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Mechanical characterization methods at the nanoscale are of critical importance for many fields
including nanomaterials, micro/nano devices and nanomechanics. As a key tool in nanotechnol-
ogy, atomic force microscopy (AFM) is widely used due to its high-resolution topography imaging
capabilities, and is also recognized as a useful platform for nanoscale mechanical characterization.
Contact-resonance AFM, which modulates the tip-sample contact with ultrasonic frequencies and
then analyzes the cantilever’s resonance responses, is an important AFM method for viscoelastic
characterization. However, contact-resonance AFM requires the cantilever’s contact-resonance fre-
quency and quality factor values to quantify the elastic modulus and loss tangent of the sample.
This requires time-consuming frequency sweep, which makes a quantitative scanning impractical,
therefore only single-point quantitative measurement and qualitative single-frequency scanning are
usually applied. To address this issue, here we present an AFM cantilever design with an inte-
grated inner-paddle substructure, which provides an eigenmode whose resonance keeps consistent,
but whose resonance amplitude varies with varying contact stiffness. With this probe, it is hoped
to quantify the elastic properties of the sample with fast single-frequency amplitude imaging.

Keywords: atomic force microscopy; contact resonance; cantilever design; mechanical characterization; con-
tact stiffness

1. INTRODUCTION

Mechanical characterization techniques at the micro- and
nanoscale are becoming increasingly important in the
thriving fields of nanomaterials and micro/nano devices
[1]. While mostly known as a high-resolution topo-
graphical imaging tool in nanotechnology, atomic force
microscopy (AFM) [2] has also become as a promis-
ing platform for mechanical characterization at the
nanoscale. Many different AFM-based nanomechani-
cal measurement methods have been developed which
show promising applications [3]. Among the most used
ones are the quasi-static force-distance curve method and
its derivatives [4, 5], the intermittent-contact multifre-
quency methods [6], and the contact-resonance technique
[7, 8]. While the force-distance curve and multifrequency
AFM methods are mostly applicable for soft materials
[3], contact-resonance AFM is applicable for viscoelastic
properties measurements of samples in a broad modulus
range from soft polymers [8] to stiff materials with elastic
moduli of ∼ 100 GPa [7]. Meanwhile, contact-resonance
AFM also attracts intense attentions due to its capabil-
ity of noninvasive imaging of mechanically heterogeneous
subsurface structures [9].

Contact-resonance AFM characterizes the mechanical
properties of a sample by measuring the changes of the
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cantilever’s resonances induced by the tip-sample contact
[7, 8]. To do so, the sample or the cantilever is acous-
tically excited by respectively a transducer installed be-
neath the sample or by the piezo shaker in the cantilever
holder while the AFM is scanning the sample in the con-
tact mode [9]. The frequencies and quality factors of the
cantilever’s contact resonances are then measured, from
which the contact stiffness and damping between the tip-
sample contact is characterized by adopting appropriate
resonance model for the cantilever beam [7, 8]. Finally,
the elastic modulus [7] and the loss tangent [8] of the
sample are deduced by considering suitable contact me-
chanics models.

Quantitative mechanical characterization by contact-
resonance AFM requires recording the contact-resonance
spectrum. However, a spectroscopy measurement by fre-
quency sweep is quite time-consuming, and a quantitative
point-by-point contact-resonance AFM mapping with an
acceptable resolution, for instance 256×256 pixels, usu-
ally takes almost an hour to finish. Due to this shortcom-
ing, quantitative contact-resonance spectroscopy mea-
surements are performed only at fixed points of inter-
ests on the sample surface. To have an overall under-
standing of the mechanical distribution of the sample
surface, qualitative contact-resonance AFM imaging is
usually carried out. In such a method, the amplitude
and phase signals at a fixed working frequency that is
near the contact resonance are mapped instead of the fre-
quency and quality factor parameters [9]. However, the
resulting amplitude and phase images can not be used
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to infer the mechanical properties of the sample surface,
whose contrasts depends on the working frequency. In
fact, even contrast reversals can be observed by using dif-
ferent working frequencies [10]. To overcome the problem
of time-consuming spectroscopy measurement, novel res-
onance analyzing methods have been proposed, including
a dual-frequency resonance-tracking technique [11] and a
band excitation method [12]. However, both methods
require costly excitation and tracking hardware. In addi-
tion, in the dual-frequency resonance-tracking technique,
tracking error is unavoidable since it assumes a damped
harmonic oscillator model for the resonances which devi-
ates from real measurements [13].

