Minimizing Coordination in Replicated Systems

Cheng Li Jodo Leitdo* Allen Clement’ * Nuno Pregui¢a* Rodrigo Rodrigues?
TMPI-SWS *NOVA LINCS / NOVA Univ. Lisbon

Abstract

Replication has been widely adopted to build highly scalable
services, but this goal is often compromised by the coordina-
tion required to ensure application-specific properties such
as state convergence and invariant preservation. In this paper,
we propose a principled mechanism to minimize coordina-
tion in replicated systems via the following components: a) a
notion of restriction over pairs of operations, which captures
the fact that the two operations must be ordered w.r.t. each
other in any partial order; b) a generic consistency model
which, given a set of restrictions, requires those restrictions
to be met in all admissible partial orders; c) principles for
identifying a minimal set of restrictions to ensure the above
properties; and d) a coordination service that dynamically
maps restrictions to the most efficient coordination proto-
cols. Our preliminary experience with example applications
shows that we are able to determine a minimal coordination
strategy.

1. Introduction

Replication is an essential technique to ensure the scalabil-
ity of Internet services such as Google [3], Facebook [2],
or Amazon [1]. Unfortunately, replication leads to an inher-
ent tension between achieving high performance and ensur-
ing application-specific properties such as state convergence
(i.e., all replicas eventually reach the same final state) and in-
variant preservation (i.e., the behavior of the system obeys its
specification, which can be defined as a set of invariants to be
preserved). This tension has been widely acknowledged by
both industry solutions [10] and academic research [6, 22].
To relieve this tension, many proposals followed a hybrid
approach, where different operations in the replicated sys-
tem can have different semantics [13, 16, 17, 21]. In broad
terms, some operations can be executed under strong con-

* currently working at Google

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

PaPoC’15, April 21, 2015, Bordeaux, France.

Copyright © 2015 ACM 978-1-4503-3537-9/15/04. .. $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2745947.2745955

sistency (like linearizability [11]) while other operations can
be executed under weak consistency (like eventual consis-
tency [9]). These approaches are effectively exploiting the
fact that different consistency guarantees require different
degrees of coordination among replicas for enforcing an or-
der on the execution of operations. In fact, strong consis-
tency requires operations to be totally ordered, which leads
to significant coordination overheads, whereas weak consis-
tency allows operations to be applied with few or even no
restrictions, hence avoiding the performance penalty due to
coordination.

To guide programmers to adapt their applications to these
hybrid consistency models, our previous work of RedBlue
Consistency [16] defines a set of sufficient classification con-
ditions to assign different consistency levels to various oper-
ations: operations that either do not commute w.r.t. all others
or potentially violate invariants must be strongly consistent,
while the remaining ones can be weakly consistent.

This binary classification methodology works well for
many web applications, but it can also lead to unnecessary
coordination in some cases. We illustrate this with an auction
service, where a place_bid operation creates a new bid
for an item if the corresponding auction is still open, and
a close_auction operation closes an auction for an item
and declares its winner. In this example, the application-
specific invariant is that the winner must be associated with
the highest bid across all accepted bids.

In this example, the concurrent execution under weak
consistency of a place_bid operation (taking as a pa-
rameter a bid that is higher than all accepted bids) and a
close_auction operation can lead to the violation of the
application invariant. This happens because close_auction
will be unaware of the highest bid created by the concurrent
place_bid operation. Unfortunately, the only way to ad-
dress this issue in RedBlue Consistency is to label both op-
erations as strongly consistent, i.e., all operations of either
type will be totally ordered w.r.t. each other, which will incur
in a high coordination overhead. Intuitively, however, there
is no need to order pairs of place_bid operations, since a
bid coming before or after another does not affect the winner
selection. This highlights that our previous coarse-grained
operation classification into two levels of consistency can
be conservative, and some services could benefit from addi-
tional flexibility in terms of the level of coordination.

