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Abstract

Hierarchical Text Classification (HTC) is an es-
sential and challenging subtask of multi-label
text classification with a taxonomic hierarchy.
Recent advances in deep learning and pre-
trained language models have led to significant
breakthroughs in the HTC problem. However,
despite their effectiveness, these methods are
often restricted by a lack of domain knowledge,
which leads them to make mistakes in a variety
of situations. Generally, when manually classi-
fying a specific document to the taxonomic hi-
erarchy, experts make inference based on their
prior knowledge and experience. For machines
to achieve this capability, we propose a novel
Knowledge-enabled Hierarchical Text Classi-
fication model (K-HTC), which incorporates
knowledge graphs into HTC. Specifically, K-
HTC innovatively integrates knowledge into
both the text representation and hierarchical la-
bel learning process, addressing the knowledge
limitations of traditional methods. Additionally,
a novel knowledge-aware contrastive learning
strategy is proposed to further exploit the infor-
mation inherent in the data. Extensive experi-
ments on two publicly available HTC datasets
show the efficacy of our proposed method, and
indicate the necessity of incorporating knowl-
edge graphs in HTC tasks.

1 Introduction

Hierarchical Text Classification (HTC), as a par-
ticular multi-label text classification problem, has
been extensively applied in many real-world appli-
cations, such as book categorization (Remus et al.,
2019) and scientific paper classification (Kowsari
et al., 2017). In HTC, documents are tagged with
multiple categories that can be structured as a tree
or an acyclic graph (e.g., the taxonomic hierarchy
illustrated in the bottom left of Figure 1), which
poses a higher challenge than the ordinary text clas-
sification problems (Sun and Lim, 2001).
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Figure 1: A toy example of incorporating knowledge
graphs into HTC in the BGC dataset.

The existing state-of-the-art approaches for
HTC (Zhou et al., 2020; Deng et al., 2021; Chen
et al., 2021; Wang et al., 2022b,c) mainly focus on
the representation learning from the input text and
hierarchical label structure, most of which rely on
the pre-trained language models (e.g., BERT (De-
vlin et al., 2018)). Specifically, Chen et al. (2021)
adopted BERT as the encoder and proposed a
matching network to mine the relative distance be-
tween texts and labels. Wang et al. (2022b) pro-
posed a novel contrastive learning method to embed
the hierarchy into BERT encoder.

Despite the success of this paradigm, approaches
without domain knowledge have significant limi-
tations and may lead to mistakes in many cases.
An example of this can be observed in Figure 1,
where machines may classify a document as be-
longing to the category Travel: USA & Canada
simply based on the presence of the phrase The
USA in the document. However, if machines are
equipped with a relevant knowledge graph, they
can mine more information from other concepts,
such as Sahara and Algiers. Specifically, Sahara
is part of Africa and Algiers is the capital of Al-
geria in Africa. Further, Sahara and Algiers are
both Tourist Attractions. With the above relevant
knowledge, machines will be more facilitated to
make the correct inference, i.e., Travel and Travel:
Africa in the taxonomic hierarchy. Nevertheless, to
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the best of our knowledge, few works focused on
incorporating knowledge graphs into HTC.

Indeed, many technical challenges are inher-
ent in designing effective solutions to incorporate
knowledge graphs (KGs) into HTC. First, the text
and KG are organized quite differently. Text is or-
ganized as a sequence of tokens, whereas the KG
is organized as a graph. How to effectively inte-
grate KGs into popular text representation models
(e.g., BERT) is an open issue. Second, compared
with ordinary text classification, HTC has a more
complex label structure, which provides additional
prior knowledge but also poses a significant chal-
lenge for label learning and the interaction between
labels and documents. Third, documents within
the same category may contain more common con-
cepts in the knowledge graph because they describe
similar entities or topics, while documents in dif-
ferent categories do not. This provides a new entry
point on how we can further leverage KGs in HTC.

In this paper, we propose a Knowledge-enabled
Hierarchical Text Classification model (K-HTC) to
incorporate knowledge graphs into HTC process.
Specifically, we first design a Knowledge-aware
Text Encoder (KTE), which can fuse the text repre-
sentation and its corresponding concept represen-
tation learned from KGs at the word granularity,
thereby obtaining a more comprehensive and effec-
tive representation. Subsequently, to perform label
learning more effectively, we create a Knowledge-
aware Hierarchical Label Attention (KHLA) mod-
ule. It employs external knowledge from KGs for
label representation and optimizes it based on the
hierarchical structure, which further enhances the
document representation via a label attention mech-
anism. After that, we propose a Knowledge-aware
Contrastive Learning (KCL) strategy. It employs
the shared knowledge concepts and hierarchical
labels to learn the relationships between different
documents, which can further exploit the informa-
tion inherent in the data. Finally, extensive exper-
iments on two publicly available datasets demon-
strate the effectiveness of our proposed method,
and further indicate the necessity to incorporate
knowledge graphs, especially for the classification
on deeper and more difficult levels.

