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Abstract

Entity Alignment, which aims to identify equiv-
alent entities from various Knowledge Graphs
(KGs), is a fundamental and crucial task in
knowledge graph fusion. Existing methods typ-
ically use triples or neighbor information to
represent entities, and then align those enti-
ties using similarity matching. Most of them,
however, fail to account for the heterogeneity
among KGs and the distinction between KG
entities and relations. To better solve these
problems, we propose a Relation-gated Het-
erogeneous Graph Network (RHGN) for entity
alignment in knowledge graphs. Specifically,
RHGN contains a relation-gated convolutional
layer to distinguish relations and entities in the
KG. In addition, RHGN adopts a cross-graph
embedding exchange module and a soft relation
alignment module to address the neighbor het-
erogeneity and relation heterogeneity between
different KGs, respectively. Extensive experi-
ments on four benchmark datasets demonstrate
that RHGN is superior to existing state-of-the-
art entity alignment methods.

1 Introduction

Knowledge Graphs (KGs), which are sets of triples
like (head entity, relation, tail entity), have been
widely constructed (Sevgili et al., 2022; Wang et al.,
2023) and applied (Liu et al., 2020a; Zhang et al.,
2022, 2021) in various fields in recent years, such
as DBpedia (Lehmann et al., 2015) and YAGO (Re-
bele et al., 2016). In the real world, a single KG
is usually incomplete as limited sources can be
collected by one KG. From this perspective, en-
tity alignment, which aims to determine equiva-
lent entities from various KGs, is a crucial task of
knowledge graph fusion and is being increasingly
researched (Sun et al., 2020c; Chen et al., 2022).

Specifically, entity alignment is a task to find
equivalent entities with the same color across two
KGs, as illustrated in Figure 1. As the neighbors
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Figure 1: An example of entity alignment between two
KGs. Nodes with the same color refer to the same entity
in different graphs.

and relations of the same entity in various KGs
are often different, also known as the heterogene-
ity problem, it is time-consuming to find aligned
entities manually. To align the entities efficiently,
many embedding-based methods have been pro-
posed. Traditional methods (Chen et al., 2017; Zhu
et al., 2017) follow the translational principle, such
as TransE (Bordes et al., 2013), to represent entity
embedding, which consider the triples but disre-
gard the local neighbors. Recently, many methods
(Wang et al., 2018; Sun et al., 2020b) have adopted
the Graph Convolutional Network (GCN) and its
variants to capture local neighbor information due
to the GCNs’ remarkable ability (Welling and Kipf,
2016; Velickovic et al., 2017; Wu et al., 2021,
2023). Additionally, researchers have proposed
some models to utilize relations as weights (Cao
et al., 2019) or information (Mao et al., 2021; Yu
et al., 2021) in the GCN-based framework. De-
spite this, the following two primary challenges
have been encountered by the vast majority of prior
methods when attempting to use relation informa-
tion to solve KG heterogeneity:

First, relations should not be directly incorpo-
rated into entity representation, since confusing
relations with entities leads to smooth entity repre-
sentations. In DBpedia, there are 4,233,000 enti-
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ties but only 3,000 relations, making the same rela-
tion often established between various entities (e.g.,
Country in Figure 1(b)). To separate relations from
entities, R-GCN (Schlichtkrull et al., 2018) learns
relation matrices but numerous relations bring trou-
ble for parameter optimization (Vashishth et al.,
2019). Therefore, existing models (Nathani et al.,
2019; Mao et al., 2020) employ vectors to repre-
sent relations and apply simple functions (e.g., sub-
traction and projection) as the neighbor message
functions. However, these simple functions barely
distinguish relations from entities and still bring
much noise to entity representation.

Second, due to KG heterogeneity, it is challeng-
ing to unify the semantic representations between
KGs during the alignment process. Specifically,
KG heterogeneity includes (1) neighbor hetero-
geneity and (2) relation heterogeneity. Neighbor
heterogeneity indicates that the same entity in dif-
ferent KGs have different neighbors. As illustrated
in Figure 1, neighbor heterogeneity is reflected in
that Da Vinci have different neighbors in two KGs,
which may make us mistakenly match Da Vinci in
KG1 with Florence Cathedral in KG2 as they have
more identical neighbors. Relation heterogeneity
means that the relation between the same entity
pair can be expressed in various ways, even though
these relations have similar intentions. As Figure 1
shows, relation heterogeneity is expressed as that
the relation between Da Vinci and Italy is Nation-
ality in KG1, while it is Citizenship in KG2, which
causes trouble for aligning these triples though they
have the similar meaning.

To tackle these obstacles, we propose a Relation-
gated Heterogeneous Graph Network (RHGN) for
entity alignment. Specifically, we first propose a
novel Relation Gated Convolution (RGC) to make
entity representations more discriminative. RGC
uses relations as signals to control the flow of neigh-
bor information, which separates relations from en-
tities and avoids noise flowing into entities in repre-
sentation learning. Second, to tackle the neighbor
heterogeneity between two KGs, we devise Cross-
graph Embedding Exchange (CEE) to propagate in-
formation via aligned entities across different KGs,
thereby unifying the entity semantics between two
KGs. Third, we design Soft Relation Alignment
(SRA) to deal with the relation heterogeneity. SRA
leverages entity embedding to generate soft labels
for relation alignment between KGs, hence reduc-
ing the semantic distance of similar relations across

KGs. Finally, extensive experiments on four real-
world datasets demonstrate the effectiveness of our
proposed method. The source code is available at
https://github.com/laquabe/RGHN.