To address this issue, in this paper we attempt to offer a
principled methodology that consists of three pillars. First,

we generalize the principles behind this binary classification
by breaking down the coarse-grained constraint that totally
orders all strongly consistent operations into a set of fine-
grained restrictions, each of which only imposes an order
between pairs of operations. Following this path, we propose
a novel generic consistency definition, called Partial Order-
Restrictions Consistency (or short, PoR Consistency), which
takes a set of restrictions as input and forces these restric-
tions to be met in all partial orders. This creates the opportu-
nity for defining many consistency guarantees within a sin-
gle replication framework by expressing consistency levels
in terms of visibility restrictions over operations. Weakening
or strengthening the consistency semantics in the context of
PoR Consistency is achieved by imposing fewer or more re-
strictions over relevant operations.

Second, given that adapting applications to PoR Consis-
tency requires knowing which operations must be coordi-
nated, we intend to find a set of conditions that operations
must meet in order to require this coordination. The funda-
mental challenge with this task is that missing required re-
strictions will lead applications to violate invariants, while
placing unnecessary restrictions will lead to a performance
penalty due to the additional coordination. To overcome this,
we aim at finding principles to identify a minimal set of re-
strictions. (By minimal we mean that removing a single re-
striction no longer ensures the desired properties.)

Third, we further observe that a key aspect to ensure good
performance in a replicated service is to enforce these re-
strictions in an efficient way. In fact, there exist several co-
ordination techniques/protocols that can be used for enforc-
ing a given restriction, such as Paxos, distributed locking,
or escrow techniques. However, depending on the frequency
over time in which the system receives operations confined
by a restriction, different coordination approaches lead to
different performance tradeoffs. Therefore, to minimize the
runtime coordination overhead, we also propose an efficient
coordination service that helps replicated services use the
most efficient protocol by taking into account the deploy-
ment characteristics measured at runtime.

The remainder of this paper is organized as follows. We
introduce PoR Consistency in Section 2, and a set of princi-
ples to infer restrictions in Section 3; Section 4 presents a set
of relevant case studies of PoR Consistency; and Section 5
proposes an efficient coordination service.

2. Partial Order-Restriction Consistency

The key intuition behind our proposal for a generic consis-
tency model is that a consistency model can be perceived
as a set of restrictions imposed over admissible partial or-
ders across the operations of a system. Before introducing
the consistency model, we start by defining a restriction,
r(u,v), as a binary relation between two operations u and
v w.r.t. a partial order P(U, <) over a set of operation in-
stances U. This relation implies that for any pair of oper-

ations u and v in U, they must be ordered in <, such that
u<vVov<u.

To provide an informal definition of PoR Consistency by
combining the notions of partial order and restrictions, we
say that: a replicated system . with a set of restrictions
R is PoR Consistent if the following two conditions are
met: 1) all restrictions are met in any partial order resulting
from the execution of operations over .#; and 2) when an
operation op is executed over ., assume F be the set of
operations that precede op in the corresponding partial order
=, the state that is observed by op must be equivalent to the
state reached through the application of all operations in £
to an initial (known) state, according to a compatible linear
extension of the partial order.

To demonstrate the power of PoR Consistency, we use
it to express many different consistency requirements. For
causal consistency [18] (excluding any restrictions to pro-
vide session guarantees), the restriction set is empty, since
causality is already preserved in the definition of PoR Con-
sistency by having u < v Av < w == u < w. Regard-
ing RedBlue Consistency, to capture the notion of strongly
consistent operations, we define the following restriction set:
for any pair of operations u, v, if w and v are strongly con-
sistent, we have r(u, v). Serializability [8] totally orders all
operations, so its restriction set is as follows: for any pair of
operations u, v, we have r(u, v).

