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ABSTRACT
Cognitive diagnostic assessment is a fundamental task in intelli-

gent education, which aims at quantifying students’ cognitive level

on knowledge attributes. Since there exists learning dependency

among knowledge attributes, it is crucial for cognitive diagnosis

models (CDMs) to incorporate attribute hierarchy when assessing

students. The attribute hierarchy is only explored by a few CDMs

such as Attribute Hierarchy Method, and there are still two sig-

nificant limitations in these methods. First, the time complexity

would be unbearable when the number of attributes is large. Sec-

ond, the assumption used to model the attribute hierarchy is too

strong so that it may lose some information of the hierarchy and

is not flexible enough to fit all situations. To address these limita-

tions, we propose a novel Bayesian network-based Hierarchical

Cognitive Diagnosis Framework (HierCDF), which enables many
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traditional diagnostic models to flexibly integrate the attribute hi-

erarchy for better diagnosis. Specifically, we first use an efficient

Bayesian network to model the influence of attribute hierarchy on

students’ cognitive states. Then we design a CDM adaptor to bridge

the gap between students’ cognitive states and the input features of

existing diagnostic models. Finally, we analyze the generality and

complexity of HierCDF to show its effectiveness in modeling hier-

archy information. The performance of HierCDF is experimentally

proved on real-world large-scale datasets.
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Figure 1: A toy example of cognitive diagnosis. The left part
includes the attribute hierarchy, test information and re-
sponse logs. The right part is the diagnostic report.

1 INTRODUCTION
Cognitive diagnostic assessment (CDA) [23] is a fundamental task

in the application of intelligent education systems [13], such as

course recommendation [33] and question design [16]. As Figure 1

shows, there are three main components in CDA, including students

(i.e., Alex and Paul), questions (i.e., 𝑒1 ∼ 𝑒4), and attributes (i.e., A1

∼A6, also known as skills or knowledge concepts). The goal of CDA

is to diagnose students’ cognitive states on the attributes (presented

in radar graphs in Figure 1) through their response to questions.

To successfully answer test questions, students need to master

one or more attributes corresponding to these questions. At the

same time, the learning of an attribute might be dependent on that

of another, as shown in Figure 1. For instance, students’ mastery of

matrix product (A1) supports their mastery of matrix row operation
(A2) because cognitively the former is the basis of the latter. As a

result, in an attribute hierarchy, students’ cognitive levels on parent

attributes would significantly impact that on child attributes.

In the literature, there exist twomain lines of the research of diag-

nosing students’ cognitive states. The first line estimates students’

latent abilities without considering their cognitive levels on specific

attributes, such as Item Response Theory (IRT) models [2]. The

second line enables diagnosing students on specific attributes using

Cognitive Diagnostic Models (CDMs) [23], by either classifying

students into binary attribute mastery pattern (e.g., Deterministic

Input, Noisy “And” gate model (DINA) [5]) or representing students

with continuous vectors indicating their proficiencies on different

knowledge attributes (e.g., NeuralCD [32], Relation map driven

Cognitive Diagnosis (RCD) [6]). However, most CDMs, including

DINA, NeuralCD, etc., treat knowledge attributes as independent

and ignore the aforementioned attribute hierarchy which contains

important information for cognitive diagnosis. Some CDMs, such as

the Attribute Hierarchy Method model [22] consider the attribute

hierarchy but have strong assumptions that might not be suitable

for different situations (we use AHM as the abbreviation of this

type of CDMs). For example, the hierarchical cognitive assumption

(defined in Sec. 3.2) in AHM indicates that an attribute could be

mastered only if its parent attribute(s) is/are mastered. Taking our

toy model in Figure 1 as an example, if a student has not mastered

matrix product, then it is considered impossible to master matrix
transpose. This may not be true when the influence of the parent

attribute is not strong on its child attribute(s), or when the manually

labeled attribute hierarchy is imprecise. Moreover, the AHM mod-

els have to enumerate all attribute mastery patterns (2
𝐾
mastery

patterns given 𝐾 attributes), which is time-consuming and thus

impractical when facing a large number of attributes.

To this end, we aim to model the attribute hierarchy efficiently

and integrate it for better cognitive diagnosis. Inspired by hierarchi-

cal multi-label classification [8, 12] and hierarchical topic mining

[18, 25, 31] where attribute hierarchy is usually characterized in a

top-down way, we model the effect of attribute hierarchy on stu-

dents’ cognitive level by propagating the cognitive level on parent

attributes to that on child attributes. Along this line, we propose

a novel Hierarchical Cognitive Diagnosis Framework (HierCDF)

that combines the modeling of attribute hierarchy with traditional

diagnostic models. Specifically, we first utilize a Bayesian network

[7] to reasonably and efficiently model students’ cognitive states

in the attribute hierarchy. Then, by designing a CDM adaptor that

transforms students’ cognitive states and questions’ features, we

integrate the hierarchical cognitive diagnosis to several traditional

diagnostic models (e.g., IRT, MIRT, MF, and NeuralCD). We fur-

ther compare HierCDF with AHM and show its superiority from

two aspects. The first is a generality that HierCDF makes weaker

assumptions on the dependencies and mines the dependence infor-

mation in the attribute hierarchy from response data. The second

is efficiency that HierCDF has only linear time complexity with the

number of attributes. Extensive experiments on real-world datasets

illustrate the performance of HierCDF on modeling students’ cog-

nitive level and its ability of modeling attribute hierarchy.

2 RELATEDWORK
Cognitive Diagnostic Assessment (CDA). Existing diagnostic

models characterize student profile by latent factors (e.g., Item Re-

sponse Theory (IRT) [2], Multidimensional Item Response Theory

(MIRT) [27]), or by attribute mastery patterns (e.g., Deterministic

Input, Noisy “And” gatemodel (DINA) [5], Neural Cognitive Diagno-

sis (NeuralCD) [32], and Relation map driven Cognitive Diagnosis

(RCD) [6]). The former is also known as Latent Factor Models (LFM),

while the latter is named Cognitive Diagnosis Models (CDM). As

an example of LFM, IRT represents the student 𝑖’s ability as a single

variable 𝜃𝑖 , and uses a logistic function to model the interaction. For

instance, the 2PL-IRT defines 𝑃 (𝑟𝑖 𝑗 = 1|𝜃𝑖 , 𝑎 𝑗 , 𝑏 𝑗 ) = 1

1+𝑒−𝑎𝑗 (𝜃𝑖−𝑏𝑗 )
,

where 𝑟𝑖 𝑗 , 𝑎 𝑗 , 𝑏 𝑗 are student 𝑖’s response score of question 𝑗 , ques-

tion 𝑗 ’s discrimination parameter and question 𝑗 ’s difficulty parame-

ter respectively. As an representative CDM, DINA uses independent

binary variables to model the mastery state (0 for “unmastered” and

1 for “mastered”). Another example of CDM, i.e., NeuralCD, lever-

ages independent continuous variables in (0, 1) to model students’

mastery degree on attributes, and exploits a neural network to

capture the complex interaction between students and questions.