2 Related Works

2.1 Entity Alignment

Entity alignment is a fundamental task in knowl-
edge graph study. It seeks to recognize identi-
cal entities from different KGs (Sun et al., 2020c;
Chen et al., 2020). To efficiently find identical
entities, embedding-based models have been ex-
tensively studied. Traditional models, such as
MtransE (Chen et al., 2017), used translation-based
models (e.g., TransE (Bordes et al., 2013)) to make
the distance between aligned entities get closer. Fol-
lowing this thought, IPTransE (Zhu et al., 2017),
JAPE (Sun et al., 2017), and BootEA (Sun et al.,
2018) constrained models from semantic space, at-
tributes, and labels, respectively. Traditional mod-
els, however, neglect neighbor structures in favor
of triples.

Inspired by the great success of Graph Neu-
ral Networks (GNNs), numerous methods (e.g,
GCN-Align (Wang et al., 2018), AliNet (Sun
et al., 2020b)) employed the GNNs and the vari-
ants to capture local neighbor information (Zeng
et al., 2021). Since the knowledge graph contains
abundant relations, RDGCN (Wu et al., 2019a),
RSN4EA (Guo et al., 2019), and Dual-AMN (Mao
et al., 2021) utilized relations as weights, paths,
and projection matrices in GNNs. RREA (Mao
et al., 2020) proposed a unified framework for en-
tity alignment using relations. IMEA (Xin et al.,
2022) encoded neighbor nodes, triples, and relation
paths together with transformers. Unfortunately,
they have not paid enough attention to the differ-
ences between entities and relations, and ignored
semantic differences between different graphs due
to KG heterogeneity.

Relation alignment, meantime, greatly aids in
entity alignment. MuGNN (Cao et al., 2019) and
ERMC (Yang et al., 2021) directly used the rela-
tion alignment labels but relation alignment labels
are scarce in the real world. RNM (Zhu et al.,
2021) and IMEA (Xin et al., 2022) applied post-
processing to relation alignment with statistical
features. However, post-processing can mine lim-
ited aligned relations. HGCN-JE (Wu et al., 2019b)
jointly learned entity alignment and relation align-
ment, which incorporated neighbor relations into
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Figure 2: The illustration of RHGN structure, which contains: (a) Graph Data Preprocessing (GDP); (b) Relation
Gated Convolution (RGC); (c) Cross-graph Embedding Exchange (CEE); (d) Soft Relation Alignment(SRA).

entities. Unfortunately, non-aligned entities may
also have similar neighbor relations, which means
relation alignment and entity alignment should be
separated. Therefore, effective relation alignment
methods remain to be explored.

2.2 Graph Convolutional Network
Graph Convolutional Networks (GCNs) general-
ize convolution operations from traditional data
(e.g., images or grids) to non-Euclidean data struc-
tures (Defferrard et al., 2016). The fundamental
idea of graph convolutional networks is to enhance
node self-representation by using neighbor infor-
mation. Therefore, GCNs are typically expressed
as a neighborhood aggregation or message-passing
scheme (Gilmer et al., 2017).

In the broad application of GCNs, GCN (Welling
and Kipf, 2016) and GAT (Velickovic et al., 2017)
showed the powerful ability to capture neighbor
information. Despite this, they performed poorly
in KG representation as they ignored relations. To
emphasize the essential role of relations in entity
representation, R-GCN (Schlichtkrull et al., 2018)
used a matrix to represent each relation. How-
ever, massive relations in the knowledge graph
make it challenging for the relation matrixes to
be fully learned. Thus, most follow-up works used
vectors to represent relations. For example, KB-
GAT (Nathani et al., 2019) concentrated the neigh-
bor triples as information. CompGCN (Vashishth
et al., 2019) leveraged the entity-relation composi-
tion operations from knowledge embedding meth-
ods like TransE (Bordes et al., 2013) as message.
KE-GCN (Yu et al., 2021) passed the gradient of
the scoring function to the central node. Never-

theless, none of the above models takes account
of the inequality of relations and entities. In con-
trast, our RHGN is able to make a clear distinction
between relations and entities, resulting in more
distinct entity representations.

3 Preliminaries

In this section, we formalize the problem of entity
alignment and give some related definitions.

3.1 Problem Definition

In this paper, we formally define a KG as G =
(E, R, T ), where E is the set of entities, R is the
set of relations, and T = E × R × E is the set
of triples like (Florence, Country, Italy) as il-
lustrated in Figure 1. Without loss of generality,
we consider the entity alignment task between two
KGs, i.e., G1 = (E1, R1, T1) and G2 = (E2, R2,
T2). The goal is to find the 1-to-1 alignment of enti-
ties SKG1,KG2 = {(e1, e2) ∈ E1 × E2|e1 ∼ e2},
where ∼ denotes the equivalence relation. To
train the model, a small subset of the alignment
S′
KG1,KG2

∈ SKG1,KG2 is given as the training
data, and we call it seed alignment set.

3.2 Graph Convolutional Layers

Following previous works (Sun et al., 2020b; Guo
et al., 2020; Xin et al., 2022), our RHGN model
is built upon GCN framework (Welling and Kipf,
2016) to embed the entities E in KGs. Our model
contains multiple stacked GCN layers, which en-
ables entity embeddings to incorporate informa-
tion from higher-order neighbors. The input for
k-th GCN layer is an entity feature matrix, Ek =
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Figure 3: The Illustration of Relation Gated Convolution

{ek1, ek2, ..., ekn|eki ∈ G}, where n is the number of
entities in G. To update the embedding of enti-
ties in layer k, the GCN layer aggregates neighbor
information, which can be formally described as:

ek+1
i = γk(eki , Aggj∈N(i)ϕ(e

k
i , e

k
j , r

k
i,j)) (1)

where N(i) is the neighbors of entity i, γ is the
transformation function like MLP, Agg is the Ag-
gregate function like sum, mean or max, and ϕ is
the score function.

4 RHGN: Relation-gated Heterogeneous
Graph Network

In this section, we first present an overview of our
RHGN. Then we introduce the technical details of
RHGN.