3. Restriction inference

When replicating a service under PoR Consistency, the first
step is to infer restrictions to ensure the following two impor-
tant system properties. First, to achieve state convergence,
we take the same methodology adopted in prior research [16,
17, 20] to check operation commutativity in a pairwise fash-
ion. However, unlike RedBlue Consistency, under which all
non-commutative operations are totally ordered, PoR Con-
sistency only requires that an operation must be ordered
w.r.t. another one if they do not commute.

Second, to always preserve application-specific invari-
ants, instead of conservatively totally ordering all operations
that potentially break invariants if they execute without be-
ing aware of some other operations, we try to isolate the
operations that contribute to an invariant violation from the
remaining ones. To do so, we compose an execution con-
taining a set of concurrent operations that leads to an invari-
ant violation, and iteratively prune a single operation from
the set and check if the violation persists. Once we reach a
point where we cannot remove any operation and still cre-
ate an execution that violates the invariant, then we say that
this concurrent execution is minimal. By minimal, we mean
that removing any concurrent operation from the execution
will no longer lead to any violation. If such a composition
is found, adding a restriction to force an order between any
pair of remaining concurrent operations could be sufficient
to avoid the problematic execution and hence, eliminate the

corresponding violation. Most importantly, this method may
enable us to remove any unnecessary coordination by check-
ing one by one which operations are relevant for the invariant
violation.

4. Case studies

In this section, we present some relevant case studies of
replicated services that can benefit from PoR Consistency.

Auction Service. We have previously introduced an auc-
tion service as a motivating example for the limitations of
hybrid consistency models such as RedBlue Consistency.
We are able to compose an invariant-violating execution
with three concurrent operations over a shared auction,
namely, a close_auction operation and two place_bid
operations whose associated bids are higher than all ac-
cepted bids. According to our definition, this execution
is not minimal since the composition of a place_bid
and close_auction operation is already sufficient to trig-
ger the violation. Thus, we refine the execution by re-
moving one of the place_bid operations from it. As a
way to preserve the invariant of this service under PoR
Consistency, a restriction must be created between any
pair of place bid and close_auction operation, i.e.,
r(place_bid, close_auction). The advantage of this ap-
proach is that place_bid operations have no restrictions
among themselves, which implies that no coordination
mechanism is required when executing them concurrently.
Given the fact that these operations are the most common in
such a service, performance will be dramatically improved.

Banking Service. Another interesting example is an online
banking service, that supports operations such as deposit
and withdraw which, respectively, allow a user to add or
remove a given amount to or from the current bank account
balance, while a third operation, accrueinterest, updates
the balance value of an account by taking into consideration
its current balance and a given interest rate. We further
assume an application-specific invariant which states that
account balance values must be non-negative.

In this particular example, to ensure state convergence,
accrueinterest operations must be executed with coordi-
nation in relation to deposit or withdraw operations, i.e.,
creating two restrictions r(accrueinterest,deposit)
and r(accrueinterest, withdraw), as multiplication does
not commute with addition or subtraction. Furthermore, to
ensure the application-specific invariant, special care has
to be given to withdraw operations, as two concurrent
withdraw operations may drive the balance value to neg-
ative. As a result, these operations have to be coordinated
among themselves. To capture this fact one has to add the
restriction r(withdraw, withdraw).

5. Coordination protocols

There exist many possible coordination protocols to enforce
ordering across pairs of operations, which can be used to im-
pose concrete restrictions under PoR Consistency. One pos-
sibility is to take advantage of an existing coordination sys-
tem, such as ZooKeeper [12], or rely on an implementation
of Paxos [14]. An alternative is to use locks or leases to allow
a single process to decide on the ordering of operations that
require coordination. Although all these protocols provide
the required ordering guarantees, their runtime overhead can
be significantly different when considering the frequency of
different operations. Therefore, it is not trivial to pick the
right coordination strategy for a particular set of restrictions.