2 Related Work

2.1 Hierarchical Text Classification

Hierarchical text classification is a particular multi-
label text classification problem, where the docu-

ments are assigned to one or more nodes of a taxo-
nomic hierarchy (Wehrmann et al., 2018). Existing
works for HTC could be categorized into local and
global approaches according to their exploration
strategies. The local approaches train multiple clas-
sifiers, each responsible for the corresponding lo-
cal region (e.g., each label or level). For instance,
Banerjee et al. (2019) trained a classifier for each
label and proposed a strategy to transfer parameters
of parent models to its child models. Shimura et al.
(2018) designed a CNN-based method to use data
in the upper levels to contribute to the categoriza-
tion in the lower levels.

As for global methods, they build a single classi-
fier for all classes, which will take the class hi-
erarchy as a whole into account. For example,
Cai and Hofmann (2004) proposed a hierarchical
Support Vector Machine (SVM) algorithm based
on discriminant functions. In recent years, with
the rapid development of deep neural networks,
many deep learning algorithms, such as Attention
and Pre-trained Language Models, have been em-
ployed in HTC. Huang et al. (2019) designed an
attention-based recurrent network to mine the text-
class associations. Zhou et al. (2020) adopted a
typical structure encoder for modeling label de-
pendencies in both top-down and bottom-up man-
ners. Chen et al. (2021) adopted BERT as encoder
and proposed a matching network to mine the rela-
tive distance between texts and labels. Wang et al.
(2022b) suggested a contrastive learning method
to embed the hierarchy into BERT encoder. Wang
et al. (2022c) introduced prompt learning into HTC
and proposed a novel multi-label MLM perspective.
Nevertheless, most of these methods ignore the rel-
evant knowledge in the modeling process and have
significant limitations in many cases.

2.2 Knowledge Graph

Knowledge Graph (KG) has millions of entries
that describe real-world concepts (entities) like peo-
ple, places and organizations. In a KG, concepts
(entities) are represented as nodes, while the re-
lations between concepts are described as edges.
Recently, many knowledge graphs have been estab-
lished in both academia and industry, such as Con-
ceptNet (Speer et al., 2017), DBpedia (Lehmann
et al., 2015) and Freebase (Bollacker et al., 2008).

On the basis of KGs, researchers attempt to in-
corporate them into many downstream application
tasks and obtain significant improvements. For in-
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Figure 2: The architecture of K-HTC. It includes three parts: (a) Knowledge-aware Text Encoder (KTE); (b)
Knowledge-aware Hierarchical Label Attention (KHLA); (c) Knowledge-aware Contrastive Learning (KCL).

stance, Wang et al. (2017) proposed a CNN-based
text classification method, which combined internal
representation and external knowledge representa-
tion from KGs. Jang et al. (2021) presented a novel
knowledge-infused attention mechanism to incor-
porate high-level concepts into Neural Network
models, achieving accurate and interpretable text
classification. Lin et al. (2019) proposed a textual
inference framework for question answering, which
effectively utilized external structured knowledge
graphs to perform explainable inferences. As far
as we know, there are very few works that have
attempted to incorporate knowledge graphs into
HTC, making our K-HTC model a pioneering ap-
proach in this field.

3 Preliminaries

In this section, we first give the problem statement
of incorporating KGs into HTC, and then introduce
the knowledge preparation for K-HTC model.

3.1 Problem Statement

Given the input document D and an external knowl-
edge graph G1 = (E,R, T ), HTC aims to predict
a subset y of label set Y . The size of label set Y is
K. In the knowledge graph G1, E is the set of con-
cepts, R is the set of relations, and T = E×R×E
is the set of triples.

It is notable that the label set Y is organized as
an acyclic graph: G2 = (Y,A), where A is the
adjacency matrix of Y . Besides, each label yi ∈ Y
corresponds to a label name Li, which can be seen
as a short text description.

3.2 Knowledge Preparation

In this subsection, we first identify the concepts
mentioned in the input documents and label names

(Concept Recognition), and then pre-train the con-
cept embedding (Concept Pre-training).

Concept Recognition. Given the text x =
{x1, x2, ..., xN}, we are expected to match its to-
kens to the concepts from the given knowledge
graph G1 (in this paper, we adopt the advanced
KG named ConceptNet (Speer et al., 2017)). Fol-
lowing the strategy proposed by (Lin et al., 2019),
we set rules like soft matching with lemmatization
and filtering of stop words to enhance the n-gram
matching performance. After that, we can obtain
two sequences:

x = {x1, x2, ..., xN},
c = {c1, c2, ..., cN}, (1)

where x is the original text sequence. c is matched
concept sequence, which means that ci is the
matched concept of xi. For n-gram concepts, we
align them to the first token in its corresponding
phrases in x (Zhang et al., 2019). If there is no
matched concept for token xi, we set ci = [PAD].