Besides, RCD models the interactive and structural relations from

the multi-layer student-question-concept relation map. However,

few of LFM and CDM utilize the attribute hierarchy to help model

students’ cognitive states.

Attribute Hierarchy Method (AHM). AHM [22] is a class of

rule-based cognitive diagnosis models that characterizes students’

cognitive states under the attribute hierarchy (AH). AHM model

characterizes AH by the hierarchical cognitive assumption (HCA)

that the mastery of parent attributes is the prerequisite of the mas-

tery of child attributes. As a representative AHM model, Hierarchi-

cal Diagnostic Classification Model (HDCM) [28] combines HCA
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Figure 2: An example of latent space. The left part is an
attribute hierarchy. The right part is the set of corresponding
attribute patterns.

with Log-Linear Cognitive Diagnosis Model (LCDM) [11]. How-

ever, the implementation of HCA is time-consuming, because all

attribute mastery patterns (i.e., the composite of attribute mastery

state) have to be enumerated. For example, for the AH shown in Fig-

ure 2, AHM firstly enumerates all 2
3 = 8 attribute mastery patterns,

then removes 3 attribute mastery patterns that are inconsistent with

HCA. The set of unremoved attribute mastery patterns is called the

latent space. The AHM then classifies each student to an attribute

pattern in the latent space that has the largest probability to gen-

erate her response log. Although efforts have been made to boost

the efficiency of AHM (e.g., using a lattice-theoretical approach to

construct the latent space [20]), the time complexity is still large.

Moreover, there are limitations for HCA in real-world scenarios,

because the effect of a parent attribute on its child attribute(s) may

vary a lot, and manually labeled attribute hierarchy might be im-

precise. As a result, AHM models are impractical when facing a

large number of attributes and a complex or imprecise AH.

Bayesian Network (BN). Bayesian network [7] is a probabilis-

tic graphical model (PGM) [21] that enables computers to reason

and infer relationships between entities organized in a directed

acyclic graph (DAG), where each directed edge represents a logical

dependence relationship. The Bayesian network uses conditional

probabilities to model the dependence relationship between entities

and uses posterior probabilities to estimate the distribution of an

entity given its priors. For example, given the attribute hierarchy

in Figure 2, the marginal distribution of A1 to A4 is factorized to

the product of prior and conditional probabilities below:

𝑃 (A1,A2,A3) = 𝑃 (A1)𝑃 (A2|A1)𝑃 (A3|A1) . (1)

In intelligent education, Bayesian networks have been applied

to student modeling [4] and knowledge tracing [17, 26]. For exam-

ple, Conati et al. [4] applied BN to the Andes [30], an intelligent

education system for Newtonian physics, to model the uncertainty

in students’ reasoning and learning process. In knowledge tracing

[24], Pelánek [26] systematically introduced Bayesian Knowledge

Tracing (BKT) that uses the Bayesian network to deduce latent stu-

dent variables in a knowledge tracing model. Furthermore, Käser et

al. [17] utilized Dynamic Bayesian Networks (DBN) to model skill

topologies in knowledge tracing. However, in cognitive diagnosis,

the application of the Bayesian network is still under-explored.

3 PRELIMINARIES
3.1 Task Overview
Basic concepts. 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑁 } and 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑀 } are
utilized to represent the student set and question item set respec-

tively, where 𝑁 = |𝑆 | and 𝑀 = |𝐸 |. Let R = {(𝑠, 𝑒,𝑦) |𝑠 ∈ 𝑆, 𝑒 ∈
𝐸,𝑦 ∈ {0, 1}} be the set of response logs, where 𝑦 is the response

score. Furthermore, we define 𝐶 = {1, 2, . . . , 𝐾} as the attribute set
where 𝐾 = |𝐶 |. Next, we define 𝑄 = (𝑞𝑖 𝑗 )𝑀×𝐾 as the Q-matrix

where 𝑞𝑖 𝑗 = 𝐼 (item 𝑒𝑖 requires attribute 𝑗 ). 𝐼 (·) is the indicator func-
tion that 𝐼 (E) = 1 if E is true, and 𝐼 (E) = 0 otherwise. All these

data are given in advance of cognitive diagnosis assessment.

Attribute hierarchy. The Attribute Hierarchy (AH) is defined as

the cognitive dependency structure of attributes in the cognitive states.
That is to say, attribute 𝑎 is the ancestor of attribute 𝑏 in AH only

if the learning of 𝑎 is the basis of the learning of 𝑏. Formally, the

attribute hierarchy is a directed acyclic graph (DAG), i.e.,𝐺 = (𝐶, E)
with 𝐶 being the node set (i.e., the attribute set) and E being the

edge set. In an AH, each node represents an attribute, and each

edge represents a dependency between two attributes.

Given these basic concepts and the attribute hierarchy, the cog-

nitive diagnosis task is defined as below:

Definition 3.1. Cognitive Diagnosis Task. Given the attribute
hierarchy 𝐺 , the response log set R and the Q-matrix 𝑄 , our goal
is to mine students’ attribute mastery pattern (i.e., the composite of
students’ proficiency on knowledge attributes).

3.2 Hierarchical Cognitive Assumption
The hierarchical cognitive assumption (HCA) is proposed by [22],

where the authors describe the assumption as a constraint of the

rule space of attribute patterns. Here we give the formal definition

of the hierarchical cognitive assumption:

Definition 3.2. Hierarchical Cognitive Assumption. Given
the attribute hierarchy 𝐺 , the mastery of a parent attribute is the
prerequisite of the mastery of a child attribute.

For example,matrix product is the parent ofmatrix row operation
in 𝐺 (see Figure 1). If a student has not mastered matrix product, it
is impossible for him to master matrix row operation under HCA.

HCA is a strong assumption whose validity is influenced by the

preciseness of manually labeled attribute hierarchy, and may not

always be correct in different situations. Thus, we do not directly

use the HCA as a hard constraint as AHM does. Instead, as will

be introduced in Sec. 4.2, we use a Bayesian network to learn the

variant dependencies among attributes based on the hierarchy and

response data. We will compare the modeling of HierCDF and AHM

in Sec. 4.5, and prove that HCA can be learned from data if it is

indeed statistically contained in data. Furthermore, in Sec. 5.6.4

we will demonstrate that HierCDF could discover more reasonable

dependencies among attributes.

3.3 Monotonicity Assumption
The monotonicity assumption [27] qualitatively describes the rela-

tionship between attribute mastery pattern and the probability of

correct answer. The definition is given as below:

Definition 3.3. Monotonicity Assumption. The probability of
correctly answering a question is monotonically increasing with any
dimension of the student’s attribute mastery pattern.