To circumvent this challenge, we propose to build a spe-
cialized coordination service that uses runtime information
about the relative frequency of different types of operations
to select a coordination mechanism for a given restriction
that has the lowest cost. Next we discuss some coordination
techniques and concrete scenarios where these mechanisms
are more adequate. For that, we consider a single restriction
between two operations v and v.

Barrier. A concrete materialization of a barrier would op-
erate as follows. Assume, for simplicity that v is the barrier.
In this case, whenever a replica r receives an operation u, it
would have to enter the barrier, and contact all other replicas
to request this. This requires all replicas in the system to stop
processing v operations. After all replicas acknowledge the
entrance of r in the barrier for u, r can execute the opera-
tion, and then notify all replicas that it left the barrier (while
at the same time propagating the effects of the operation u it
executed). Such a coordination strategy might be interesting
when one of the two operations in the restriction is rarely
submitted to the system. For instance, in the auction exam-
ple, close_auction is a candidate for being used as barrier,
since place_bid dominates the operation space.

Paxos. Paxos can be leveraged as an external coordination
technique to establish a total order across all v and v oper-
ations. This can be performed, for instance, by having these
operations request from a Paxos instance a sequence number,
and requiring all replicas to execute operations accordingly
to the order defined by the Paxos participants. The restriction
r(withdraw,withdraw) in the banking example would be
a good candidate for using this coordination strategy.

Centralized sequencer. Another alternative for a coor-
dination technique is to rely on a centralized component
called a sequencer, which maintains a counter of the type
< seqy,seq, >, where seq, and seq, represents the se-
quence number for v and v operations, respectively. Repli-
cas maintain a local copy of the counter, and initially all
local copies as well as the sequencer counter have all values
set to zero. Whenever a u or v operation is received by a
replica, that replica would contact the sequencer to increase
the corresponding counter and get a fresh copy of the counter

maintained by the sequencer. Upon receiving the reply from
the sequencer that replica can then verify the value of that
counter for the complementary operation and compare with
its local counter. If they are the same, then the replica can
execute the operation without waiting. Otherwise the local
execution can only take place when all missing operations
of the other type have been locally replicated. After replicat-
ing operations, the local copy of the counter will be brought
up-to-date.

6. Related work

In the past decades, many proposals have been focusing on
the reduction in coordination among concurrent operations
to improve scalability in replicated systems [4, 5, 13, 15—
17, 22]. Unlike previous proposals, which only allow pro-
grammers to choose from either strong or weak consistency,
PoR Consistency offers a fine-grained classification using
the visibility restrictions over operations to express consis-
tency semantics. Visibility restrictions are analogous to con-
flict relations in Generic Broadcasting [19], but our approach
significantly differs from it in that we intend to provide pro-
grammers with the ability to infer a minimal set of (fine-
grained) restrictions to achieve state convergence and invari-
ant preservation.

Most proposals [4, 5, 13, 15, 22] only take into account
operation commutativity to determine the need for coordi-
nation, instead of invariant preservation, which is analyzed
in our solution. Bailis et al. [6] proposed I-confluence to
avoid coordination by proving if a set of transactions are
I-confluent, i.e., they can be safely executed without coor-
dination. We envision a less conservative approach by lever-
aging the fact that not all transactions in a non-I-confluent
set must be coordinated. Indigo [7] defines consistency as a
set of invariants that must hold at any time, and presents a
set of mechanisms to enforce these invariants efficiently on
top of eventual consistency. PoR consistency takes an alter-
native approach by modeling consistency as restrictions over
operations, and enforcing these restrictions efficiently and in
an adaptive fashion.

7. Conclusion

This paper proposed a research direction for building repli-
cated system that employs a minimal amount of coordina-
tion in order to achieve both invariant preservation and state
convergence. We aim to define a new generic consistency
model, which maps consistency requirements to a minimal
set of fine-grained restrictions over pairs of operations, while
at the same time paving the way for an adaptive use of differ-
ent coordination techniques for enforcing those restrictions.