4.1 An Overview of RHGN
As shown in Figure 2, our approach contains four
components: (a) Graph Data Preprocessing (GDP),
(b) Relation Gated Convolution (RGC), (c) Cross-
graph Embedding Exchange (CEE), and (d) Soft
Relation Alignment (SRA). Specifically, GDP first
preprocesses graphs through two aspects: complet-
ing graphs by adding inverse relations and con-
structing the cross graph by exchanging aligned
entities. Then, several RGC layers are devised to
aggregate information in both original and cross
graphs to get the representation of entities and rela-
tions. Meanwhile, CEE exchanges the embedding
of original graphs and cross graphs between each
RGC layer for efficient information propagation.
Finally, SRA employs the embedding of entities to
produce soft labels for relation alignment and the
embedding of entities and relations will be sent to
the model loss for optimization.

4.2 Graph Data Preprocessing

In order to make better use of the relations and
address heterogeneity, we first perform data prepro-
cessing on graphs to make graphs more complete.
In detail, GDP contains two parts: Inverse Relation
Embedding and Cross Graph Construction.

4.2.1 Inverse Relation Embedding
Since relations in KGs are normally unidirec-
tional, following previous works (Sun et al., 2020b;
Vashishth et al., 2019), we also add inverse relation
to KGs. The inverse relation is defined as:

rinvi = Winvri, (2)

where rinvi is the inverse relation of relation ri.
Winv is the weight matrix of inverse relation trans-
formation. Therefore, we extend graphs as:

T ′ = T ∪ {(t, rinv, h)|(h, r, t) ∈ T}, (3)

where (h, r, t) is the triple in the original graph.

4.2.2 Cross Graph Construction
As we discussed in Section 1, to address neigh-
bor heterogeneity, in this part, we first construct
cross graphs through the aligned entities in the
seed alignment set for efficient information prop-
agation across KGs. Specifically, as Figure 2(a)
shows, Cross Graph Construction generates cross
graphs by exchanging the aligned entities in the
seed alignment set S′

KG1,KG2
. The entities Ecross

1

in the cross graph Gcross
1 are defined as:

ecross1 =

{
e2 if e1 ∈ S′

KG1,KG2
and e1 ∼ e2,

e1 else.
(4)

Similarly, the entities Ecross
2 in the cross graph

Gcross
2 are defined as:

ecross2 =

{
e1 if e2 ∈ S′

KG1,KG2
and e2 ∼ e1,

e2 else.
(5)

Taking Figure 1 as an example, (Da Vinci, Citi-
zenship, Italy) will be in cross KG2 as we exchange
Da Vinci in KG1 and Leonardo da Vinci in KG2.

Finally, the cross graphs Gcross
1 and Gcross

2

are defined as Gcross
1 = (Ecross

1 , R1, T cross
1 ) and

Gcross
2 = (Ecross

2 , R2, T cross
2 ).The embeddings of

entities and relations are randomly initialized.
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4.3 Relation Gated Convolution

After getting the preprocessed graphs, in Fig-
ure 2(b), we use RGC to aggregate neighbors and
relations to the central entity. As discussed in
Section 1, directly incorporating relation into en-
tity representation may introduce much noise. To
tackle this, we separate the semantic space of rela-
tions and entities. Specifically, in figure 3, we use
a non-linear activation function (σ2) as a gate to
aggregate neighbors and relations. The gate treats
relations as control signals to regulate the inflow of
neighbor information. For the entity i at k-th layer
eki , the embedding of entity i at k+1-th layer ek+1

i

is computed as follows:

ek+1
i = σ1(

∑

j∈N(i)

W k
e (e

k
j ⊗ σ2(r

k
i,j))), (6)

where N(i) is the set of neighbors of entity i, and
rki,j is the relation from entity j to entity i, W k

e is
the entity weight matrix of k-th layer, ⊗ denotes
element-wise multiplication between vectors, σ1(·)
and σ2(·) are non-linear activation functions. We
use tanh(·) for σ1(·) and sigmoid(·) for σ2(·).

Moreover, inspired by (Vashishth et al., 2019),
we also update the embedding of relations rki,j as:

rk+1
i,j = W k

r r
k
i,j , (7)

where W k
r is the relation weight matrix of the k-th

layer. In order to reduce the semantic gap between
the two KGs, we share the weights of the RGCs
between two graphs in each layer.

4.4 Cross-graph Embedding Exchange

According to Section 4.2, we build the cross graph
to address neighbor heterogeneity among different
KGs. In this section, to make information propa-
gation across KGs more efficient, we introduce a
cross-graph embedding exchange method on both
original and cross graphs to reduce the entity se-
mantic distance between KGs. As illustrated in
Figure 2(c), we exchange entity embeddings be-
tween the original graph and the cross graph at
each intermediate layer. Formally, Ek and Ek

cross

represent the entity embedding of original graph
and cross graph in k-th layer respectively, the k+1-
th layer can be computed as:

Ek+1 = RGC(Ek
cross, R

k, Gk,W k), (8)

Ek+1
cross = RGC(Ek, Rk

cross, G
k
cross,W

k). (9)

Compared with previous work (Cao et al., 2019)
that adds edges between aligned entities in the seed
alignment set, CEE can effectively reduce the dis-
tance of information propagation across two KGs.
Taking the entity Florence in Figure 1 as an exam-
ple, if we assume that Italy in two KGs is aligned,
the information from Florence in KG1 can propa-
gate to Florence in KG2 only through 3 edges and
2 nodes with the help of CEE. According to Huang
et al. (2020), a shorter propagation distance spreads
more information across two KGs, making the two
graphs’ entity semantics closer.

4.5 Soft Relation Alignment

As discussed in Section 1, relation heterogeneity
also complicates entity alignment. Relation align-
ment, which seeks out mutually similar ties across
KGs, is one direct method for resolving this prob-
lem. However, due to the lack of labels, we need to
produce soft relation alignment labels by ourselves.

