Homework 3

Let f be a given real valued function in $L^2(0,1)$, $\alpha > 0$ given in \mathbb{R} and q a given function in $L^{\infty}(0,1)$ satisfying: There exists $c_0 > 0$ such that

a.e.
$$x \in (0,1)$$
, $q(x) \ge c_0$. (1)

Let V be the space

$$V = \{ v \in H^1(0,1) \, ; \, v(0) = 0 \}.$$
⁽²⁾

We want to solve: Find $u \in V$ such that

$$\forall v \in V , \ \int_0^1 q(x)u'(x)v'(x)\,dx + \alpha u(1)v(1) = \int_0^1 f(x)v(x)\,dx.$$
(3)

1. The purpose of this question is to establish that there exists a constant $\gamma > 0$ such that

$$\forall v \in V, \ \int_0^1 q(x) |v'(x)|^2 \, dx \ge \gamma \|v\|_{H^1(0,1)}^2.$$
(4)

1.a. Prove that there exists a constant $\gamma_0 > 0$ such that

$$\forall w \in L^2(0,1), \ \int_0^1 q(x) |w(x)|^2 \, dx \ge \gamma_0 ||w||_{L^2(0,1)}^2.$$
(5)

1.b. Deduce (4) from (5).

2. Prove that problem (3) has one and only one solution u in V.

3. From now on, we assume that $q \in H^1(0,1)$. Find the boundary value problem that is equivalent to problem (3). Is the solution u in $H^2(0,1)$?

4. In order to discretize (3), we choose an integer $N \ge 1$, set the mesh size $h = \frac{1}{N+1}$, and the subdivision points $x_j = j h$, $0 \le j \le N + 1$. We introduce the finite element space

$$V_h = \{ v_h \in \mathcal{C}^0([0,1]) ; v_h|_{[x_i, x_{i+1}]} \in \mathbb{P}_1, 0 \le i \le N , v_h(0) = 0 \}.$$

4. a. Is V_h a subset of V? What is the dimension of V_h ?

b. Assuming that u is sufficiently smooth, derive an upper bound of the error $||u_h - u||_{H^1(0,1)}$.