Concept Pre-training. After the concept recog-
nition process, we can obtain the set of concepts
mentioned in the whole dataset. We retain these
mentioned concepts and their related concepts
(first-order neighbors) in the original knowledge
graph G1, thus yielding a new pruned knowl-
edge graph G′

1. Subsequently, we utilize the
TransE (Bordes et al., 2013) model on G′

1 to pre-
train concept embedding U ∈ RNc×v, where Nc is
the number of concepts, v indicates the embedding
size. This pre-trained concept embedding will be
used as initialization in KTE module (Section 4.1).
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Figure 3: Knowledge-aware Text Encoder. The white
circle (i.e., c1, c3, c5) in concepts represents [PAD].

4 K-HTC Model

In this section, we will introduce the technical de-
tails of K-HTC model. As Figure 2 shows, K-HTC
consists of three components: 1) Knowledge-aware
Text Encoder (KTE); 2) Knowledge-aware Hierar-
chical Label Attention (KHLA); 3) Knowledge-
aware Contrastive Learning (KCL).

4.1 Knowledge-aware Text Encoder
In this part, we aim to obtain the knowledge-
aware representation of the given text by inte-
grating external knowledge from KGs. As illus-
trated in Figure 3, given a token sequence x =
{x1, x2, ..., xN} and its corresponding concept se-
quence c = {c1, c2, ..., cN}, we first apply the pre-
trained language encoder (i.e., BERT) to compute
its word semantic embedding:

{w1, ..., wN} = BERT ({x1, ..., xN}). (2)

Regarding the concept sequence c, we map each
concept into the embedding space via the pre-
trained TransE embedding U :

{u1, ..., uN} = U({c1, ..., cN}). (3)

Subsequently, for each concept ci, we randomly
select k neighbors in the pruned knowledge graph
G′

1 to conduct the GraphSAGE algorithm (Hamil-
ton et al., 2017), which can aggregate its context
information in the KG:

u′i = GraphSAGE(ui, Gk), (4)

where Gk is the context graph composed of ci and
its k neighbors, u′i ∈ Rv is the aggregated represen-
tation of concept ci. After that, we fuse the word
semantic representation wi and its corresponding
concept representation u′i:

{m1, ...,mN} = {w1 + u′1, ..., wN + u′N}, (5)

where + refers to the point-wise addition. We call
{m1, ...,mN} as knowledge-aware representation.

4.2 Knowledge-aware Hierarchical Label
Attention

In this part, we first learn the label representation
via external knowledge and taxonomic hierarchy,
and then conduct label attention to obtain the class-
enhanced document representation.

Label Representation Learning. With the
Knowledge-aware Text Encoder (KTE), we can
obtain the knowledge-aware representation of hier-
archical labels via their label names:

Ri
l =mean(KTE(Li)), i = 1, ...,K,

Rl = [R1
l , R

2
l , ..., R

K
l ],

(6)

where Li is the name of label i, Ri
l ∈ Rv is the rep-

resentation of label i, while Rl ∈ RK×v indicates
the representation of all labels.

Then, we adopt GCN layer to propagate the rep-
resentation of labels on the label hierarchy graph
G2. Specifically, it takes the feature matrix H(l)

and the matrix Ã as input, and updates the embed-
ding of the labels by utilizing the information of
adjacent labels:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)), (7)

where Ã = A + I , A is the adjacency matrix of
G2, I is the identity matrix, D̃ =

∑
i Ãij , and

W (l) is a layer-specific trainable weight matrix.
σ denotes a non-linear activation function (e.g.,
ReLU). We set H(0) = Rl, and the last hidden
layer is used as the propagated label representation,
i.e., H = H(l+1) ∈ RK×v.

Label Attention. After that, we apply the propa-
gated label representation H to perform K different
classes of attention to the input document:

Rd = KTE(D),

O = tanh(Wo ·RT
d ),

Watt = softmax(H ·O),

(8)

where D is the input document, Rd ∈ RN×v is
the knowledge-aware representation of D. Wo ∈
Rv×v is a randomly initialized weight matrix, and
the softmax() ensures all the computed weights
sum up to 1 for each category. Watt ∈ RK×N

denotes the attention matrix.
Subsequently, we compute weighted sums by

multiplying the attention matrix Watt and the doc-
ument representation Rd:

M1 = mean(Watt ·Rd), (9)
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where M1 ∈ Rv represents the class-enhanced rep-
resentation for the document.