Inspired by prior works (Wu et al., 2019b; Zhu
et al., 2021), we make use of entities to produce soft
relation alignment labels as shown in Figure 2(d).
We define relation label embedding as:

r′ = concat[
1

Hr

∑

ei∈Hr

ei,
1

Tr

∑

ej∈Tr

ej ], (10)

where Hr and Tr are the sets of head entities and
tail entities of relaiton r, respectively. Then, the
relation alignment label is defined as:

yij = I(cos(r′i, r′j) > γ), (11)

where γ is the hyperparameter of the threshold.
It is noteworthy that our method may either pro-

duce multiple alignment labels or no alignment la-
bels for one relation since relation alignment does
not obey 1-to-1 constraints. As shown in Figure 1,
Nationality and Famous People in KG1 may be
similar to Citizenship in KG2, while Location in
KG2 has no similar relation KG1. This feature
makes us decide to convert relation alignment task
to a multi-label classification task in model loss.

4.6 Training

In this subsection, we introduce our loss compo-
nents: the entity alignment loss and the relation
alignment loss, which capture alignment informa-
tion of entities and relations, respectively.
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Dataset KG #Ent. #Rel. #Rel tr.

EN-FR
EN 15,000 267 47,334
FR 15,000 210 40,864

EN-DE
EN 15,000 215 47,676
DE 15,000 131 50,419

D-W
DB 15,000 248 38,265
WD 15,000 169 42,746

D-Y
DB 15,000 165 30,291
YG 15,000 28 26,638

Table 1: The Statistics of OpenEA Datasets

4.6.1 Entity Alignment Loss
Following previous work (Sun et al., 2020b; Xin
et al., 2022), we minimize the contrastive align-
ment loss to make the distance between the aligned
entities as close as possible, while the distance
between the non-aligned entities is very far. The
alignment loss is defined as:

L1 =
∑

(i,j)∈A+

||ei−ej ||+
∑

(i′,j′)∈A−
α1[λ−||ei′−ej′ ||]+,

(12)
where ei is the entity embedding concentration of
all layers in the original graph and cross graph.
A− is the set of negative samples generated by
truncated-ϵ negative sampling strategy, || · || de-
notes L2 distance. [·]+ = max(0, x), and we hope
the distance of negative samples to be larger than
a margin λ. α1 is a hyperparameter to keep the
balance between positive and negative samples.

4.6.2 Relation Alignment Loss
As we mentioned in Section 4.5, we transform rela-
tion alignment into a multi-label classification task.
Consequently, we first calculate the cosine similar-
ity of relations in the last layer between graphs:

xij = cos(ri, rj). (13)

Then, we use the soft labels produced in SRA to
calculate the relation alignment loss, we adopt the
multi-label soft margin loss:

L2 = − 1

|R|
∑

i

(yi · log(
1

1 + exp(−xi)
)

+(1− yi) · log
exp(−xi)

1 + exp(−xi)
).

(14)

Finally, RHGH combines the two losses as:

L = L1 + α2L2, (15)

where α2 is a hyperparameter to keep the balance
between entity alignment and relation alignment.

5 Experiments

5.1 Dataset

For the reliability and authority of experimental re-
sults, we use the dataset (V1) in OpenEA (Sun et al.,
2020c) for evaluation since it closely resembles the
data distribution of real KGs. It contains two cross-
lingual settings extracted from multi-lingual DBpe-
dia: English-French and English-German, as well
as two monolingual settings among popular KGs:
DBpedia-Wikidata and DBpedia-YAGO. We use
the setting that datasets contain 15K pairs of ref-
erence entity alignment and no reference relation
alignment. Table 1 provides further information
about the datasets. We adhere to OpenEA’s dataset
divisions, which use a 20% seed for training, 10%
for validation, and 70% for testing.

5.2 Implementation Details

We implement our method through PyG (Fey
and Lenssen, 2019) on Pytorch. We initialize
the trainable parameters with Xavier initializa-
tion (Glorot and Bengio, 2010) and optimize loss
with Adam (Kingma and Ba, 2015). As for
hyper-parameters, we decide the important hyper-
parameters by grid search and keep them the same
in all datasets. For example the number of RGCs’
layers is 4, the hidden size of each layer is 256, the
batch size is 256, and the learning rate is 0.001. We
set α2 = 10 to keep the balance of alignment loss
and semantic loss. We randomly sample 25 nega-
tive samples for each pre-aligned entity pair. After
every 25 epochs, we resample 25 negative samples
based on the CSLS (Lample et al., 2018) and re-
sample 100 head and tail entities respectively to
generate soft relation alignment labels. The thresh-
old γ is 0.5, the negative sample distance margin λ
is 1.5 and the negative sample weight α1 is 0.1.

Followed the previous work (Sun et al., 2020b;
Xin et al., 2022), we also use early stopping to
terminate training based on Hits@1 performance
on the validation set with a patient of 25 epochs,
and the maximum training epochs is 1000. Accord-
ing to most previous work, we report the Hits@1,
Hits@5 and MRR (mean reciprocal rank) results
to assess entity alignment performance. We con-
duct the experiments with 5-fold cross-validation
to ensure the unbiased evaluation.
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Dateset EN_FR_V1 EN_DE_V1 D_W_V1 D_Y_V1

Category Method H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

Triple-based

MTransE 0.247 0.467 0.351 0.307 0.518 0.407 0.259 0.461 0.354 0.463 0.675 0.559
IPTransE 0.169 0.320 0.243 0.350 0.515 0.430 0.232 0.380 0.303 0.313 0.456 0.378
AlignE 0.357 0.611 0.473 0.552 0.741 0.638 0.406 0.627 0.506 0.551 0.743 0.636