For instance, both student 𝑎 and student 𝑏 plan to do a question

that requires the attribute Euclidean geometry. If 𝑎 masters better

on Euclidean geometry than 𝑏, then the probability of 𝑎 correctly

answering the question is higher than that of 𝑏. The assumption

is the key point to keep model explainability and is the basis of

traditional models such as IRT [2], MIRT [27] and NeuralCD [32].
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Figure 3: An overview of the hierarchical cognitive diagnosis framework.
4 HIERARCHICAL COGNITIVE DIAGNOSIS

FRAMEWORK
4.1 Model Overview
The structure of the Hierarchical Cognitive Diagnosis Framework

(HierCDF) is presented in Figure 3. HierCDF consists of three main

components, i.e., the cognitive state module, the question feature

module, and the CDM adaptor. The cognitive state module uses a

Bayesian network isomorphic to the attribute hierarchy to infer

students’ cognitive states. Simultaneously, to provide cognitive di-

agnosis models (CDMs) with question factors, the question feature

module characterizes questions by extendable question parameters.

Next, the CDM adaptor transforms students’ cognitive states and

questions’ feature to latent factors as the input feature of the exist-

ing diagnostic model. In this way, HierCDF can be combined with

many diagnostic models like IRT, MIRT, etc. Finally, transformed

latent factors are input to the existing diagnostic model to predict

students’ scores on questions.

4.2 Cognitive State Modeling
In this part, we introduce the modeling of students’ cognitive states

in the attribute hierarchy. As Sec. 3.1 did, we use the term “node” to

represent an attribute in the attribute hierarchy.We firstly represent

student 𝑖’s cognitive level on attribute 𝑘 as 𝑚𝑖𝑘 = 𝑃 (Θ𝑖𝑘 = 1),
where Θ𝑖𝑘 = 𝐼 (student 𝑖 masters attribute 𝑘). Furthermore, we use

𝑐+
𝑖,𝑘 | 𝑗 = 𝑃 (Θ𝑖𝑘 = 1|Θ𝑖 𝑗 = 1) (the element of 𝒄+

𝑖
) and 𝑐−

𝑖,𝑘 | 𝑗 = 𝑃 (Θ𝑖𝑘 =

1|Θ𝑖 𝑗 = 0) (the element of 𝒄−
𝑖
) to characterize student 𝑖’s cognitive

level on attribute 𝑘 when she has mastered or not mastered the

parent 𝑗 . Then, to propagate the influence of parent attributes on

the student’s cognitive level on child attributes, for each attribute

𝑘 , 𝑚𝑖𝑘 is inferred in a topological ordering. Mathematically, let

𝑝 (𝑘) be the parent node set of 𝑘 . Given each𝑚𝑖 𝑗 for 𝑗 ∈ 𝑝 (𝑘) and
the conditional mastery probabilities 𝑐+

𝑖,𝑘 | 𝑗 and 𝑐
−
𝑖,𝑘 | 𝑗 ,𝑚𝑖𝑘 can be

represented as their function, as shown in Eq.(2):

𝑚𝑖𝑘 = G(𝑚𝑖 𝑗1 , . . . ,𝑚𝑖 𝑗𝑞 , 𝑐+𝑖,𝑘 | 𝑗1 , . . . , 𝑐
+
𝑖,𝑘 | 𝑗𝑞 , 𝑐

−
𝑖,𝑘 | 𝑗1 , . . . , 𝑐

−
𝑖,𝑘 | 𝑗𝑞 ), (2)

where G(·) models the relationship between𝑚𝑖𝑘 and parent nodes.

For node 𝑘 in different positions, students’ learning method on the

attribute differs a lot. We classify nodes into three types by the

number of parents nodes, and analyze the impact of parent nodes

on the cognitive level of child attributes.

Root nodeswithout parent. If attribute𝑘 is a root nodewithout
parent (e.g., 𝑘 = 1 in Figure 3), students can learn the attribute from

scratch. Thus, student 𝑖’s mastery of the attribute is independent

of any of the other attributes. Formally, 𝑚𝑖𝑘 is an independent

trainable parameter:

𝑚𝑖𝑘 = 𝑡∗
𝑖𝑘
, (3)

where “∗” means that𝑚𝑖𝑘 is optimal in predicting response scores.

Nodes with a single parent. If attribute 𝑘 is a node with a

single parent (e.g., 𝑘 = 6 in Figure 3), student 𝑖’s cognitive level

on the attribute depends on that on the parent node 𝑗 (e.g., 𝑗 = 4

in Figure 3). To this end, we use positive and negative conditional

mastery probabilities 𝑐+
𝑖,𝑘 | 𝑗 and 𝑐

−
𝑖,𝑘 | 𝑗 to characterize the cognitive

level of attribute 𝑘 given that of parent attributes. In this way, Hier-

CDF models attribute hierarchy more flexibly than the hierarchical

cognitive assumption. For example, if 𝑐−
𝑖,𝑘 | 𝑗 is high, the attribute 𝑘

tends to be mastered even if 𝑗 is unmastered. Thus, in student 𝑖’s

learning process, the dependence degree of the mastery of 𝑘 to the

mastery of 𝑗 is low. Besides, if 𝑐+
𝑖,𝑘 | 𝑗 is low, the attribute 𝑘 tends to

be unmastered even if parent 𝑗 is mastered. So for student 𝑖 , the

difficulty of attribute 𝑘 is high.

Next, we introduce the constraint on conditional mastery proba-

bilities. Intuitively, the better student 𝑖 masters a parent attribute,

the better she masters the child attribute. So we limit that 𝑐+
𝑖,𝑘 | 𝑗 is

always larger than 𝑐−
𝑖,𝑘 | 𝑗 for any parent-child attribute pair ( 𝑗, 𝑘):

𝑐+
𝑖,𝑘 | 𝑗 > 𝑐

−
𝑖,𝑘 | 𝑗 . (4)

To satisfy the constraint, we define a penalty term in Eq.(5) for

the loss function presented Sec. 4.4:

𝐽 (Ω) =
∑︁
𝑖, 𝑗,𝑘

𝑅𝑒𝐿𝑈
©­­«log

(
1 − 𝑐+

𝑖,𝑘 | 𝑗

)
𝑐−
𝑖,𝑘 | 𝑗(

1 − 𝑐−
𝑖,𝑘 | 𝑗

)
𝑐+
𝑖,𝑘 | 𝑗

ª®®¬ , (5)

where Ω composes of all optimizable parameters in the HierCDF.

