
Programming Assignment #111122011

Name:

Student ID:

FEM, 2011 Fall

1

Write a program for solving the system Ax = b

Computational examples - solve the following problems:

Problem 1 ~~Consider the following linear system:

x0 = 0, ki−1(xi − xi−1) + ki(xi − xi+1) + cixi = bi, i = 1, ..., n, xn+1 = 1,

which after the elimination of x0 and xn+1 is written in the form Ax = b with x ∈ Rn.
Solve for n = 20, 40.

Introduce the following notations: h = 1/(n + 1), ki = k((i + 0.5)h), where k(x) is
given below in two cases:

(1) (constant k(x)): k(x) = 1, ci = 0, bi = 0, i = 1, . . . , n.

(2) (jump in k(x)): K = 2, 10, 100 and

k(x) = 1, for 0 < x < 0.5, and k(x) = K, for 0.5 ≤ x < 1, ci = 0, bi = 0.

1

Problem Specifications

 by using (1) two-term and three-term Chebyshev
acceleration iterative method and (2) Conjugate Gradient Method, which are also iterative
methods for solving linear equations, just like Gauss-Seidel, SOR and SSOR.

Problem 2~~Now the unknowns are given as a two dimensional array xij , i, j = 0, . . . , n + 1 that
satisfy the system

(4 + h2)xi,j − xi−1,j − xi+1,j − xi,j−1 − xi,j+1 = h2, x0,j = xn+1,j = xi,0 = xi,n+1 = 0.

Here h = 1/(n + 1) so that the system represents a finite difference approximation of
the boundary value problem −∆u + u = 1 in Ω = (0, 1) × (0, 1) and u = 0 on the
boundary of Ω. Solve for n = 20, 40.

The linear system is (n = 25, 50, 100):

x0 = 0, ki−1(xi − xi−1) + ki(xi − xi+1) + cixi = bi, i = 1, ..., n, xn+1 = 1

h = 1/(n + 1), b = h2(1, 1, ..., 1)t, ki = k((i + 1.5)h) where k(x) is given below
(1) (constant k(x)): k(x) = 1, ci = 0, bi = 0, i = 1, ..., n;
(2) (jump in k(x)): K = 2, 10, 100 and

k(x) = 1, for0 < x < 0.5, andk(x) = K, for0.5 < x < 1, ci = 0

In this one dimensional boundary value problem on the interval (0, 1), we use two-term
and three-term Chebyshev acceleration iterative and Conjugate Gradient Methods for dif-
ferent n′s. The results are listed in Table 1(using ||r(m)||2/||r

(0)||2 <= TOL as stopping
condition and set TOL = 10−6, and the initial iterate is x = (0, 0, ..., 0)T). The comparitions
of Jacobi and SOR are also there. From the table, we can tell that,CG method is the best
among first three, since it costs less iteration steps in all situations. Three-term Chebyshev is
also acceptable. However, two-term Chebyshev seems to be influenced a lot by the choosing
of recurrence parameter. The results in Table 1 of 2-term Chebyshev are using K = 32.
Then we try K = 48 and K = 64 (results listed in Table 2.). One can easily find the
huge difference among them. Also, the numbers of iteration steps proportion to number of
dimension for all methods.

The iteration formulas of these three methods are
Two-term Chebyshev

x(k+1) = (I − ωk+1A)x(k) + ωk+1b

where ωk = ω0

1+ρ0uk

, uk = cos(2k−1
2K

π), ω0 = 2
λ+Λ

, ρ0 =
1− λ

Λ

1+ λ

Λ

, k = 1, 2, ..., K

Three-term Chebyshev

x(1) = γ(Gx(0) + C) + (1 − γ)x(0)

x(k) = ρk(γ(Gx(k−1) + C) + (1 − γ)x(k−1)) + (1 − ρ(k))x
(k−2), k ≥ 2

where G = I − 1
Λ
A, C = 1

Λ
b, 0 = a ≤ λ(G) ≤ b = 1 − λ

Λ
< 1, γ = 2

2−a−b
, ρ1 = 2, ρk =

1
1−αρk−1

(k > 2), α = (b−a
2(2−a−b)

)2

Conjugate Gradient Method

r(0) = b − Ax(0), p(1) = r(0), α(m) =
(r(m), r(m))

(Ap(m), p(m))

x(m+1) = x(m) + α(m)p(m)

r(m+1) = r(m) − α(m)Ap(m), β(m) =
(r(m+1), r(m+1))

(r(m), r(m))
, p(m+1) = r(m+1) + β(m+1)p(m)

2

Problem 1 (Tri-diagonal system)