SEA 0.280 0.530 0.397 0.530 0.718 0.617 0.360 0.572 0.458 0.500 0.706 0.591

Neighbor-based
GCN-Align 0.338 0.589 0.451 0.481 0.679 0.571 0.364 0.580 0.461 0.465 0.626 0.536

AliNet 0.364 0.597 0.467 0.604 0.759 0.673 0.440 0.628 0.522 0.559 0.690 0.617
HyperKA 0.353 0.630 0.477 0.560 0.780 0.656 0.440 0.686 0.548 0.568 0.777 0.659

Relation-enhanced
RSN4EA 0.393 0.595 0.487 0.587 0.752 0.662 0.441 0.615 0.521 0.514 0.655 0.580
KE-GCN 0.408 0.670 0.524 0.658 0.822 0.730 0.519 0.727 0.608 0.560 0.750 0.644

IMEA 0.458 0.720 0.574 0.639 0.827 0.724 0.527 0.753 0.626 0.639 0.804 0.712

Ours RHGN 0.500 0.739 0.603 0.704 0.859 0.771 0.560 0.753 0.644 0.708 0.831 0.762

Table 2: Entity Alignment Results on OpenEA Datasets

Dateset EN_FR_V1 D_W_V1

Method H@1 H@5 MRR H@1 H@5 MRR

GCN 0.391 0.612 0.488 0.474 0.649 0.550
GAT 0.362 0.577 0.457 0.448 0.625 0.525

R-GCN 0.468 0.708 0.572 0.538 0.736 0.624
CompGCN 0.473 0.726 0.584 0.524 0.729 0.613

RGC 0.500 0.739 0.603 0.560 0.753 0.644

Table 3: Entity Alignment of Various Convolution

5.3 Benchmark Methods

To evaluate the effectiveness of RHGN, we com-
pare it with the state-of-the-art supervised structure-
based entity alignment methods. we use codes and
parameters released by the authors and display the
best results among reproduced results and reported
results in original articles. In general terms, we can
classify them as follows.

• Triple-based Models. These models focus
on triple, they usually use TransE (Bordes
et al., 2013) to represent entities and relations,
including MTransE (Chen et al., 2017), IP-
TransE (Zhu et al., 2017), AlignE (Sun et al.,
2018), and SEA (Pei et al., 2019).

• Neighbor-based Models. These models
emphasize neighbor information but ignore
the relation information, they usually use
GNNs to represent entities, including GCN-
Align (Wang et al., 2018), AliNet (Sun et al.,
2020b), and HyperKA (Sun et al., 2020a).

• Relation-enhanced Models. These models
take into account the importance of relation
information and incorporate relation infor-
mation into entity representations, including

RSN4EA (Guo et al., 2019), KE-GCN (Yu
et al., 2021), and IMEA (Xin et al., 2022).

Our model and the above baselines all focus
on the structural information of KGs. For a fair
comparison, we disregard additional models that
incorporate side information (e.g., attributes, en-
tity names and descriptions) like RDGCN (Wu
et al., 2019a), KDCoE (Chen et al., 2018) and At-
trGNN (Liu et al., 2020b).

5.4 Experimental Results

The results of all methods on OpenEA datasets are
shown in Table 2. In general, the RHGN model has
achieved the best performance compared with these
SOTA baselines. Specifically, our method outper-
forms the best-performing baseline (i.e., IMEA,
KE-GCN) on Hits@1 by 3%-6%, on MRR by
1%-5%, and on Hits@5 by 1%-3% (except for
D_W_V1). Additionally, we discover some inter-
esting phenomena as follows:

First, on all datasets, relation-enhanced mod-
els outperform neighbor-based models, and both
outperform triple-based models. This fully demon-
strates that relation information plays an impor-
tant role in neighbor information aggregation. Sec-
ond, our model has significant improvements on
EN_DE_V1 and D_Y_V1, but the improvements
of our model are relatively limited on EN_FR_V1
and D_W_V1, and we find that all baselines do
not perform well on datasets EN_FR_V1 and
D_W_V1. We believe that the semantic distance
between the graphs in the two datasets is far apart,
which makes it is hard to find aligned entities.
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Figure 4: Visualization of the entity embedding. The same color means the entities are in the same KG.
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Figure 5: The Impact of Different Heterogeneity

5.5 Ablation Study

5.5.1 RGC’s Ability to Utilize Relations

To compare the ability to utilize relations of
various convolutions, We replace the RGC
with re-tuned GNN variants GCN (Welling
and Kipf, 2016), GAT (Velickovic et al.,
2017), R-GCN (Schlichtkrull et al., 2018), and
CompGCN (Vashishth et al., 2019) with the same
parameters. The results are shown in Table 3.
Among these models, our RGC also achieves the
best performance, as GCN and GAT ignore the
relations, while R-GCN and CompGCN can not
take advantage of the relations well. Meanwhile,
the result that R-GCN and CompGCN outperform
GCN and GAT proves the essential role of relations
in entity representation.

5.5.2 The Impact of Different Heterogeneity

To verify the impact of different heterogeneity, fig-
ure 5 reports the performances after removing CEE
and SRA, respectively. We observe that both com-
ponents contribute to performance improvement,
demonstrating that each component design in our
framework is reasonable. Meanwhile, the effects
of the two components on different datasets are
also different, implying that the impact of neighbor
heterogeneity and relationship heterogeneity varies
between different KGs.

Figure 6: Results with Various RGC’s Layer Numbers

5.6 The Distance of Information Propagation

We explore the effect of RGC’s layer number on
model performance as layer numbers reflect the
distance of information propagation. In Figure 6,
we present the effect of RGC’s layer numbers with
1 to 5 on EN_FR_V1. Obviously, RHGN with 4
layers achieves the best performance over all three
metrics. When the number of layers exceeds 4, the
performance decline as adding more layers allows
the model to collect more distant neighbor data and
adds noise during information propagation. We
also observe that RHGN with 2 layers has a huge
improvement over RHGN with 1 layer. We believe
that due to the lack of exchange entity embedding,
RHGN with 1 layer cannot obtain information from
the other KGs, resulting in poor performance.