Furthermore, inspired by (Wang et al., 2022b),
we utilize another randomly initialized label embed-
ding H2 ∈ RK×v to perform the same operation
in Eq.(8-9) and obtain another class-enhanced doc-
ument representation M2. Finally, we concat the
M1, M2 and the [CLS] representation from BERT
encoder as the final representation:

Rcat = concat(M1,M2, H[CLS]),

Rf = Wf ·Rcat + bf ,
(10)

where Wf ∈ Rv×3v is a randomly initialized
weight matrix, bf ∈ Rv is corresponding bias vec-
tor, Rf ∈ Rv is the final document representation.

4.3 Knowledge-aware Contrastive Learning
As we discussed in Section 1, the documents in
the same category may share more concepts in the
knowledge graph, while documents in different
categories do not (more analysis about this phe-
nomenon can be found in Appendix A). Therefore,
we propose a contrastive learning strategy to further
exploit the information inherent in the data. Specif-
ically, we design this from both knowledge-driven
and hierarchy-driven perspectives.

Knowledge-driven CL. In this part, we aim to
close the distance between documents that share
more concepts in the knowledge graph. Specifi-
cally, inspired by (Wang et al., 2022a), in a mini-
batch of size b, we define a function to output all
other instances for a specific instance i: g(i) =
{k|k ∈ {1, 2, ..., b}, k ̸= i}. Then the knowledge-
driven contrastive loss for each instance pair (i, j)
can be calculated as:

Lij
c = −βij log

e−d(zi,zj)/τ

∑
k∈g(i) e

−d(zi,zk)/τ
, (11)

cij = |Ci ∩ Cj |, βij =
cij∑

k∈g(i) cik
, (12)

where τ is the temperature of contrastive learning,
d(·, ·) is the euclidean distance and zi represents
the final representation Rf of document i. Ci is the
concept set in document i, cij indicates the number
of shared concepts in document i and j, and βij is
the normalization of cij .

The contrastive loss for the whole mini-batch
is the sum of all the instance pairs: Lc =∑

i

∑
j∈g(i) L

ij
c . With this contrastive loss, for an

instance pair (i, j), the more concepts they share,

The possibility of using a sigma-point     
kalman filter for estimating the movement.     
of spatial landmarks, a key feature of image... 

Distance(      ,      )

Deep learning methods have been making   
great successes by outperforming the state-of-
the-art performances in various applications...

We analyzed whether concurrent bmi or   
waist circumference and/or changes in weight
or waist circumference predicted incident...

Distance(      ,      )

Figure 4: The illustration of the hierarchy-driven con-
trastive learning.

the larger the weight βij will become, thus increas-
ing the value of their loss term Lij

c . In consequence,
their distance d(zi, zj) will become closer. On the
contrary, if they share fewer concepts, their dis-
tance d(zi, zj) will be optimized relatively farther.

Hierarchy-driven CL. In addition to the
knowledge-driven CL, we can optimize the docu-
ment representation via hierarchical label structure.
As illustrated in Figure 4, document D1 and D2

share two labels in the hierarchy, while D1 and D3

only share one. Naturally, the distance between
D1 and D2 should be closer than that between D1

and D3. From this perspective, in a mini-batch,
we calculate the number of shared labels between
document i and j:

lij = |Yi ∩ Yj |, (13)

where Yi means the label set of document i. Then,
we use lij to replace cij in Eq.(12), and further
calculate another contrastive loss Lij

h following
Eq.(11). After that, we sum this loss across the
whole mini-batch and obtain the hierarchy-driven
contrastive loss Lh =

∑
i

∑
j∈g(i) L

ij
h .

4.4 Output Layer
Output Classifier. Following the previous
work (Zhou et al., 2020), in the output layer, we
flatten the hierarchy for multi-label classification.
We feed the final document representation Rf in
Eq.(10) to a two-layer classifier:

Q = φ(Wq ·Rf + bq),

P = σ(Wp ·Q+ bp),
(14)

where Wq ∈ Rv×v, Wp ∈ RK×v are ramdomly
initialized weight matries, bq ∈ Rv, bp ∈ RK are
corresponding bias vectors, φ is a non-linear activa-
tion function (e.g., ReLU), while σ is the sigmoid
activation. P is a continuous vector and each ele-
ment in this vector Pi denotes the probability that
the document belongs to category i.
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Statistics BGC WOS

# total categories 146 141
# hierarchical levels 4 2
# avg categories per instance 3.01 2.0

# train instance 58,715 30,070
# dev instance 14,785 7,518
# test instance 18,394 9,397

Table 1: The data statistics of BGC and WOS datasets.

Training. For multi-label classification, we
choose the binary cross-entropy loss function for
document i on label j:

Lij
bce = −yij log(pij)−(1−yij) log(1−pij), (15)

Lbce =
∑

i

K∑

j=1

Lij
bce, (16)

where pij is the prediction score, yij is the ground
truth. The final loss is the combination of the clas-
sification loss and the two constrastive losses:

L = Lbce + λcLc + λhLh, (17)

where λc and λh are hyperparameters that control
the weights of two contrastive losses.