Here, in this article, we propose an inner-paddled AFM
cantilever design as an alternative to address the problem
of time-consuming spectroscopy measurement in contact-
resonance AFM. The proposed cantilever contains a sec-
ondary small cantilever that is integrated inside a nor-
mal rectangular cantilever. Such a cantilever provides
a resonance mode whose frequency keeps relatively sta-
ble within a broad range of contact stiffness, whereas
its amplitude corresponds monotonically to the changes
of the tip-sample contact stiffness. Therefore, by sim-
ply measuring the amplitude changes during scanning,
a semi-quantitative stiffness mapping of the sample can
be obtained. This avoids the time-consuming resonance
frequency measurement by frequency sweep, and also
addresses the issue of contrast reversals in qualitative
contact-resonance AFM imaging.

It should be mentioned that similar cantilever designs
have been previously employed for signal enhancement in
multi-harmonic AFM [14] and for topographic effect de-
coupling in piezoresponse force microscopy (PFM) [15].
Especially, Dharmasena et al [15] have introduced an
inner-paddled AFM cantilever design which provides a
stable contact resonance that is independent of the lo-
cal contact stiffness changes. Such a cantilever has been
demonstrated to be beneficial for addressing the cou-
pling effect of surface topography, which induces local
contact stiffness changes, in characterizing the functional
responses of piezoelectric and ferroelectric materials with
PFM [15]. Although based on a similar conceptual de-
sign as that of Dharmasena et al [15], our design dif-
ferentiates from theirs by not varying the thickness of
the inner-paddled cantilever, which facilitates the fab-
rication. More importantly, we demonstrate here the
additional benefit of using such an inner-paddled can-
tilever for fast mechanical mapping of materials, by
avoiding time-consuming frequency sweep measurement
in contact-resonance AFM for quantitative mechanical
characterization.

2. INNER-PADDLED CANTILEVER DESIGN
AND FABRICATION

2.1. Inner-Paddled Cantilever Design.

As schematically shown in Fig. 1(a), a rectangular can-
tilever is usually used in contact-resonance AFM. The
interaction due to the tip-sample contact changes the
boundary condition of the cantilever beam, and thus
shifts its vibration modes from the free resonances to
higher contact resonances. The resonance shifts are de-
termined by the contact stiffness exerted at the tip, which
is defined by the tip shape, the contact force applied be-
tween the tip and sample, as well as by their elastic prop-
erties [7]. For example, under the same tip load, a stiffer
sample with larger Young’s modulus will shift the can-
tilever resonance to a higher frequency, as schematically
illustrated in Fig. 1(b). By adopting an appropriate res-
onance model for the cantilever beam [7, 8], its resonance
frequencies can be theoretically determined as a function
of the contact stiffness as schematically shown in Fig.
1(c) by the dispersion curves representing respectively
its first three flexural eigenmodes. From such dispersion
curves, the contact stiffness is firstly deduced from the
measured contact-resonance frequency and then the in-
dentation modulus is estimated by adopting a suitable
contact mechanics model [7].
Instead of informing the sample’s stiffness through

the cantilever’s resonance shift which requires time-
consuming spectroscopy measurement, here we propose
a cantilever design which has an eigenmode whose fre-
quency changes little but whose amplitude is sensitive
to contact stiffness variations. The proposed cantilever
contains a secondary small paddle-like cantilever inte-
grated inside a hollow cantilever near its tip end, see
the schematic shown in Fig. 1(d). As illustrated in Fig.
1(e), since the free end of the inner cantilever is not in
direct contact with the sample, its resonance frequency
will change little to the changes of the tip-sample contact
stiffness. Meanwhile, due to smaller tip indentation, for a
larger tip-sample contact stiffness case, excitations from
the cantilever chip end or from the sample surface can
be more effectively transferred to the inner cantilever, re-
sulting in larger resonance amplitude. Compared to con-
ventional cantilevers used in contact-resonance AFM, our
proposed inner-paddled cantilever would have an eigen-
mode that doesn’t change in a wide range of tip-sample
contact stiffness, as schematically shown in Fig. 1(f).

