ability.
Second, it splits questions into two independent disentanglements
via mutual information estimation so that it can distinguish the
different effects of both concept meaning and personal information.

4.2 DisenQNet+
In this subsection, we deal with the second goal of question-based
tasks based on our representation results. Most of existing solu-
tions [14, 18] devote many efforts to several application tasks (e.g.,
difficulty estimation) in a supervised manner. In practice, they may
suffer from the following two problems. First, they are label-hungry,
as the performances rely on the sufficient annotations (e.g., diffi-
culty). However, getting high-quality labels is costly with high ex-
pertise, which would be easily unsatisfactory. Second, their learned
representations are label-dependent, which have poor feasibility to
be applied across different tasks. To overcome such issues, we pro-
pose an enhancedmodel to apply our DisenQNet to the downstream
tasks for improving the performance. We call it DisenQNet+.

Note that most applications focus on distinguishing the differ-
ences among questions. For example in Figure 1, even if the three
are related to the same “Function” concept, Q1 is harder than Q2
since it has more complicated mathematical expressions, and Q2 is
similar to Q3 due to possible same purpose (“What is the range...”).
Therefore, an ideal model should devote more energy to capture the
unique information of one question itself rather than the same part.
Motivated by this intuition, in our DisenQNet+, we directly transfer
our individual representations (from DisenQNet) to downstream
models, since this disentanglement especially removes the concept
information but leaves its personal characteristics of one question.
(We show it experimentally in Section 5.3). The architecture of
DisenQNet+ is illustrated in Figure 3.

Without loss of generality, we can take the common process
for one specific application in the following. Specifically, given
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Figure 3: DisenQNet+ for downstream application tasks.
one labeled question qLj ∈ QL , we first design a task model fδ :
Rd0×M → Rdt to produce its task-specific semantic representation
vLj ∈ Rdt , i.e.,vLj = fδ (q

L
j ). Then, we apply one prediction network

hϕ2 : R
dt → R that outputs the task prediction, i.e., pj = hϕ2 (v

L
j ).

In summary, the task loss on label set QL can be formulated in a
supervised manner as:

LSup =
∑ |QL |

j=1 LP (pj ,yj ), pj = hϕ2 (v
L
j ), (10)

where LP (pj ,yj ) represents the loss function between the predic-
tion pj and the true label yj of the given labeled question qLj .

Obviously, due to the scarcity of labeled set, models only trained
with Eq. (10) may be overfitting, as the semantic representation vLj
may not be optimized very well. Therefore, we design another com-
ponent to enhance this representation ability, where a pre-trained
unsupervised DisenQNet on all question set (QL ,QU ) is incorpo-
rated to generate the individual disentanglement vUI of the given
in parallel for being transferred. To achieve the goal, a straightfor-
ward way is to concatenate both vUI and vLj , and then make the
prediction. However, this simple way may lead to negative transfer
problem [31] since the supervised task model and unsupervised
DisenQNet may favor different information in the latent space.
Therefore, we propose an effective way to alleviate this adaptation
problem. Specifically, we perform another estimator to maximize
the mutual information between vUI and vLj , so that the knowledge
from DisenQNet can be transferred to the task models in applica-
tions more smoothly. Formally, this process can be formulated with
the JS-divergence estimator as:

LUn = Î
(JS )
θ2

(vUI ,v
L
j ) = EP(vUI ,vLj )

[
−sp(−Tθ2 (v

U
I ,v

L
j ))

]
− EP(vUI )P(vLj )

[
sp(Tθ2 (v

U
I ,v

L
j ))

]
. (11)

where the statistics approximator Tθ2 is also designed with a multi
layer fully connected network.

Therefore, the overall loss in DisenQNet+ can be summarized
with the hyper-parameter λ4 and λ5 as:

LDisenQNet+ = λ4LSup − λ5LUn . (12)
Similarly, this objective can be minimized using SGDwith the Adam
optimizer, which will be specified in details in the experiments.