Then, for attribute 𝑘 with a single parent attribute,𝑚𝑖𝑘 is the ex-

pectation of conditional mastery probabilities, as shown in Eq.(6):

𝑚𝑖𝑘 = 𝑐+
𝑖,𝑘 | 𝑗𝑚𝑖 𝑗 + 𝑐

−
𝑖,𝑘 | 𝑗 (1 −𝑚𝑖 𝑗 ). (6)

The inference of 𝑚𝑖𝑘 is reasonable because both cases of the

mastery state of the parent attribute are considered. If the cognitive

level of the parent attribute is low, then the negative conditional

mastery probability plays a leading role in the inference of𝑚𝑖𝑘 .
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Nodes with multiple parents. If attribute 𝑘 is a node with

multiple parents (e.g., 𝑘 = 5 in Figure 3), the effect of parent at-

tributes (e.g., 𝑗1 = 3, 𝑗2 = 4 in Figure 3) on student 𝑖’s cognitive level

on the attribute differs a lot. Let 𝑝 (𝑘) = { 𝑗1, . . . , 𝑗𝑞} be the parent
set of 𝑘 , then the effect of each parent 𝑗 ∈ 𝑝 (𝑘) on𝑚𝑖𝑘 is charac-

terized by positive and negative conditional mastery probabilities,

i.e., 𝑐+
𝑖,𝑘 | 𝑗 and 𝑐

−
𝑖,𝑘 | 𝑗 , with 𝑐

+
𝑖,𝑘 | 𝑗 > 𝑐

−
𝑖,𝑘 | 𝑗 defined in Eq.(4). However,

Bayesian networks only model the joint effect of all parent nodes on

the student’s cognitive level on 𝑘 by the joint conditional mastery

probability, i.e., 𝑃 (Θ𝑖𝑘 = 1|Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 ). To this end, in HierCDF,

𝑃 (Θ𝑖𝑘 = 1|Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 ) is estimated as the function of 𝒄+
𝑖
and 𝒄−

𝑖
,

as shown in Eq.(7):

𝑃 (Θ𝑖𝑘 = 1|Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 ) = H(𝑐𝑖,𝑘 | 𝑗1 (Θ𝑖 𝑗1 ), . . . , 𝑐𝑖,𝑘 | 𝑗𝑞 (Θ𝑖 𝑗𝑞 )),
(7)

where 𝑐𝑖,𝑘 | 𝑗𝑧 (Θ𝑖 𝑗𝑧 ) = Θ𝑖 𝑗𝑧 ∗ 𝑐+
𝑖,𝑘 | 𝑗𝑧 + (1 − Θ𝑖 𝑗𝑧 ) ∗ 𝑐−𝑖,𝑘 | 𝑗𝑧 for 1 ≤

𝑧 ≤ 𝑞, and H(·) can be specified by many functions. We next

analyze the constraints on 𝑃 (Θ𝑖𝑘 = 1|Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 ), and present

our implementation of H(·).
There are two constraints on 𝑃 (Θ𝑖𝑘 = 1|Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 ) theoreti-

cally. The first constraint is that the higher the student’s cognitive

level of a parent attribute (i.e., 𝑚𝑖 𝑗 for 𝑗 ∈ 𝑝 (𝑘)), the higher the
𝑃 (Θ𝑖𝑘 = 1|Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 ). For instance, attribute A3 has two par-

ents A1 and A2. For student 𝑖 , the higher the cognitive level of

A1/A2 when fixing the other, the higher the cognitive level of A3.

The second constraint is that if at least one of the parent attributes

is unmastered, the attribute 𝑘 tends to be unmastered (i.e., if one of

𝑚𝑖 𝑗 for 𝑗 ∈ 𝑝 (𝑘) is small, 𝑃 (Θ𝑖𝑘 = 1|Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 ) is also small),

because students’ learning of an attribute is conjunctive1 [11].
Considering these constraints, we find that the geometric mean

is a fine implementation of H(·), as shown in Eq.(8).

𝑃 (Θ𝑖𝑘 = 1|Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 ) ≈
𝑞∏
𝑧=1

𝑞

√︃
𝑐𝑖,𝑘 | 𝑗𝑧 (Θ𝑖 𝑗𝑧 ) . (8)

The geometric mean is monotonically increasing with any of

conditional mastery probabilities, and it is more sensitive to small

values than other mean estimators such as arithmetic mean. For

instance, 𝑋 = (0.1, 0.9), then 𝑋𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 = 0.5 > 0.3 = 𝑋𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 .

Successive product (i.e.,

∏𝑞

𝑧=1
𝑐𝑖,𝑘 | 𝑗𝑧 (Θ𝑖 𝑗𝑧 )) which is normally used

in the naive Bayesian model is not considered because the esti-

mated value drops dramatically as the number of parents increases,

which is unfair for nodes with many parents. For example, for three

parents with conditional mastery probabilities equal to 0.6, 0.6, 0.65

respectively, the product is 0.6 × 0.6 × 0.65 = 0.234.

Next, student 𝑖’s cognitive level on attribute 𝑘 with multiple

parent attributes is characterized by the expectation of 𝑃 (Θ𝑖𝑘 =

1|Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 ) in HierCDF, with the corresponding weight as

𝑃 (Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 ). For parent nodes 𝑗1, . . . , 𝑗𝑞 ∈ 𝑝 (𝑘), their correla-
tion has been contained in the inference of cognitive levels on them

(e.g., if 𝑗1, 𝑗2 ∈ 𝑝 (𝑘) and 𝑗1 ∈ 𝑝 ( 𝑗2), then𝑚𝑖 𝑗2 is inferred through

𝑚𝑖 𝑗1 ). So we assume that 𝑃 (Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 ) =
∏𝑞

𝑙=1
𝑃 (Θ𝑖 𝑗𝑧 ). Be-

cause 𝑃 (Θ𝑖 𝑗𝑧 = 1) = 1 − 𝑃 (Θ𝑖 𝑗𝑧 = 0) = 𝑚𝑖 𝑗𝑧 for 𝑧 = 1, . . . , 𝑞, the

estimation is equivalent to:

1
In the learning of a child attribute, the mastery of a parent attribute cannot make up

for the non-mastery of another.

𝑃 (Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 ) =
𝑞∏
𝑧=1

(
(1 − Θ𝑖 𝑗𝑧 ) (1 −𝑚𝑖 𝑗𝑧 ) + Θ𝑖 𝑗𝑧𝑚𝑖 𝑗𝑧

)
. (9)

Finally,𝑚𝑖𝑘 is inferred as the expectation of 𝑃 (Θ𝑖𝑘 = 1|Θ𝑖 𝑗1 , . . . ,
Θ𝑖 𝑗𝑞 ), which is shown in Eq.(10):

𝑚𝑖𝑘 =
∑︁

Θ𝑖 𝑗· ∈{0,1}

𝑃 (Θ𝑖 𝑗1 , . . . ,Θ𝑖 𝑗𝑞 )
𝑞∏
𝑧=1

𝑞

√︃
𝑐𝑖,𝑘 | 𝑗𝑧 (Θ𝑖 𝑗𝑧 ) . (10)

4.3 Question Modeling and CDM Adaptor
4.3.1 Question Modeling. Diagnostic models assess students’ cog-

nitive states through their response of questions. Thus, it is crucial

not only to model students’ feature but also to model questions’

feature. In question modeling, each question 𝑙 is characterized as

a extendable variable 𝜓𝑙 = (𝒉𝑑𝑖 𝑓 𝑓
𝑙

, 𝜷𝑙 ), where 𝒉
𝑑𝑖 𝑓 𝑓

𝑙
∈ (0, 1)𝐾×1

indicates 𝑙 ’s attribute dificulty and 𝜷𝑙 is the set of optional param-

eters like discrimination ℎ𝑑𝑖𝑠𝑐
𝑙

∈ (0, 1). The necessity of optional

parameters depends on the selection of cognitive diagnosis models.