5 Experiment

5.1 Experiment Setup

Datasets and Evaluation Metrics. We con-
duct experiments on the BlurbGenreCollection-EN
(BGC)1 and Web-of-Science (WOS)2 (Kowsari
et al., 2017) datasets. BGC consists of advertis-
ing descriptions of books, while WOS contains
abstracts of published papers from Web of Science.
More statistics about the datasets are illustrated in
Table 1. As for the knowledge graph, we adopt
the advanced knowledge graph named Concept-
Net (Speer et al., 2017).

We measure the experimental results with stan-
dard evaluation metrics (Gopal and Yang, 2013; Liu
et al., 2020; Zhang et al., 2022), including Macro-
Precision, Macro-Recall, Macro-F1 and Micro-F1.

Implementation Details. In the Knowledge Pre-
training part, we utilize OpenKE (Han et al., 2018)

1https://www.inf.uni-hamburg.de/en/inst/ab/lt/
resources/data/blurb-genre-collection.html

2https://data.mendeley.com/datasets/
9rw3vkcfy4/2

to train concept embedding via TransE. The dimen-
sion of TransE embedding is set to 768.

We adopt bert-base-uncased from Transform-
ers (Wolf et al., 2020) as the base architecture. In
KTE module, when we conduct GraphSAGE to
aggregate the neighbor information to concepts,
we set the neighbor num k = 3 for each concept.
We choose the mean aggregator as the aggregation
function of GraphSAGE and the layer is set to 1.
In KHLA module, the layer of GCN is set to 1. In
KCL module, we set the contrastive learning tem-
perature τ = 10 for knowledge-driven CL, while
τ = 1 for hierarchy-driven CL. The dimension of
hidden states is set to v = 768 in this paper. As for
the loss weight in Eq.(17), λh is set to 1e − 4 on
both BGC and WOS, while λc is set to 1e− 3 on
BGC and 1e− 2 on WOS 3.

The batch size is set to 16, and our model is op-
timized by Adam (Kingma and Ba, 2014) with a
learning rate of 2e − 5. We train the model with
train set and evaluate on development set after ev-
ery epoch, and stop training if the Macro-F1 does
not increase for 10 epochs. We run all experiments
on a Linux server with two 3.00GHz Intel Xeon
Gold 5317 CPUs and one Tesla A100 GPU 4.

Benchmark Methods. We compare K-HTC with
the state-of-the-art HTC methods.

• HiAGM5 (Zhou et al., 2020) exploits the prior
probability of label dependencies through a
GCN-based structure encoder.

• HTCInfoMax6 (Deng et al., 2021) considers
the text-label mutual information maximiza-
tion and label prior matching in HTC.

• HiMatch7 (Chen et al., 2021) mines the rela-
tive distance between texts and labels, which
also provides a plus version based on BERT.

• HGCLR8 (Wang et al., 2022b) designs a con-
trastive learning method to embed the hierar-
chy into the BERT encoder.

• HPT9 (Wang et al., 2022c) introduces prompt
learning into HTC problem, which proposes a
novel multi-label MLM perspective.

3We tune these hyperparameters on the development set to
obtain the best hyperparameter settings.

4Our code is available via https://github.com/
liuyeah/K-HTC.

5https://github.com/Alibaba-NLP/HiAGM
6https://github.com/RingBDStack/HTCInfoMax
7https://github.com/qianlima-lab/HiMatch
8https://github.com/wzh9969/contrastive-htc
9https://github.com/wzh9969/HPT
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Methods
BGC WOS

Precision Recall Macro-F1 Micro-F1 Precision Recall Macro-F1 Micro-F1
Hierarchy-Aware Methods

HiAGM 57.41 53.45 54.71 74.49 82.77 78.12 80.05 85.95
HTCInfoMax 61.58 52.38 55.18 73.52 80.90 77.27 78.64 84.65
HiMatch 59.50 52.88 55.08 74.98 83.26 77.94 80.09 86.04

Pre-trained Language Methods
HiAGM+BERT 65.61 61.79 62.98 78.62 81.81 78.86 80.09 85.83
HTCInfoMax+BERT 65.47 62.15 62.87 78.47 79.95 79.59 79.33 85.18
HiMatch+BERT 64.67 62.05 62.62 79.23 82.29 80.00 80.92 86.46
KW-BERT 66.39 62.68 63.72 79.24 82.88 78.75 80.30 86.19
HGCLR 67.65 61.28 63.64 79.36 83.67 79.30 81.02 87.01
HPT 70.27 62.70 65.33 80.72 83.71 79.74 81.10 86.82
K-HTC (ours) 71.26 63.31 65.99 80.52 84.15 80.01 81.69 87.29

Table 2: Experimental results of our proposed method on the BGC and WOS datasets. For fair comparison, we
implement some baselines with BERT encoder. We follow their publicly released codes to obtain the results.