Then we calculate the shortest path length from
the test set entities to the training set entities in the
EN_FR_V1 dataset. The average and median of
shortest path length are 1.5 and 1 in EN, and the
length is 1.6 and 2 in FR. This shows that most
entities need 3 to 4 hops to pass their own infor-
mation to the aligned entity of another graph with
CEE module. As a matter of fact, RHGN with 3
and 4 layers achieves similar performance and is
ahead of other variants, which also verifies that our
CEE module is effective.
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5.7 Visualization of Entity Embedding

For a more intuitive comparison of how our pro-
posed model addresses heterogeneity across dif-
ferent KGs with other methods, we conduct visu-
alization on the D_W_V1 datasets. Specifically,
we perform dimensionality reduction on entity em-
bedding of GCN, GAT, R-GCN, CompGCN, and
RHGN with t-SNE (Van der Maaten and Hinton,
2008). Results are shown in Figure 4, where the
same color means entities are in the same KG. Ide-
ally, the entity distributions of two graphs should
overlap as much as possible, and entity embeddings
should be sparsely distributed.

From Figure 4, we find some phenomena as fol-
lows. First, entities represented by previous meth-
ods have obvious clustering in space, while incorpo-
rating relation can effectively alleviate the cluster-
ing. This phenomenon suggests that relations play
an essential role in distinguishing entities and pre-
venting over-smoothing. Second, all previous arts
have significant space that is not aligned, which
demonstrates that they are unable to bridge the
semantic space gap caused by KG heterogeneity.
However, our RHGN model’s entity embeddings
are sparsely distributed in space and have a high
degree of overlaps, making the model distinguish
entities well and easily find aligned entities.

6 Limitations

Although we have demonstrated the superiority of
our RHGH model compared to previous work on
four real-world datasets, there are still two limita-
tions that should be addressed in the future:

(1) As our RGC layer employs the whole graph
to learn the embedding of entities and relations,
like most GCN’s frameworks, the computational
resources and time required by our framework in-
crease linearly with the size of KG. To make our
RHGH model effective on the KG with millions of
entities, it is desirable to apply some graph chunk-
ing techniques, such as Cluster-GCN (Chiang et al.,
2019), to reduce the size of the KG for our RHGH
model to improve computational efficiency.

(2) Currently, our RHGH model treats each re-
lation individually. However, relation paths con-
sisting of multiple relations will contain more com-
plex semantic information in KGs. Relation paths
enable entities to obtain higher-order neighbor in-
formation, but it is also more difficult to align re-
lational paths in different knowledge graphs. In
future work, we will explore more efficient ways

to utilize the relation path in entity alignment, such
as the relation path matching in different KGs.

7 Conclusion

In this paper, we studied the problem of entity align-
ment and proposed the RHGN model, which could
distinguish relation and entity semantic spaces, and
further address heterogeneity across different KGs.
Specifically, we first designed a novel relation-
gated convolutional layer to regulate the flow of
neighbor information through relations. Then, we
proposed an innovative cross-graph embedding ex-
change module, which reduces the entity semantic
distance between graphs to address neighbor het-
erogeneity. Finally, we devised a soft relation align-
ment module for the unsupervised relation align-
ment task, which solves the relation heterogeneity
problem between graphs. Extensive experiments
on four real-world datasets verified the effective-
ness of our proposed methods. In future work, we
will explore more ways to utilize the relation in-
formation in entity alignment, such as the relation
path matching in different KGs.

Acknowledgements

This research was partially supported by grants
from the National Natural Science Foundation of
China (Grants No. U20A20229, No. 62106244),
and the University Synergy Innovation Program of
Anhui Province (No. GXXT-2022-042).

References
Antoine Bordes, Nicolas Usunier, Alberto Garcia-

Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. Advances in neural information pro-
cessing systems, 26.

Yixin Cao, Zhiyuan Liu, Chengjiang Li, Juanzi Li, and
Tat-Seng Chua. 2019. Multi-channel graph neural
network for entity alignment. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1452–1461.

Liyi Chen, Zhi Li, Yijun Wang, Tong Xu, Zhefeng
Wang, and Enhong Chen. 2020. Mmea: entity align-
ment for multi-modal knowledge graph. In Proc. of
KSEM.

Liyi Chen, Zhi Li, Tong Xu, Han Wu, Zhefeng Wang,
Nicholas Jing Yuan, and Enhong Chen. 2022. Multi-
modal siamese network for entity alignment. In Proc.
of KDD.

8691



Muhao Chen, Yingtao Tian, Kai-Wei Chang, Steven
Skiena, and Carlo Zaniolo. 2018. Co-training embed-
dings of knowledge graphs and entity descriptions
for cross-lingual entity alignment. In Proceedings of
the 27th International Joint Conference on Artificial
Intelligence, pages 3998–4004.

Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo
Zaniolo. 2017. Multilingual knowledge graph em-
beddings for cross-lingual knowledge alignment. In
IJCAI.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy
Bengio, and Cho-Jui Hsieh. 2019. Cluster-gcn: An
efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th
ACM SIGKDD international conference on knowl-
edge discovery & data mining, pages 257–266.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances
in neural information processing systems, 29.

Matthias Fey and Jan E. Lenssen. 2019. Fast graph
representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on
Graphs and Manifolds.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. 2017. Neural mes-
sage passing for quantum chemistry. In International
conference on machine learning, pages 1263–1272.
PMLR.

Xavier Glorot and Yoshua Bengio. 2010. Understanding
the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference
Proceedings.