4.3.2 CDM Adaptor. Different diagnostic model uses different

form to characterize student and question features. To build a bridge

between students’ cognitive states, question features, and the input

feature of existing diagnostic models, we introduce the CDM adap-

tor. Generally, given student 𝑖 and question 𝑙 , diagnostic models

predict student performance score 𝑦𝑖𝑙 , as shown in Eq.(11):

𝑦𝑖𝑙 = F
(
𝒖𝑙𝑖 , 𝒗𝑙

)
, (11)

where 𝒖𝑙
𝑖
is the student latent feature, and 𝒗𝑙 is the question latent

feature. F (·) represents the existing diagnostic model, and can

be specified with many models like IRT, MIRT, etc. To this end,

CDM adaptor transforms 𝒎𝒊 = (𝑚𝑖1, . . . ,𝑚𝑖𝐾 )⊤ and 𝜓𝑙 to 𝒖𝑙
𝑖
and

𝒗𝑙 respectively, as shown in Eq.(12) and Eq.(13):

𝒖𝑙𝑖 = tanh (𝑊𝑆 (𝒎𝑖 ⊙ 𝒒𝑙 ) + 𝒃𝑆 ) , (12)

𝒗𝑙 = sigmoid

(
𝑊𝐸

(
𝒉
𝑑𝑖 𝑓 𝑓

𝑙
⊙ 𝒒𝑙

)
+ 𝒃𝐸

)
, (13)

where 𝒒𝑙 = (𝑞𝑙1, . . . , 𝑞𝑙𝐾 )⊤ is the transpose of the 𝑙-th row of Q-

matrix, and𝑊𝑆 and𝑊𝐸 are weight matrices of perceptrons. The

input vector of each perceptron is the element-wise product of the

attribute pattern and 𝒒𝑙 , because we only focus on attributes that

are required by the question. Besides, all elements of𝑊𝑆 are positive

because 𝒖𝑙
𝑖
must be keptmonotonically increasingwith𝒎𝑖 to ensure

the monotonicity assumption. As for the activation function, our

choice is based on two reasons. First, most diagnostic models limit

student and question features to a fixed range. Second, for those

models with an inner-product operation such as MIRT and MF, 𝒗𝑙
must be kept positive to ensure the monotonicity assumption.

4.4 Loss Function
The main term of the loss function of our HierCDF is the cross

entropy between the output 𝑦𝑖𝑙 and the true response score 𝑦𝑖𝑙 . The

𝐽 (Ω) is the penalty term defined in Eq.(5). Then the overall loss

function is defined as:

L(Ω) = −
∑︁
𝑖,𝑙

(𝑦𝑖𝑙 log𝑦𝑖𝑙 + (1 − 𝑦𝑖𝑙 ) log(1 − 𝑦𝑖𝑙 )) + 𝜆 · 𝐽 (Ω),
(14)

where Ω is the optimizable parameter of our HierCDF, and 𝜆 is a

hyperparameter given in advance. Generally, 𝜆 is a relatively small

value such as 0.001 so that the penalty term will not be much larger

than the cross-entropy term.
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4.5 A Comparison of HierCDF and Attribute
Hierarchy Method (AHM)

4.5.1 Modeling Attribute Hierarchy. We compare the ability of

modeling attribute hierarchy of AHM and HierCDF. The analysis

result shows that without direct limitation to students’ cognitive

level, HierCDF can still learn the hierarchical cognitive assumption

(HCA) when it is consistent with data distribution. This property

of HierCDF is also illustrated in experiments in Sec. 5.6.4.

AHM. In AHM, for student 𝑖 , if the parent attribute 𝑗 is unmas-

tered by her (i.e., Θ𝑖 𝑗 = 0), then it is sure that the child attribute

𝑘 cannot be mastered by her (i.e., Θ𝑖𝑘 = 0) either. The hierarchi-

cal cognitive assumption is rigid even if the data distribution is

inconsistent with the assumption.

HierCDF. In HierCDF, if student 𝑖 has not mastered the parent

attribute 𝑗 ,𝑚𝑖 𝑗 would be small. Then in the inference of𝑚𝑖𝑘 , the

weight of 𝑐−
𝑖,𝑘 | 𝑗 would be larger than that of 𝑐+

𝑖,𝑘 | 𝑗 , thus the former

plays a dominant role. Since we have limited that 𝑐−
𝑖,𝑘 | 𝑗 < 𝑐

+
𝑖,𝑘 | 𝑗 ,𝑚𝑖𝑘

would also be a small value. However, the property is not rigid in

HierCDF. If response logs of student 𝑖 show that she always answers

correctly on questions requiring 𝑘 even if she has not mastered

parent node 𝑗 , she still has chances to master 𝑘 without mastering

𝑗 . So 𝑐−
𝑖,𝑘 | 𝑗 would be large, and the dependence degree (i.e., 𝑑 ( 𝑗, 𝑘))

of her cognitive level on attribute 𝑘 on parent node 𝑗 is very low.

As a result, 𝑑 ( 𝑗, 𝑘) is monotonically decreasing with 𝑐−
𝑖,𝑘 | 𝑗 .

4.5.2 Model Complexity. We assume that the number of students

is fixed and a set of 𝐾 attributes and the corresponding attribute

hierarchy with𝑊 edges are given.

AHM. In the construction phase, the AHM enumerates all binary

attribute mastery patterns and reserves only that is consistent with

the hierarchical cognitive assumption. The construction process of

AHMhas been introduced in Sec. 2. The time and space complexities

are both 𝑂 (2𝐾 ). In the diagnosis phase, let 𝑄 (𝐾) be the number

of reserved attribute mastery patterns. Since AHM compares each

pattern to the targeted student, the time complexity is 𝑂 (𝑄 (𝐾)).
𝑄 (𝐾) is usually much larger than 𝐾 .