• KW-BERT (Jang et al., 2021) is the advanced
text classification method that incorporates
knowledge graphs, which also adopts BERT
as the text encoder.

Among these baselines, only HiAGM and
HTCInfoMax do not adopt the BERT encoder. For
fair comparison, we implement them with BERT
encoder, and denote them as HiAGM+BERT and
HTCInfoMax+BERT.

5.2 Experimental Result

The main results are shown in Table 2. Our pro-
posed K-HTC method outperforms all baselines
in all metrics, except for HPT in Micro-F1 on the
BGC dataset, which proves the effectiveness of our
method and the necessity to incorporate knowledge
graphs. Moreover, there are also some interesting
phenomena from these results:

First, the differences between the hierarchy-
aware methods (i.e., HiAGM, HTCInfoMax and
HiMatch) and their BERT-variants are more pro-
nounced on BGC than on WOS. In detail, The
depth of WOS is 2, and each document is labeled
with one label on each level. However, the depth
of BGC is 4, and the number of labels per docu-
ment is unfixed10. As a result, the BGC dataset
is more difficult than WOS, and it may be more
conducive to the role of BERT. Another considera-
tion is the pre-trained corpora of BERT. One of the
pre-trained datasets of BERT is BookCorpus (Zhu

10The average number is 3.01. Please recall Table 1 for
more details.

et al., 2015), which is the same document type as
BGC. This also plays a great role in improving the
model’s effectiveness. Second, with the help of the
external KG and the proposed knowledge-infused
attention mechanism, KW-BERT achieves good
results on both two datasets as well. However, it
performs relatively poorly compared with K-HTC,
which demonstrates the effectiveness of our model
design from another perspective. Third, although
HPT achieves a slight ahead over K-HTC in Micro-
F1 on the BGC dataset, it regresses obviously on
other metrics. In detail, Micro-F1 directly takes all
the instances into account, while Macro-F1 gives
equal weight to each class in the averaging pro-
cess. For the multi-label classification with com-
plex label structures, Macro-F1 is harder and more
differentiated, which can better reflect the model
capability. We further conduct the significance test
in Appendix B.

5.3 Ablation Study

In this subsection, we conduct ablation experiments
to prove the effectiveness of different components
of K-HTC model. We disassemble K-HTC by re-
moving the KTE, KHLA, and KCL modules in turn.
In particular, removing KTE indicates that the text
encoder degenerates to the traditional BERT en-
coder. After removing KHLA, K-HTC pays little
attention on the interaction between documents and
labels, and thus we directly conduct mean pooling
on the output of KTE to obtain the final represen-
tation Rf of the document. Finally, omitting KCL
means that we directly omit two contrastive losses
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Ablation Models Macro-F1 Micro-F1

K-HTC 65.99 80.52
-w/o KTE 64.38 79.29
-w/o KHLA 63.63 78.82
-w/o KCL 64.02 79.43

Table 3: Ablation experiments on the BGC dataset.

Ablation Models Macro-F1 Micro-F1

K-HTC 81.69 87.29
-w/o KTE 80.57 86.29
-w/o KHLA 80.04 86.46
-w/o KCL 80.18 86.38

Table 4: Ablation experiments on the WOS dataset.

in Eq.(17) in the training process.

The results on the BGC and WOS datasets are
listed in Table 3 and Table 4, respectively. From
these statistics, we can find that there are obvious
decreases in all ablation variants, which thoroughly
demonstrates the validity and non-redundancy of
our K-HTC method. Additionally, on the BGC
dataset, the importance of KHLA module is rela-
tively stronger than other modules. It is reasonable
as BGC has a more complicated label hierarchy,
which puts higher demands for label learning and
the interaction between the documents and labels.

5.4 Effect of Knowledge on Different Levels

To further verify the effect of incorporating knowl-
edge, we analyze the performance of K-HTC and
its ablation variants on different levels of the BGC
dataset. Specifically, BGC has four levels of la-
bels, with the granularity of classification getting
finer from top to bottom. Figure 5 deposits the
performance comparison on different levels. It is
clear that as the level deepens, the performance of
all methods decreases, indicating the classification
difficulty increases significantly. At the same time,
the gap between K-HTC and its ablation variants
widens as the depth increases. This suggests that in-
corporating knowledge can help improve the classi-
fication effectively, especially for these deeper and
more difficult levels. Furthermore, the situation is
more evident in the comparison between K-HTC
and its variant -w/o KHLA, which is consistent
with the analysis in Section 5.3.

L-1 L-2 L-3 L-4
50

55

60

65

70

75

80

M
ac

ro
-F

1

K-HTC
-w/o KTE
-w/o KCL
-w/o KHLA

Figure 5: The Macro-F1 performance of different levels
on the BGC dataset.