Lingbing Guo, Zequn Sun, and Wei Hu. 2019. Learn-
ing to exploit long-term relational dependencies in
knowledge graphs. In International Conference on
Machine Learning, pages 2505–2514. PMLR.

Lingbing Guo, Weiqing Wang, Zequn Sun, Cheng-
hao Liu, and Wei Hu. 2020. Decentralized knowl-
edge graph representation learning. arXiv preprint
arXiv:2010.08114.

Kexin Huang and Marinka Zitnik. 2020. Graph meta
learning via local subgraphs. Advances in Neural
Information Processing Systems, 33:5862–5874.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR (Poster).

Guillaume Lample, Alexis Conneau, Marc’Aurelio Ran-
zato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Interna-
tional Conference on Learning Representations.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Sören Auer, et al. 2015. Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167–195.

Ye Liu, Han Wu, Zhenya Huang, Hao Wang, Jianhui
Ma, Qi Liu, Enhong Chen, Hanqing Tao, and Ke Rui.
2020a. Technical phrase extraction for patent mining:
A multi-level approach. In 2020 IEEE International
Conference on Data Mining (ICDM), pages 1142–
1147. IEEE.

Zhiyuan Liu, Yixin Cao, Liangming Pan, Juanzi Li, and
Tat-Seng Chua. 2020b. Exploring and evaluating
attributes, values, and structures for entity alignment.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6355–6364.

Xin Mao, Wenting Wang, Yuanbin Wu, and Man Lan.
2021. Boosting the speed of entity alignment 10×:
Dual attention matching network with normalized
hard sample mining. In Proceedings of the Web Con-
ference 2021, pages 821–832.

Xin Mao, Wenting Wang, Huimin Xu, Yuanbin Wu, and
Man Lan. 2020. Relational reflection entity align-
ment. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Manage-
ment, pages 1095–1104.

Deepak Nathani, Jatin Chauhan, Charu Sharma, and
Manohar Kaul. 2019. Learning attention-based em-
beddings for relation prediction in knowledge graphs.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 4710–
4723.

Shichao Pei, Lu Yu, Robert Hoehndorf, and Xiangliang
Zhang. 2019. Semi-supervised entity alignment via
knowledge graph embedding with awareness of de-
gree difference. In The World Wide Web Conference,
pages 3130–3136.

Thomas Rebele, Fabian Suchanek, Johannes Hoffart,
Joanna Biega, Erdal Kuzey, and Gerhard Weikum.
2016. Yago: A multilingual knowledge base from
wikipedia, wordnet, and geonames. In International
semantic web conference, pages 177–185. Springer.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European semantic web confer-
ence, pages 593–607. Springer.

Özge Sevgili, Artem Shelmanov, Mikhail Arkhipov,
Alexander Panchenko, and Chris Biemann. 2022.
Neural entity linking:: A survey of models based
on deep learning. Semantic Web, 13(3):527–570.

Zequn Sun, Muhao Chen, Wei Hu, Chengming Wang,
Jian Dai, and Wei Zhang. 2020a. Knowledge associ-
ation with hyperbolic knowledge graph embeddings.

8692



In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 5704–5716.

Zequn Sun, Wei Hu, and Chengkai Li. 2017. Cross-
lingual entity alignment via joint attribute-preserving
embedding. In International Semantic Web Confer-
ence, pages 628–644. Springer.

Zequn Sun, Wei Hu, Qingheng Zhang, and Yuzhong Qu.
2018. Bootstrapping entity alignment with knowl-
edge graph embedding. In IJCAI, volume 18, pages
4396–4402.

Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen,
Jian Dai, Wei Zhang, and Yuzhong Qu. 2020b.
Knowledge graph alignment network with gated
multi-hop neighborhood aggregation. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 222–229.

Zequn Sun, Qingheng Zhang, Wei Hu, Chengming
Wang, Muhao Chen, Farahnaz Akrami, and Chengkai
Li. 2020c. A benchmarking study of embedding-
based entity alignment for knowledge graphs. Pro-
ceedings of the VLDB Endowment, 13(12).

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and
Partha Talukdar. 2019. Composition-based multi-
relational graph convolutional networks. In Interna-
tional Conference on Learning Representations.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. stat, 1050:20.

Kehang Wang, Qi Liu, Kai Zhang, Ye Liu, Hanqing
Tao, Zhenya Huang, and Enhong Chen. 2023. Class-
dynamic and hierarchy-constrained network for en-
tity linking. In Database Systems for Advanced Ap-
plications: 28th International Conference, DASFAA
2023, Tianjin, China, April 17–20, 2023, Proceed-
ings, Part II, pages 622–638. Springer.

Zhichun Wang, Qingsong Lv, Xiaohan Lan, and
Yu Zhang. 2018. Cross-lingual knowledge graph
alignment via graph convolutional networks. In Pro-
ceedings of the 2018 conference on empirical meth-
ods in natural language processing, pages 349–357.

Max Welling and Thomas N Kipf. 2016. Semi-
supervised classification with graph convolutional
networks. In J. International Conference on Learn-
ing Representations (ICLR 2017).

Likang Wu, Zhi Li, Hongke Zhao, Qi Liu, Jun Wang,
Mengdi Zhang, and Enhong Chen. 2021. Learn-
ing the implicit semantic representation on graph-
structured data. In Database Systems for Advanced
Applications: 26th International Conference, DAS-
FAA 2021, Taipei, Taiwan, April 11–14, 2021, Pro-
ceedings, Part I 26, pages 3–19. Springer.

Likang Wu, Hongke Zhao, Zhi Li, Zhenya Huang,
Qi Liu, and Enhong Chen. 2023. Learning the ex-
plainable semantic relations via unified graph topic-
disentangled neural networks. ACM Transactions on
Knowledge Discovery from Data.