Particularly, our DisenQNet+ is flexible for different downstream
tasks with their original supervised loss functions (e.g., ranking
loss or classification loss). We will discuss it in detail in Section 5.3.
Moreover, the task model fδ can also be specified with any related
ones, e.g., TACNN [14] in difficulty estimation task or MANN [18]
in question search task. In this paper, we do not put much emphasis



Table 1: The statistics of the datasets.

Dataset SYSTEM1 SYSTEM2 Math23K

#Questions 108,137 25,293 23,096
#Concepts 31 21 5
Avg. question length 48.15 129.96 28.06
Avg. concepts per question 1.91 1.16 1.9

#Questions with difficulty label 5,291 / 2000
Avg. difficulty labels per concept 307 / 772
#Questions with similarity label / 2944 /
#Labeled similar pairs / 1900 /
Avg. similarity labels per question / 1.29 /
Label sparsity 4.9% 11.6% 8.7%

on comparing the performances of complicated task models, and
therefore, we implement fδ by the commonly used and useful
TextCNN [16] in a principle way.

5 EXPERIMENTS
We run all experiments on a Linux server with four 2.0GHz Intel
Xeon E5-2620 CPUs and a Tesla K80 GPU. Our code is available at
https://github.com/bigdata-ustc/DisenQNet.

5.1 Datasets
We use three datasets in the experiments, namely SYSTEM1, SYS-
TEM2, and Math23K. The SYSTEM1 and SYSTEM2 datasets collect
the mathematical questions from the online learning system iFLY-
TEK Zhixue.com that respectively accord with high-school level
and middle-school level. Specifically, SYSTEM1 dataset contains
108,137 questions and 31 concepts in total, while SYSTEM2 consists
of 25,293 questions with 21 concepts. The concepts are those com-
monly required being mastered for high-school and middle-school
students, such as “Function”, “Geometry” and “Set”. The Math23K
is a public dataset which is primarily used for math word prob-
lem task in NLP [34]. It contains 23,162 questions for elementary
school students. Specifically, questions in Math23K do not have
explicit concepts, and are only supplied with mathematical expres-
sions consisting of five elementary operations including addition
(+), subtraction (−), multiplication (×), division (÷) and power (∧).
Please refer to Wang et al. [34] for more details. Therefore, we treat
such operators (5 in total) as the concepts since they can generally
reveal the corresponding calculation knowledge.

We focus on several question-based application tasks in online
learning systems, and therefore, we get some specific property
labels. Specifically, in SYSTEM1, we follow [5, 14, 26] and calculate
the difficulty scores of questions, which refers to the correct rate
of students. To ensure confidence, we just leave the questions that
have more than one hundred students answered, and finally, we get
5,291 questions labeled. In SYSTEM2, we invite three experts (i.e.,
high school teachers) to label similar questions, where each similar
pair would only be left when more than two of them agree with
the results. As a result, we get 2,944 questions labeled with several
similar ones. In Math23K, we do not have the manual labels while
we make the following preprocessing to get the difficulty labels.
First, without loss of generality, we think that questions would be
more difficult if they have longer mathematical expressions (which
means students need more calculation steps to get the answers),
and thus we treat the expression length as the difficulty. Second,

we select 2,000 questions with difficulty labels in the application
task. The difficulty scores are normalized in the range [0, 1].

Table 1 presents the deep statistics of all datasets. There are some
observations. First, questions in SYSTEM2 are more difficult for
representation learning since they have longer length on average
(129.96) than those in other two. Second, our labeled data are limited,
as the label sparsities in three datasets are 4.9%, 11.6%, and 8.7%,
respectively. Note that, although questions having labels take more
than 10% in SYSTEM2, they only have 1.29 similar ones on average,
which means that comparing with the total corpus, one question
still has very limited (unbalanced) annotations in the tasks.