No. λc λh Macro-F1 Micro-F1

K-HTC

① 10−2 10−4 81.69 87.29

Fine-tuning λc

② 10−1 10−4 80.14 86.17
③ 10−3 10−4 81.01 86.90
④ 10−4 10−4 80.60 86.71

Fine-tuning λh

⑤ 10−2 10−1 77.55 85.40
⑥ 10−2 10−2 81.04 86.78
⑦ 10−2 10−3 80.97 86.84
⑧ 10−2 10−5 80.96 86.55

Table 5: Hyperparameter study on the WOS dataset.

5.5 Parameter Sensitivity

To study the influence of the loss hyperparame-
ters λc and λh in K-HTC, we conduct comprehen-
sive parameter sensitivity experiments on the WOS
dataset. The results are reported in Table 5.

The first experiment is the best hyperparameters
of our model. In experiment ② ∼ ④, we fix λh

and fine-tune λc; in experiment ⑤ ∼ ⑧, λc is fixed
and λh is fine-tuned. From the results, we find
that the larger or smaller λc will lead to an obvious
decrease on the classification performance. The
same situation happens to λh. It is reasonable as
these two hyperparameters control the weights of
two contrastive losses. Too large weight will affect
the original BCE classification loss, while too small
weight will restrict its own effect.

5.6 Case Study

To further illustrate the effect of incorporating
knowledge graphs in the K-HTC model, we con-
duct case study on both WOS and BGC datasets.
Specifically, in Figure 6 and 7, we present the in-
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Document:

Relevant Knowledge:
(Convolutional_Neural_Network, related_to, Neural_Network) 
(Neural_Network, is_a, Machine_Learning) 
(Neural_Network, related_to, Computer) 
(Artificial_Neural_Network, related_to, Machine_Learning) 

1. Computer Science  
2. Machine Learning 

Ground Truth: Prediction:
1. Computer Science  
2. Machine Learning 

 Multilevel Spin Toque Transfer RAM (STT-RAM) is a  
suitable storage device for energy-efficient neural network  
accelerators (nnas), which relies on large-capacity on-chip  
memory to support brain-inspired large-scale learning models  
from conventional artificial neural networks to current popular  
deep convolutional neural networks...

Figure 6: The case study of K-HTC on the WOS dataset.
The document is tagged with two labels in the taxo-
nomic hierarchy.

Document:

Relevant Knowledge:
(Vietnam, related_to, Southeast_Asia) 
(Mekong, related_to, Asia) 
(Trip, related_to, Travel) 
(Visit, related_to, Travel_To) 

1. Nonfiction 
2. Travel 
3. Travel: Asia 

Ground Truth: Prediction:
1. Nonfiction 
2. Travel 
3. Travel: Asia 

 In this completely updated and revised guide to Vietnam,  
the author's enthusiasm for his adopted country is clear in his  
coverage of all of major sites, including the southern central  
highlands, the vast Mekong delta ... Experiential sidebars  
that guide you to get to know Vietnam more intimately,  
including where to see water puppets, train trips to trai mat,  
and the new beaches to visit.

Figure 7: The case study of K-HTC on the BGC dataset.
The document is tagged with three labels in the taxo-
nomic hierarchy.

put document, the knowledge retrieved from KG,
the ground truth and the prediction of K-HTC,
respectively. As shown in Figure 6, with the
help of the knowledge (Neural_Network, is_a, Ma-
chine_Learning) and (Neural_Network, related_to,
Computer), K-HTC reasonably makes the correct
inference, i.e., Computer Science and Machine
Learning in the taxonomic hierarchy. A similar
situation can be found in the case of Figure 7 as
well. These intuitively demonstrate the great role
of knowledge and further verify the validity of our
K-HTC method.

More experimental analyses, such as Visualiza-
tion and Bad Case Analysis, can be found in Ap-
pendix C and D.

6 Conclusions

In this paper, we explored a motivated direction
for incorporating the knowledge graph into hi-
erarchical text classification. We first analyzed
the necessity to integrate knowledge graphs and
further proposed a Knowledge-enabled Hierarchi-
cal Text Classification model (K-HTC). Specifi-
cally, we designed a knowledge-aware text encoder,
which could fuse the text representation and its cor-
responding concept representation learned from
KGs. Subsequently, a knowledge-aware hierarchi-
cal label attention module was designed to model
the interaction between the documents and hier-
archical labels. More importantly, we proposed
a knowledge-aware contrastive learning strategy,
which could further boost the classification perfor-
mance by exploiting the information inherent in
the data. Finally, extensive experiments on two
publicly available HTC datasets demonstrated the
effectiveness of our proposed method. We hope
our work will lead to more future studies.