HierCDF. In the construction phase, HierCDF only saves the at-

tribute hierarchy (AH) and its parameters (i.e., mastery probabilities

of root attributes, and positive and negative conditional mastery

probabilities of each parent-child attribute pair). Thus the time

complexity is 𝑂 (1), and the space complexity is 𝑂 (𝐾 +𝑊 ). In the

diagnosis phase, given a student, HierCDF needs to infer her cogni-

tive level on each attribute. Because the in-degree of attributes is

usually small, the average time complexity is approximately 𝑂 (𝐾).
As a result, in both phases, HierCDF is more efficient than AHM.

5 EXPERIMENT
5.1 Experiment Overview
In this section, we introduce datasets and the experimental setup.

Next, we conduct experiments on the original and the HierCDF
2

version of diagnostic models to answer the following questions:

• RQ1. Can HierCDF improve the performance of diagnostic

models on predicting students’ response scores?

• RQ2. What is the explainability of the diagnostic output of

HierCDF?

2
https://github.com/CSLiJT/HCD-code

Table 1: The statistics of datasets

Statistics Junyi Junyi-s MATH-2021

#Attributes 734 8 662

#Edges of 𝐺 929 8 673

Diameter of 𝐺 37 3 21

#Students 10,000 2,401 14,826

#Question items 734 8 13,114

#Response logs 408,057 6,176 555,625

#Responded attributes 707 8 588

#Attributes per question 1 1 1

#Response per student 40.8 2.6 37.5

Table 2: The hypothesis test results of datasets (𝛼 = 0.05)

Dataset 𝑌 Test statistic P-value 𝐻𝑎

Junyi 0.0641 2.37 × 10
9 < 10

−10
Accepted

MATH-2021 0.0429 1.10 × 10
9 < 10

−10
Accepted

• RQ3. Can HierCDF effectively model AH?

• RQ4. What are the features of the output of HierCDF?

5.2 Dataset Description
We conduct experiments on two real-world datasets, i.e., the Junyi

Academy Math Practicing Log (Junyi) dataset 3
[3] from Junyi

Academy and the MATH-2021 dataset supplied by iFLYTEK Co.,

Ltd., which is collected from the iFLYTEK Learning Machine
4
. Both

datasets contain K-12 mathematical attribute hierarchies, questions,

and student response logs. A subset of the Junyi dataset, namely

Junyi-s, is sampled to compare the performance of HierCDF and

AHM. That’s because the AHM is unsuitable for the whole Junyi

dataset due to the huge time complexity to build the model. The

statistics of datasets are described in Table 1.

We reserve only the first attempt and the first day’s response log

for Junyi Academy Math Practicing Log and MATH-2021 respec-

tively to ensure that the attribute state of students is static. We filter

out students with less than 15 response logs to guarantee that every

student has adequate response logs for diagnosis. We randomly

select 10,000 students from these students for Junyi Academy Math

Practicing Log. We divide 80% response logs randomly for each

student to compose the train set, and the rest 20% to compose the

test set. To ensure fairness, we divide 90% as train data and 10%

as validation data respectively from the train set to tune hyperpa-

rameter for all models using grid search. All models are trained

and tested from scratch 10 times repeatedly and assessed by the

average performance.

5.3 Validation of Hierarchical Cognitive
Assumption on Datasets

The hierarchical cognitive assumption (HCA) is a theoretical as-

sumption about students’ cognitive states. Since our model does

not depend on the HCA and learns the dependencies from the data,

we first validate the HCA on our datasets.

For any student, the ratio of correctly answering questions that

require an attribute (i.e., the attribute response ratio) is increasing

with her attribute mastery probability. As a result, if the HCA

is valid, then for each student, her response ratio on the parent

3
https://pslcdatashop.web.cmu.edu/Files?datasetId=1198

4
https://xxj.xunfei.cn/
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Table 3: Experimental results on student performance prediction

IRT MIRT MF NeuralCD

Random

Dataset Metrics Original HierIRT Original HierMIRT Original HierMF Original HierNCD

Junyi

AUC 0.7541 0.7848 0.7514 0.7842 0.7530 0.7843 0.7768 0.7848 0.4999

ACC 0.7288 0.7491 0.7355 0.7514 0.7288 0.7503 0.7460 0.7516 0.5000

F1 0.8125 0.8247 0.8171 0.8290 0.8143 0.8284 0.8214 0.8292 0.5773

RMSE 0.4234 0.4153 0.4267 0.4093 0.4306 0.4093 0.4135 0.4098 0.7074

MATH

AUC 0.7050 0.7362 0.6520 0.7375 0.6634 0.7313 0.7048 0.7272 0.4991

ACC 0.7008 0.7008 0.6680 0.7170 0.6615 0.7133 0.6933 0.7114 0.4999

F1 0.7978 0.8095 0.7636 0.8109 0.7504 0.8072 0.8115 0.8057 0.5766

RMSE 0.4448 0.4340 0.4861 0.4304 0.5058 0.4322 0.4413 0.4348 0.5777

Table 4: Experimental results on Junyi-s

Model AUC ACC F1 RMSE

Random 0.4999 0.5001 0.5283 0.7070

AHM 0.5567 0.5466 0.5373 0.6745

HierIRT 0.6367 0.5589 0.7071 0.4976

attributes should be larger than that on the child attributes. To test

this hypothesis, we use the pairedWilcoxon Signed-Rank test, which
is a non-parameter method for data with unknown distribution.

Formally, let𝑈 = 𝑟𝑖𝑢 and 𝑉 = 𝑟𝑖𝑣 be student 𝑖’s attribute response

ratio on the parent attribute 𝑢 and the child attribute 𝑣 respectively,

then the null and alternative hypothesis are

𝐻0 : 𝐸 [𝑈 ] ≤ 𝐸 [𝑉 ] ⇔ 𝐻𝑎 : 𝐸 [𝑈 ] > 𝐸 [𝑉 ].
We further let 𝑌 = 𝑈 −𝑉 and transform the above test to the test

of whether or not 𝐸 [𝑌 ] ≤ 0. The test result is shown in Table 2. 𝑌 is

the mean of 𝑌 , and 𝛼 is the level of significance. For both datasets,

the p-values are less than 10
−10

, thus the 𝐻0 is rejected, and the

𝐻𝑎 is accepted, indicating that 𝐸 [𝑌 ], i.e., the difference between 𝑈
and 𝑉 , is significantly larger than 0. As a result, the hierarchical

cognitive assumption is valid in both datasets statistically.

5.4 Experimental Setup
To assess the performance of HierCDF, we apply the model frame-

work to four diagnostic models, i.e., IRT, MIRT, MF, NeuralCD, to

get the corresponding HierCDF implementations
5
, i.e., HierIRT,

HierMIRT, HierMF, HierNCD. Then we compare the student score

prediction performance of HierCDF to these baseline approaches.