Acknowledgments

The research of R. Rodrigues is funded by the European Research Council
under ERC Starting Grant No. 307732. This work is partially funded by
FCT under project PEst-OE/EEI/UI0527/2014.

References

[1] Amazon Web Services Webpage. http://aws.amazon.com/. [ac-
cessed 20-August-2014].

[2] Facebook Webpage. https://www.facebook.com/. [accessed 20-
August-2014].

[3] Google Webpage. www.google.com. [accessed 20-August-2014].

[4] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak. Consis-
tency Analysis in Bloom: a CALM and Collected Approach. In Pro-
ceedings of the 5th Biennial Conference on Innovative Data Systems
Research (CIDR’11),2011.

[5] P. Alvaro, N. Conway, J. M. Hellerstein, and D. Maier. Blazes:
coordination analysis for distributed programs. In Proceedings of the
IEEE 30th International Conference on Data Engineering (ICDE’14),
2014.

[6] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein,
and I. Stoica. Coordination-avoiding database systems. Proc. VLDB
Endow., 2015.

[7] V. Balegas, S. Duarte, C. Ferreira, N. Preguica, R. Rodrigues, M. Na-
jafzadeh, and M. Shapiro. Putting consistency back into eventual con-
sistency. In Proceedings of the 10th European Conference on Com-
puter Systems (EuroSys’15), 2015.

[8] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Con-
trol and Recovery in Database Systems. 1987.

[9] S. Burckhardt, A. Gotsman, and H. Yang. Understanding eventual
consistency. Technical report, Microsoft Research, 2013.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dy-
namo: amazon’s highly available key-value store. In Proceedings
of 21st ACM SIGOPS Symposium on Operating Systems Principles
(SOSP’07),2007.

[11] M. P. Herlihy and J. M. Wing. Linearizability: a correctness condi-
tion for concurrent objects. ACM Transactions on Programming Lan-
guages and Systems, 1990.

[12] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free
coordination for internet-scale systems. In Proceedings of the 2010
USENIX Annual Technical Conference (USENIX ATC’10), 2010.

[13] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high
availability using lazy replication. ACM Transactions on Computer
Systems (TOCS), 1992.

[14] L. Lamport. The part-time parliament. ACM Transactions on Com-
puter Systems (TOCS), 1998.

[15] L. Lamport. Generalized consensus and paxos. Technical Report
MSR-TR-2005-33, Microsoft Research, 2005.

[16] C.Li, D. Porto, A. Clement, J. Gehrke, N. Preguica, and R. Rodrigues.
Making Geo-Replicated Systems Fast as Possible, Consistent when
Necessary. In Proceedings of the 10th USENIX Conference on Oper-
ating Systems Design and Implementation (OSDI’12), 2012.

[17] C. Li, J. Leitdo, A. Clement, N. Preguica, R. Rodrigues, and
V. Vafeiadis. Automating the choice of consistency levels in repli-
cated systems. In Proceedings of the 2014 USENIX Annual Technical
Conference (USENIX ATC’14), 2014.

[18] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t
Settle for Eventual : Scalable Causal Consistency for Wide-Area Stor-
age with COPS. In Proceedings of the 23rd ACM Symposium on Op-
erating Systems Principles (SOSP’11), 2011.

[19] F. Pedone and A. Schiper. Generic broadcast. In Proceedings of the
13th International Symposium on Distributed Computing (DISC’99),
1999.

[20] M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski. A compre-
hensive study of convergent and commutative replicated data types.
Technical report, INRIA, 2011.

[21] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Maniatis.
Zeno: Eventually Consistent Byzantine-Fault Tolerance. In Proceed-
ings of the 6th USENIX Symposium on Networked Systems Design and
Implementation (NSDI’09), 2009.

[22] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In Proceedings of the 23rd ACM Sympo-
sium on Operating Systems Principles (SOSP’11), 2011.