Limitations

In our proposed K-HTC method, incorporating the
knowledge graph requires the concept recognition
and pre-training process, as we introduced in Sec-
tion 3.2. This process may consume additional
time compared with other HTC methods, but it
can be done in advance and does not need to be
repeated, making it suitable for both research and
industrial settings. Besides, due to the errors of
concept recognition algorithms, this process may
introduce some noisy information in reality. This
will interfere with the use of knowledge. In future
work, we will attempt to utilize entity linking algo-
rithms (Wang et al., 2023) to further guarantee the
quality of recognized knowledge.

Another limitation is that we utilize the label
name in the KHLA module. It may not be available
for some datasets with only label ids. In response to
this, we can select high-frequency keywords from
documents in each category, which play the same
role as the label name.
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A Data Analysis

Hierarchical Level BGC WOS

L-1 4.29 5.82
L-2 4.93 8.00
L-3 5.96 −
L-4 5.94 −

Total 3.12 4.87

Table 6: The average number of shared concepts be-
tween two arbitrary documents in the same category.
"Total" refers to the shared concept situation across the
whole dataset.

We calculate the average number of shared con-
cepts between two arbitrary documents in the same
category. Table 6 illustrates this situation on dif-
ferent levels. The "Total" line reports the average
number of shared concepts between two arbitrary
documents across the whole dataset, which can be
adopted as the comparison standard.

We could find that the shared concepts increase
as the depth deepens, except for a slight fluctuation
on the fourth level of BGC. Besides, the results
on different levels are all significantly larger than
the "Total" line. These findings provide valid sup-
port for the Knowledge-aware Contrastive Learn-
ing (KCL) module in Section 4.3.

B Significance Analysis

Methods BGC WOS

K-HTC / HPT 0.046 0.016

Table 7: P-value between K-HTC and HPT
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In Table 2, the experimental results of our K-
HTC model and HPT are relatively close. To better
demonstrate the superiority of K-HTC, we do the
Student t-test to clarify whether K-HTC performs
better than HPT. Specifically, we repeat the experi-
ment five times with different seeds on both BGC
and WOS datasets, and report the p-value results on
Macro-F1. From the results in Table 7, we find that
both two results are smaller than the significance
level 0.05. Therefore, we reject the hypothesis
that the performances between K-HTC and HPT
are approximate. It suggests that K-HTC is more
effective than HPT in most circumstances.

C Visualization

Medical

Psychology

Biochemistry

CS

Civil

ECE

MAE

Figure 8: T-SNE visualization of the label representation
on the WOS dataset. Dots with the same color indicate
labels with the same parent label.

In K-HTC, we design a Knowledge-aware Hier-
archical Label Attention (KHLA) module to learn
the label representation, which can further mine the
interaction between documents and labels. In the
hierarchical label structure, it is expected that labels
with the same parent have more similar represen-
tations than those with different parents. To verify
this, we plot the T-SNE projections of the learned
label embedding (i.e., H learned from Eq.(7)) on
the WOS dataset. Specifically, the depth of the
WOS label hierarchy is 2. In Figure 8, the left part
plots child labels on the second level, while the
right part indicates the parent labels on the first
level. From this figure, we can find that labels with
the same parent are clearly clustered together, while
labels with different parents are significantly far-
ther apart from each other. This thoroughly demon-
strates the effectiveness of the KHLA module.

D Bad Case Analysis

As we discussed in the Limitations section, we
incorporate the knowledge graph via the concept

Document:

Noisy Knowledge:
(Clark, related_to, USA) 
(Scott, related_to, USA) 

1. Nonfiction 
2. Popular Science 
3. Science 

Ground Truth: Prediction:
1. Nonfiction 
2. Popular Science 
3. Science 
4. Travel: USA & Canada 

 Hikers on mountain trails often see the wilderness just as 
Lewis and Clark saw it almost 200 years ago ... Scott a. Elias 
discusses the unique features of each region in his comprehensive 
natural history of “the backbone of the continent.” Elias examines 
the physical environment of each of the three regions, looking at 
geology, important land forms, climatology, soils, water resources,
 and paleontology. Equally detailed chapters examine botany, ...

Figure 9: The bad case of K-HTC on the BGC dataset.
The document is tagged with three labels in the taxo-
nomic hierarchy.

recognition process. This may introduce some
noise due to the inevitable errors of the recogni-
tion algorithm. More importantly, even with ac-
curate concept recognition results, how to ensure
the effectiveness of external knowledge is still a
challenge. An example of this can be observed
in Figure 9, although our method accurately rec-
ognizes the mentioned concepts Clark and Scott,
it still introduces the noisy knowledge (Clark, re-
lated_to, USA) and (Scott, related_to, USA). As
a result, K-HTC makes a wrong prediction, i.e.,
Travel: USA & Canada. This indicates that we
need to focus on the quality of relevant knowledge
rather than roughly introducing all of them.

In future work, we will attempt to design a
knowledge filtering module to ensure the quality of
introduced knowledge, which can further improve
the performance of K-HTC.
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