Y Wu, X Liu, Y Feng, Z Wang, R Yan, and D Zhao.
2019a. Relation-aware entity alignment for hetero-
geneous knowledge graphs. In Proceedings of the
Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence. International Joint Conferences
on Artificial Intelligence.

Y Wu, X Liu, Y Feng, Z Wang, and D Zhao. 2019b.
Jointly learning entity and relation representations for
entity alignment. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 240–249. Association for Computational Lin-
guistics.

Kexuan Xin, Zequn Sun, Wen Hua, Wei Hu, and Xi-
aofang Zhou. 2022. Informed multi-context entity
alignment. In Proceedings of the Fifteenth ACM
International Conference on Web Search and Data
Mining, pages 1197–1205.

Jinzhu Yang, Ding Wang, Wei Zhou, Wanhui Qian, Xin
Wang, Jizhong Han, and Songlin Hu. 2021. Entity
and relation matching consensus for entity alignment.
In Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
pages 2331–2341.

Donghan Yu, Yiming Yang, Ruohong Zhang, and
Yuexin Wu. 2021. Knowledge embedding based
graph convolutional network. In Proceedings of the
Web Conference 2021, pages 1619–1628.

Kaisheng Zeng, Chengjiang Li, Lei Hou, Juanzi Li, and
Ling Feng. 2021. A comprehensive survey of entity
alignment for knowledge graphs. AI Open, 2:1–13.

Kai Zhang, Qi Liu, Hao Qian, Biao Xiang, Qing Cui,
Jun Zhou, and Enhong Chen. 2021. Eatn: An effi-
cient adaptive transfer network for aspect-level sen-
timent analysis. IEEE Transactions on Knowledge
and Data Engineering, 35(1):377–389.

Kai Zhang, Kun Zhang, Mengdi Zhang, Hongke Zhao,
Qi Liu, Wei Wu, and Enhong Chen. 2022. Incorpo-
rating dynamic semantics into pre-trained language
model for aspect-based sentiment analysis. arXiv
preprint arXiv:2203.16369.

Hao Zhu, Ruobing Xie, Zhiyuan Liu, and Maosong
Sun. 2017. Iterative entity alignment via knowledge
embeddings. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI).

Yao Zhu, Hongzhi Liu, Zhonghai Wu, and Yingpeng Du.
2021. Relation-aware neighborhood matching model
for entity alignment. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages
4749–4756.

8693



Dateset EN_DE_V1 D_Y_V1

Method H@1 H@5 MRR H@1 H@5 MRR

GCN 0.622 0.771 0.688 0.611 0.759 0.670
GAT 0.590 0.750 0.661 0.611 0.737 0.667

R-GCN 0.680 0.839 0.748 0.688 0.818 0.746
CompGCN 0.697 0.857 0.767 0.702 0.825 0.756

RGC 0.704 0.859 0.771 0.708 0.831 0.762

Table 4: Entity Alignment of Various Convolution Lay-
ers on datasets EN_DE_V1 and D_Y_V1

Dateset EN_DE_V1 D_Y_V1

Method H@1 H@5 MRR H@1 H@5 MRR

RHGN-CEE 0.688 0.846 0.757 0.707 0.828 0.760
RHGN-SRA 0.689 0.850 0.758 0.709 0.829 0.762

RHGN 0.704 0.859 0.771 0.708 0.831 0.762

Table 5: Ablation Study of CEE and SRA on datasets
EN_DE_V1 and D_Y_V1

Num Neighbors 1 2 3-4 5-6 7-9 >9

H@1 0.445 0.467 0.500 0.545 0.561 0.601

Table 6: Results for Entities with Different Numbers of
Neighbors on EN_FR_V1

A Supplementary Experiments

We add some experimental results to demonstrate
the effectiveness of our framework. Due to space
limitations, we present the experimental results in
detail in the appendix.

A.1 Ablation Study on Other Datasets

To verify that our various modules in the RHGH
framework (including RGC, CEE, and SRA) are
valid, we have presented the experimental results
on datasets EN_FR_V1 and D_W_V1 in Table 3
and Figure 5. To fully verify that all our mod-
ules are also effective on datasets EN_DE_V1 and
D_Y_V1, Table 4 shows the capability of our RGC
compared with other GCNs, while Table 5 proves
the validity of CEE and SRA.

From Table 4 and Table 5, we find that RHGN
achieves the best performance among all variants
on most metrics in all datasets, which is consis-
tent with the experimental analysis in Section 5.5.
These experiments prove that all components are
valid and non-redundant in the model.

A.2 Sensitivity Analysis of Other Parameters

In section 5.6, we have discussed how the num-
ber of layers affects the model performance and

(a)  (b) 

Figure 7: Sensitivity Analysis of (a) Relation Alignment
Loss α2 and (b) Relation Alignment Label Threshold γ

found that the number of layers is determined by
the distance of information propagation. Mean-
while, other hyper-parameters may also affect the
performance of the model, such as relation align-
ment loss α2 and relation alignment label threshold
γ. Figure 7 reports how these hyper-parameters af-
fect the experiment results on D_W_V1. The effect
of these hyper-parameters on model performance
is slight and further illustrates the robustness of
our RHGN framework. For other hyper-parameters
(e.g., negative sample distance margin λ and neg-
ative sample weight α1), we follow the previous
works(like AliNet (Sun et al., 2020b)).

A.3 Error Analysis
In order to explore the advantages of our RHGN
model, Table 6 shows the results for entities with
different numbers of neighbors on EN_FR_V1. We
observe that with the increase of neighbor num-
ber, the performance of our model improves sig-
nificantly. In more detail, for entities with vari-
ous neighbors, our RGC can better avoid the noise
caused by multiple relations. However, for entities
with fewer neighbors, there is not enough informa-
tion for them to align. We will attempt to solve
this problem by acquiring further neighbors (like
relation paths) in future work.
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