We also test the performance of HierIRT and AHM [22] on the

same task on the Junyi-s dataset to compare HierCDF with rule-

based methods. The threshold of score prediction is set as 0.5. For

multidimensional latent factor models (i.e., MIRT and MF) and all

HierCDF models except HierIRT, the hidden dimension is set as

16. The dimensions of the full connection layers of NeuralCD are

512, 256, and 1 respectively as in [32]. We set the hyperparameter

𝜆 = 0.001. All parameters are initialized with Xavier normal method

[9], and we use the Adam algorithm [19] for model optimization.

All models are implemented with PyTorch using Python, and all

experiments are run on a Linux server with four 2.30GHz Intel

Xeon E5-2620 v3 CPUs and a Tesla P40 GPU.

5.5 Evaluation Metrics
In this section, we introduce evaluation metrics that measure the

performance of diagnostic models from various aspects.

5
The implementations of HierCDF are presented in Appendix A.1

Figure 4: DOA@10 for datasets.

Student Score Prediction Metrics. Since the students’ true
attribute mastery pattern is unobservable, it is difficult to directly

evaluate the performance of the diagnostic models. A common

practice is to assess the diagnostic models through predicting stu-

dents’ test score [5, 27, 32]. We follow this approach, and measure

the performance of the diagnostic models by their predictions of

students’ test scores. We evaluate diagnostic models similarly as

the evaluation of classification models and regression models, and

choose Accuracy (ACC), F1-score [29], Area Under Curve (AUC) [1]
and Rooted Mean Squared Error (RMSE) as evaluation metrics.

Explainability Metrics. The explainability of attribute mastery

pattern is crucial for any diagnostic model. Intuitively, if student

𝑎’s response accuracy on attribute 𝑘 is larger than student 𝑏, then

𝑎’s mastery probability of 𝑘 should also be larger than 𝑏’s, i.e.,

𝑚𝑎𝑘 > 𝑚𝑏𝑘 [15]. Therefore, we adopt Degree Of Agreement (DOA)
as our explainability metrics, which is defined in Eq.(15):

𝐷𝑂𝐴𝑘 =

∑
𝑎,𝑏∈𝑆 𝛿 (𝑚𝑎𝑘 ,𝑚𝑏𝑘 )

∑𝑀
𝑗=1 𝑞 𝑗𝑘∧𝐽 ( 𝑗,𝑎,𝑏)∧𝛿 (𝑟𝑎𝑗 ,𝑟𝑏 𝑗 )∑𝑀
𝑗=1 𝑞 𝑗𝑘∧𝐽 ( 𝑗,𝑎,𝑏)∧𝐼 (𝑟𝑎𝑗≠𝑟𝑏 𝑗 )

𝑍
, (15)

where 𝑍 =
∑𝑁
𝑎=1

∑𝑁
𝑏=1

𝛿 (𝑚𝑎𝑘 ,𝑚𝑏𝑘 ). 𝛿 (𝑥,𝑦) = 𝐼 (𝑥 > 𝑦). 𝑞 𝑗𝑘 is the

( 𝑗, 𝑘) element of Q-matrix, indicating whether question 𝑗 requires

attribute 𝑘 . 𝐽 ( 𝑗, 𝑎, 𝑏) = 1 if both student 𝑎 and 𝑏 answered question

𝑗 and 𝐽 ( 𝑗, 𝑎, 𝑏) = 0 otherwise. We take an average of the DOAs of

the top 10 attributes with the largest number of response logs, and

use as the DOA of the model (DOA@10).

Attribute Hierarchy Modeling Metrics. In Sec. 5.3, we sta-

tistically validated the hierarchical cognitive assumption (HCA).

However, the assumption may not hold for all parent-child attribute

pairs. To thoroughly evaluate how well the attribute hierarchy is

modeled by diagnostic models, we propose two evaluation metrics.

For the conditions when the HCA is ignored, a student’s cognitive
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Figure 5: Spearman rank correlation and passing ratio results of models.
level on child attribute(s) may still be correlated to that on parent at-

tribute(s). As a result, use the Spearman’s rank correlation coefficient
[10] as the evaluation metrics, which is shown in Eq.(16):

𝑟𝑠 (𝑋,𝑌 ) = 1 −
6

∑𝑛
𝑖=1 𝑑

2

𝑖

𝑛(𝑛2 − 1)
, (16)

where 𝑑𝑖 = 𝑟𝑎𝑛𝑘 (𝑥𝑖 ) − 𝑟𝑎𝑛𝑘 (𝑦𝑖 ), 𝑖 = 1, 2, . . . , 𝑛, and 𝑟𝑠 is mapped

for each student. Here 𝑋 and 𝑌 are the child and parent attribute

mastery degrees separately. We calculate the average value 𝑟𝑠 about

students as the evaluation metrics.

Furthermore, we evaluate how well the model satisfies the HCA.

If the assumption is well modeled, then for each student 𝑖 , her

cognitive level on a parent attribute should be no less than that on

a child attribute. So we adopt a Wilcoxon-signed-rank-test Passing
Ratio (𝑃𝑅) [14] on students, as defined in Eq.(17). Specifically, for

every student and a fixed confidence level 𝛼 , we conduct a test

with alternative hypothesis (𝐻𝑎) that 𝐸𝑘∈𝐶 [𝑚𝑖 𝑗 −𝑚𝑖𝑘 ] > 0 where

( 𝑗, 𝑘) is a parent-child attribute pair. We then calculate the ratio of

students that accept 𝐻𝑎 among all students as the 𝑃𝑅. The larger

the 𝑃𝑅, the better the model mines the HCA.

𝑃𝑅𝛼 =
1

𝑁

𝑁∑︁
𝑖=1

𝐼 (p-value𝑖 < 𝛼). (17)

5.6 Experimental Results
5.6.1 RQ1. Student Score Prediction. We conduct a student score

prediction experiment on baseline models and HierCDF. As Table 3

and Table 4 shows, HierCDF outperforms almost all baseline models

in three datasets, which indicates the effectiveness of HierCDF on

predicting student score. Besides, the hyperparameter 𝜆 also affects

the performance of HierCDF (see Appendix A.2).

5.6.2 RQ2. Explainability of Diagnostic Results. The explainability
experimental result is shown in Figure 4. For traditional CDMs, we

only choose NeuralCD as the baseline model because for IRT, MIRT,

and MF, there are no clear connections between attribute mastery

degrees and latent factors [32]. It is observed that the HierCDF has

a competitive DOA compared to the DOA of NeuralCD. As a result,

the diagnostic reports of HierCDF are reasonable.

5.6.3 RQ3. Modeling Attribute Hierarchy. Experiment results are

presented in Figure 5. An ablation study is included to prove the

effectiveness of the Bayesian network in the modeling of the at-

tribute hierarchy (AH). For each Hier𝑋 where 𝑋 ∈ {IRT, MIRT, MF,

NeuralCD}, E = ∅ (E is the edge set of the AH) to build Hier𝑋 -i.