Dimension Jump 2-term Chebyshev 3-term Chebyshev CG Jacobi SOR

1 133 119 25 1485 69
n=25 2 153 136 25 1484 67

10 245 211 32 1504 66
100 1017 588 38 1512 67
1 277 231 50 5192 130

n=50 2 345 268 56 5257 128
10 604 396 71 5431 129
100 3484 1133 106 5497 130
1 696 457 100 18253 254

n=100 2 956 533 118 18370 253
10 1948 811 168 18860 253
100 13340 2213 281 19058 252

Table 1: Number of iteration steps for different methods of problem 2

Dimension Jump K=32 K=48 K=64
1 133 136 243

n=25 2 153 159 3251
10 245 212 100000
100 1017 852 100000
1 277 258 100000

n=50 2 345 306 100000
10 604 472 100000
100 3484 2580 100000
1 696 554 100000

n=100 2 956 712 100000
10 1948 1336 100000
100 13340 7864 100000

Table 2: Comparation of 2-term Chebyshev when K is different. (100,000 is the largest
iteration steps we can accept. This means it diverges when K=64)

We also plot the solutions of this system for different jump gotten by CG when n = 25
in Figure 1. Other results using different methods and for different dimensions are basically
similar.

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
n=25

No jump

K=2

K=10

K=100

Figure 1: Solutions of different jumps when n=25 using CG

Problem 2 (Two dimensional Array)

In this problem, we are asked to solve a two dimensional array xij , i, j = 0, . . . , n + 1 that
satisfies the system

(4 + h2)xi,j − xi−1,j − xi+1,j − xi,j−1 − xi,j+1 = h2, x0,j = xn+1,j = xi,0 = xi,n+1 = 0.

h = 1/(n + 1) for n = 8, 16, 32. The system represents a finite difference approximation of
the boundary value problem −∆u + u = 1 in Ω = (0, 1)× (0, 1) and u = 0 on the boundary
of Ω. Once we solve the linear system, we get the solution for this problem.

Here we still use Chebyshev and CG method for different n and the same stopping
condition as last problem. The results are list in Table 3. It is clear from the table that
we still get the same answer in comparing the behavior of these three methods, namely,
CG is better than three-term Chebyshev, which is better than two-term one. But this
time, we found that the differences among the numbers of iterative steps are not as large as
last problem. This shows that the behavior of different methods also has relation with the
property of coefficient matrix.

Again since the solution xi,j of this system represents an approximation of the solution
u(ih, jh) of a boundary value problem in Ω, it makes sense to plot xi,j. The following graphs
are plotted for n = 8, 16, 32.

4

Dimension 2-term Chebyshev 3-term Chebyshev CG Jacobi SOR
n=8 60 45 10 210 44
n=16 101 80 25 758 47
n=32 200 139 51 1756 189

Table 3: Number of iteration steps for different methods of problem 3

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.01

0.02

0.03

0.04

0.05

0.06

i’s

n=8, h=1/(n+1)

j’s

u(
ih

,jh
)

Figure 2: n = 8

5

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.01

0.02

0.03

0.04

0.05

0.06

i’s

n=16, h=1/(n+1)

j’s

u(
ih

,jh
)

Figure 3: n = 16

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.01

0.02

0.03

0.04

0.05

0.06

i’s

n=32, h=1/(n+1)

j’s

u(
ih

,jh
)

Figure 4: n = 32

6

In this programming assignment, we want to solve the systems Ax =
 by using (1) two-term and three-term Chebyshev

acceleration iterative method and (2) Conjugate Gradient Method, which are also iterative
methods for solving linear equations, just like Gauss-Seidel, SOR and SSOR.

Both Chebyshev and CG methods are trying to use more information from the solutions
gotten from former iterations to improve the result of new step. Here more information means
a linear combination of known iterative solutions. The problems are using which solutions
and what the weights of these solutions. Two-term Cheybeshev and CG just use solution
obtained from last iteration with some special coefficients, while three-term Cheybeshev uses
solutions obtained from last two iteration steps.

There is difference between Chebyshev and CG methods. In Chebyshev iteration the
iteration parameters are know as soon as we know the field of eigenvalues of iteration matrix
(which satisfies some property), but CG method needs compute inner product three times
(we can make it to be twice by rearranging). Then Chebyshev iteration is good for solving
a large sparse linear systerm of equations in a parallel environments.

We use Richarson-like matrix as the iterative matrix here. From the results we can
find that, the number of iteration steps is smallest when using CG method, three-term
Chebyshev needs more steps and two-term’s behavior dependends a lot to the choosing of
iteration parameters. When dimension is large, CG method do take more time to compute.
Though the differences are not so obvious, the trend tells that if the matrix becomes larger
and sparse, CG do need more time. Then by comparing the results with Jacobi and SOR,
we can find CG is even better than SOR in number of iteration steps , and Jacobi always
need the largest number of steps.

1

Summary

b