5.2 DisenQNet Evaluation
In this subsection, we first evaluate DisenQNet, where we aim to
show the effectiveness of our learned two disentanglements, i.e.,
the concept representation vK and the individual representation
vI . To achieve the goal, we perform the concept prediction, which
could be treated as the classification task, with the goal to predict
the concepts of questions by model representations.

Experimental Settings.We initialize the DisenQNet as follows.
We set the attention network (Eq. (5)), the MI statistics network fθ1
(Eq. (6)), the concept network hϕ1 (Eq. (7)) and the discriminator
Dϕ (Eq. (8)) all as the MLP with 2 layers. We also pre-train the
word2vec [20] tool on all our question corpus to ensure better word
embedding. Then, we set the dimension d0 of word embedding
vector, d of both disentangled representations all as 128.

In the training process, we randomly partition all questions into
training/test sets with 80%/20%.We follow [11] and set up the model
parameters with He initialization. We set the hyper-parameters in
Eq. (9) as: λ1=1, λ2=1.5, λ3=2. The learning rates are 0.0002, 0.001,
0.001 in SYSTEM1, SYSTEM2, Math23K, respectively. We set mini
batches as 128 for training and used dropout (with probability 20%).

Comparison Methods. Please note that we do not put much
emphasis on providing the complicated networks for text classifica-
tion, but perform the disentangled representation effectiveness for
educational questions. Therefore, we introduce baseline models as:
one commonly used text model TextCNN, two typical pre-training
NLP methods ELMo and BERT, and one SOTA pre-training ques-
tion representation model QuesNet. We also introduce our two
disentanglements (i.e., vK and vI ) from DisenQNet into evaluation:

• TextCNN : TextCNN [16] is a classical textual model for sen-
tence level classification with convolutional neural network.

• ELMo: It is a LSTM based feature extraction method with
bidirectional language model as pre-training strategy [23].

• BERT : It is a popular pre-trained method in NLP featuring
Transformer structure and masked language model. As our
question content are based on Chinese, we selected Chinese
BERT in the experiments [7].

• QuesNet: QuesNet [36] is the SOTA pre-trained model for ed-
ucational question representation learning, with considering
heterogeneous data including text, image and side informa-
tion. We simplify it as just modeling question text.

• DisenQNet-vK : We use the concept representation vK in our
DisenQNet with a 2 layer MLP for prediction.

• DisenQNet-vI : We use the individual representation vI in
our DisenQNet with a 2 layer MLP for prediction.



Table 2: Concept prediction performance of all methods on three datasets.

Datasets SYSTEM1 SYSTEM2 Math23K

Metrics Micro-F1@k Macro-F1@k Micro-F1@k Macro-F1@k Micro-F1@k Macro-F1@k
1 2 1 2 1 2 1 2 1 2 1 2

TextCNN 0.6772 0.5402 0.2287 0.2406 0.6311 0.5407 0.4263 0.4339 0.5001 0.6544 0.3589 0.4926
ELMo 0.6944 0.5622 0.2742 0.2657 0.7702 0.6313 0.6638 0.6329 0.5719 0.7242 0.4366 0.5727
BERT 0.6908 0.5407 0.3875 0.3539 0.7760 0.6352 0.6920 0.6318 0.5906 0.7510 0.5790 0.7210

QuesNet 0.7252 0.6081 0.3291 0.3338 0.7734 0.6321 0.6903 0.6485 0.6236 0.7867 0.4834 0.6818
DisenQNet-vK 0.8133 0.6498 0.3815 0.3544 0.7996 0.6499 0.7115 0.6655 0.6311 0.7989 0.5654 0.7536
DisenQNet-vI 0.3672 0.3933 0.1743 0.2228 0.2996 0.3153 0.1941 0.2395 0.4360 0.5916 0.2553 0.3864
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(a) Concept representation vK
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(b) Individual representation vI

Figure 4: Disentanglement visualization with concepts.