Every Hier𝑋 outperforms the Hier𝑋 -i and NeuralCD in most cases,

indicating that the Bayesian network is effective in modeling AH.

Another observation is that HierNCD performs worse than other

Hier𝑋 in both datasets. The reason is that HierNCD suffers from

the problem of vanishing gradient. For a student and attributes

0. absolute value 1. absolute value add sub
2. absolute value add sub properties 5. absolute values’ meaning
11. adding and subtracting negative numbers 20. adding negative numbers
108. comparing absolute values 175. definition of opposite number
427. negative word problems 428. negative numbers multiply divide
439. number line 3 452. ordering negative numbers
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Figure 6: Diagnostic reports of CDMs in Junyi. The deeper
the color of a node, the larger the cognitive level. The deeper
the color of an edge, the larger the dependence degree.

with parents, the variation of her conditional mastery probabilities

is so low that it is hard to distinguish the cognitive levels on these

attributes. However, in comparison, the HierCDF is effective on any

of the presented diagnostic models in modeling attribute hierarchy.

5.6.4 RQ4. Diagnostic Output Analysis. We randomly select one

student (𝑖 = 2493) in the Junyi dataset to generate her diagnostic

outputs. Diagnostic reports are presented in Figure 6, where Hier-

CDF is implemented as HierIRT. Characteristics of the output of

HierCDF are demonstrated in the following.

First, HierCDF provides richer information than other CDMs.

HierCDF provides students with cognitive levels on attributes (as

shown in the radar graph and the nodes of the cognitive graph) and

attribute dependencies (as shown in the edges of the cognitive path),

while other CDMs provide students with only the former. In the

radar graph of HierCDF,Mastery is𝑚𝑖𝑘 given student 𝑖 and attribute
𝑘 , and Condi+/- is the student’s cognitive level on the attribute given
her mastery/non-mastery on parent nodes (e.g., for student 𝑖 and

attribute 0, Condi+ is 𝑐+
𝑖,0 |11). In the cognitive graph, the depen-

dencies are also visualized. We use 𝑑 ( 𝑗, 𝑘) = −sigmoid
−1 (𝑐−

𝑖,𝑘 | 𝑗 ) to
indicate the dependency of child 𝑘 on parent 𝑗 for student 𝑖 . In

Figure 6, diagnostic outputs are normalized to (0, 1). Colors and
sizes represent the cognitive level and dependency. For nodes, the

deeper the color and the larger the size, the higher the cognitive

level. For edges, the deeper the color and the larger the size, the

stronger the dependency.
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Second, HierCDF can learn the dependencies between different

attributes from data instead of making strong assumptions. In the

diagnostic reports of HierCDF, students’ cognitive level is both

affected by their response logs and the attribute hierarchy (AH). In

HierCDF, except for the attribute nodes 1 and 439, the student’s cog-

nitive levels on all other nodes are consistent with the hierarchical

cognitive assumption (HCA). The inconsistency with HCA on node

1 and 439 can be explained by the diagnostic report of NeuralCD,

which is the result of response logs where the student’s correct-

ness on questions requiring 1 and 439 is actually low. However,

compared to NeuralCD, the variation of the student’s cognitive

level on 1, 439 and child attributes in HierCDF is smaller, and the

dependence degrees are low. The result shows that HierCDF strikes

a balance between practical response log distribution and the the-

oretical HCA. In summary, HierCDF can learn the feature of AH

based on data distribution rather than a strong assumption.

6 CONCLUSION
In this paper, we presented a novel Hierarchical Cognitive Diagno-

sis Framework, which utilizes the Bayesian network to efficiently

model the attribute hierarchy and integrates with traditional models

for better diagnosis. Specifically, we first used a Bayesian network

isomorphic to the attribute hierarchy to learn the dependencies

among students’ cognitive levels on attributes. There are two ad-

vantages of our method. First, the dependencies are learned from

data instead of strong assumptions. Second, the time and space

complexities are both linear, which is much more efficient than

traditional models such as AHM. Then, we designed a CDM adap-

tor to transform the attribute mastery patterns to input features of

traditional diagnostic models. This enables traditional models to

integrate the attribute hierarchy and therefore expand their diag-

nostic capabilities. Extensive experiments on real-world datasets

showed that HierCDF is both effective and efficient for cognitive

diagnosis with consideration of attribute hierarchy and at the same

time provides abundant and interpretable diagnostic results. We

hope this work provides a new perspective in the area of cognitive

diagnosis and inspires further improvements in the future.
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A APPENDIX
A.1 Implementations of HierCDF
HierCDF is a general framework that can be implemented with

many diagnostic models. Here, we take model 𝑋 ∈ {IRT, MIRT, MF,

NeuralCD} as an example. We use latent factors generated by the

CDM adaptor of HierCDF as input features of the model. Then we

specify F (·) defined in Sec. 4.3 with each model 𝑋 to implement

the corresponding Hier𝑋 .

IRT. In HierIRT, latent factors are scalars. That is to say, 𝒖𝑙
𝑖
, 𝒗𝑙 ∈

(0, 1). The F (·) is a logistic-like function:
𝑦𝑖𝑙 = sigmoid(ℎ𝑑𝑖𝑠𝑐

𝑙
· (𝒖𝑙𝑖 − 𝒗𝑙 )) . (18)

MIRT. In HierMIRT, latent factors are multidimensional, i.e.,

𝒖𝑙
𝑖
, 𝒗𝑙 ∈ (0, 1)𝐷×1

where 𝐷 > 1. The F (·) is shown as below:

𝑦𝑖𝑙 = sigmoid(𝒗⊤
𝑙
𝒖𝑙𝑖 + ℎ

𝑑𝑖𝑠𝑐
𝑙

) . (19)

MF. The HierMF uses the inner product as the interaction func-

tion. We further use a sigmoid function to compress the predicted

value to (0, 1), i.e.,
𝑦𝑖𝑙 = sigmoid(𝒗⊤

𝑙
𝒖𝑙𝑖 ). (20)

NeuralCD. TheHierNCD inputsmultidimensional latent factors,

and uses a multilayer perceptron (MLP) to capture the complex

interaction between students and questions:

𝑦𝑖𝑙 = 𝜙 (ℎ𝑑𝑖𝑠𝑐𝑙
· (𝒖𝑙𝑖 − 𝒗𝑙 )), (21)

where 𝜙 (·) is a three layer full connected neural network with

non-negative weights to keep explainability.

A.2 Hyperparameter Experimental Results

Figure 7: The result shows that HierCDF with 𝜆 > 0 out-
performs those with 𝜆 = 0, proving the effectiveness of the
parameter constraint in HierCDF. However, the performance
of HierCDF drops when 𝜆 becomes too large (e.g., 𝜆 = 1.0)
because the penalty term exceeds the cross-entropy term in
the loss function.
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