5.2.1 Concept Prediction Performance. We treat the concept pre-
diction task as multi-label classification, as questions in the datasets
may related to not only one concept (Table 1). Therefore, we select
the widely-used Micro-F1@k and Macro-F1@k as metrics. We re-
peat all experiments five times and report the average results in
Table 2. There are some observations. First, DisenQNet performs
the best on all datasets. This demonstrates distinguishing different
information, rather than integrating them all, is reasonable for ques-
tion representation learning. Second, our learned disentangled rep-
resentations achieve the expected results. Specifically, the concept
representations reach the best compared with all since they capture
the concept information of questions. Comparatively, the individual
ones, which preserves the personal characteristics, fail on this task.
Third, we see that the pre-training models (ElMo, BERT, QuesNet)
perform better than the traditional TextCNN, which means that
they can extract more semantics with their more sophisticated ar-
chitectures. Last, there is an interesting result that QuesNet, as
the domain-specific model for question pre-training, does not per-
form consistently better than BERT, especially on SYSTEM2. This
is possibly because we just use it as the text-only model, so that
overlooking some important effects from the heterogeneous data
like image. In summary, DisenQNet can distinguish the concept
and individual effects for question representation learning.

5.2.2 Disentanglement Visualization. Aswementioned, DisenQNet
can disentangle one question into two parts: a concept representa-
tion that captures its concept meaning and an individual representa-
tion that preserves its personality. Here, we intuitively demonstrate
such representation ability. We choose top 5 frequent concepts, and
randomly sample 2000 questions for each in SYSTEM1. Then we
project their two disentanglements, i.e.,vK andvI , into 2D space by
t-SNE for visualization. We mark questions with their concepts us-
ing different colors. Figure 4 shows the results. Generally, questions
with same concepts from their concept representations are easily
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Figure 5: Results with different parameters λ2 and λ3.
to be grouped, meaning that they have well maintained the concept
information. Comparatively, their individual representations are
scattered because they are independent with the concept ones that
preserve the other personal characteristics.

5.2.3 Parameter Sensitivity. In DisenQNet, both λ2 and λ3 in the
objective function Eq. (9) play the important role for modeling learn-
ing. Specifically, λ2 regularizes how much information the concept
representations capture, while λ3 controls the degree of personal-
ity in questions to be preserved by the individual representations.
Figure 5 shows the model performance with both parameters se-
lecting from {0, 0.1, 0.2, 0.5, 1, 2, 5}. As λ2 increases, the concept
representations perform better and better since they capture con-
cept information of questions as much as possible. However, the
individual presentations gradually get lost with the increase of
λ3. This is because they distinguish both concept and personal
information of questions, and just leave the personalities if λ3 is
large. Therefore, they work ideally that help DisenQNet learn good
disentangled representations for educational questions.

5.2.4 Case Study. DisenQNet can quantify the dominant content
on the learned disentangled representations for educational ques-
tions via different attention scores in Eq. (5). Here, we visualize
attention results of one question example in SYSTEM1 dataset in
Figure 6. In the figure, we present the original question text and the
English translation on the top. We also mark the words with higher
attention scores in its both representations using different colors,
i.e., red for the concept representation and blue for the individual
one. We can clearly see they focus on different parts. Specifically,
the concept representation vK is more related to four words (“Odd
function”, “monotonically increasing”, “inequality”, “solution set")
which show the concept meaning. Comparatively, the individual
representationvI concerns more on mathematical expressions (e.g.,
“f (−1) = 2”), which means that expression details can reveal per-
sonal characteristics of the question itself.
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Figure 6: Attention visualization of one example question for its concept presentation and individual representation.

5.3 DisenQNet+ Evaluation
We now evaluate DisenQNet+, where we aim to show the effective-
ness of our question representations in the downstream tasks. Based
on our datasets, we perform the difficulty estimation task [14, 24]
in SYSTEM1 and Math23K, where the goal is to sort the questions
from harder ones to the easier under concepts. Then, we perform
the similarity analysis task [18, 21, 27] in SYSTEM2, which targets
at ranking questions that are similar to one specific.

Experimental Settings. We treat the both as ranking tasks.
Therefore, the supervised objective in Eq. (10) can be rewritten as:
LSup =

∑
(q,q+,q−)∈Q

max(0, µ − hϕ2 (vq, vq+ ) + hϕ2 (vq, vq− )), (13)

where µ=1 is the margin hyperparameter. q,q+,q− mean the pivot,
positive and negative questions. For difficulty ranking (SYSTEM1
andMath23K), we sample question pairs, whereq+ andq− represent
the harder and easier ones (we set q as NULL), so that Eq. (13) lets
the estimated score of the positive q+ be larger than the negative
q−. For similarity ranking (SYSTEM2), given one pivot q, we sample
the positive q+ as its similar questions, and q− as the others, so that
Eq. (13) makes the estimated distance between positive pairs (q,q+)
closer, and separates negative pairs (q,q−) farther.

In DisenQNet+, we set the MI network fθ2 (Eq. (12)) and the
prediction network hϕ2 (Eq. (13)) as 2-layer MLP. We set dt=128 for
task-specific representation. In the training process, we set λ4=1,
λ5 ∈ [0, 0.1] in Eq. (10). Other settings are the same with DisenQNet.

We train our unsupervised DisenQNet model on all questions
in the datasets. In both tasks, we partition the labeled questions
into training/test sets with 20%/80%, 40%/60%, 60%/40%, 80%/20%
to show the model robustness with different sparsity ratios.

ComparisonMethods. In our work, we aim to show a rigorous
comparative analysis of our disentangled question representation
effectiveness in a common framework since the task models can be
implemented by any ones, as mentioned in Section 4.2. Therefore,
we introduce the following comparison models. We use the task
model only with labeled data, namely “Supervised”. Then, we pre-
train ElMo, BERT and QuesNet on all corpus (similar to DisenQNet),
and then apply their enhanced representations in the task model.
Last, we apply our two disentanglementsvK andvI in DisenQNet+.

Experimental Results. Figure 7 shows the overall results on
all datasets. Specifically, we adopt the ranking metrics including
MAP@5, NDCG@5, and F1@5 [19, 33] to evaluate similarity analy-
sis task, but replace F1@5 by DOA metric in difficulty estimation
task (We can rank all questions in this task, so we use DOA to
measure the result of total lists). We calculate the metric scores
on each concept and report the average results of all. Generally,
DisenQNet+(vI ) performs the best to improve the results signifi-
cantly on all datasets. Therefore, it gains the better question rep-
resentations, where the knowledge from DisenQNet can be trans-
ferred more effectively to both tasks. Moreover, it outperforms

DisenQNet+(vK ). This demonstrates that the individual disentan-
glements from DisenQNet, preserving the personality of questions,
are more capable of being applied to both tasks because they can dis-
tinguish the differences among questions without concept meaning.
Then, only using the supervised model does not generate satisfac-
tory results since it cannot ensure the representation ability with
limited labeled data. Last, although traditional pre-training models
(ElMo, BERT, QuesNet) improve the results, they do not perform as
well as ours because they may introduce noises by integrating all
question information together in application tasks. Our DisenQNet+
has potentials to support several online educational services.

6 CONCLUSION AND FUTUREWORK
In this paper, we learned disentangled representations of educa-
tional questions. We proposed an unsupervised model DisenQNet
that divided one question into two parts: a concept representation
which captured its explicit concept meaning and an individual rep-
resentation which preserved its personal characteristics. We also
proposed DisenQNet+ to transfer the representation knowledge
from DisenQNet in several application tasks including difficulty es-
timation and similarity analysis. Experimental results showed that
DisenQNet could distinguish unique concept and personality effects
for question representation learning, and DisenQNet+ improved
task performances by incorporating our individual representations.

There are some directions for further studies. First, we will per-
form representation learning for educational questions with hetero-
geneous forms, which some geometry figures can be incorporated.
Second, we will design more meaningful question-based online
intelligent services. We hope this work could lead to more studies.
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