2.2. Simulation and Fabrication.

Since a wide range of contact stiffness is usually
encountered in real experiments, the proposed inner-
paddled cantilever should be designed so that its new
eigenmode induced by the secondary small cantilever
keeps stable in such a contact stiffness range (Fig. 1(f)).
To do so, we use finite element analysis (FEA) simula-
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FIG. 1. (a) Schematic diagram of a rectangular cantilever conventionally used in contact-resonance AFM, with illustrations
of (b) its resonances for respectively a soft and a stiff contact and (c) the frequencies of its first three flexural eigenmodes as
functions of the applied contact stiffness. (d)(e)(f) are same as of (a)(b)(c) but for the inner-paddled cantilever design, for
which a new eigenmode with stable resonance frequency in a large contact stiffness range is expected.

tions to design the cantilever structure. A schematic of
the analysis model is shown in Fig. 2(a), where the can-
tilever is clamped at one end and its tip is coupled to the
sample with the tip-sample interaction being modeled by
elastic springs both in the normal and lateral directions
with respective stiffnesses of kN and kL. The cantilever
is set to have a fixed length of L = 450 µm, a width of
W = 50 µm, and a thickness of T = 2 µm for the base
cantilever. The tip height is set to be H = 17 µm with
a center location of Lt = 15 µm from the cantilever’s
free end. In addition, a cantilever tilt of 11° relative to
the surface plane is set here considering technical reason
of cantilever mounting in AFM systems [7]. However,
our additional simulation on a model without cantilever
tilt shows that such a parameter has negligible effect on
the resonance of the new eigenmode induce by the inner
cantilever. The parameters defining the inner cantilever
structures, including its position L1 accounting from the
cantilever’s clamped end, its length L2, its width W2 are
optimized to meet the design target. Although the thick-
ness of the inner cantilever is another effective parameter
for optimizing the design, it is set as same as the thick-
ness of the base cantilever considering fabrication conve-
nience. For example, Dharmasena et al has reported an
inner-paddled cantilever design with an inner cantilever
as thin as 300 nm integrated inside a normal commer-

cial AFM cantilever with a thickness of approx. 1.6 µm
[15]. However, it requires complicated processes to as-
semble the small cantilever to the base cantilever [15].
Direct fabrication of an inner cantilever by thinning with
focused ion beam (FIB) based machining usually results
in curling or destruction of the inner cantilever (data not
shown). In addition, the hollow structure hosting the in-
ner cantilever is set to end at the cantilever clamped end
and has a width of W1 = W2 + 4 µm.
We then carry out modal analyses for the cantilever

model in Fig. 2(a) by using the FEA software Com-
sol Multiphysics. The resonance frequencies of the can-
tilever’s first several eigenmodes are calculated for var-
ious parameter sets for the inner cantilever structure
(see above). For different parameter sets, calculations
are done for a wide range of contact stiffness over
kN=10∼1000 N/m, which covers most experiments con-
ditions. The lateral contact stiffness kL is assumed to
be 0.85 times of the normal one kN , as it is for most
materials [16]. Within the above contact stiffness range,
changes of the frequencies of each mode are calculated
and the structure parameters are optimized in a multi-
parameter space to meet the target that one of the eigen-
mode has a frequency change smaller than 2 kHz. For this
target, a set of suitable inner-paddled cantilever designs
can be obtained. For example, in Fig. 2(b) we show the
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FIG. 2. (a) Schematic diagram of the inner-paddled cantilever model with tip-sample interaction represented by elastic springs;
(b) The resonance frequencies calculated by FEA modal analyses of the first three flexural modes of an inner-paddled cantilever
with parameters of L = 450 µm, W = 50 µm, T = 2 µm, L1 = 410 µm, W1 = 20 µm, L2 = 160 µm and W2 = 16 µm; (c)
FEA-simulated mode shapes and their corresponding frequencies of the first three flexural modes of the inner-paddled cantilever
for respective normal contact stiffnesses of 10, 100 and 1000 N/m.

calculated resonance frequencies of the first three flexu-
ral eigenmodes of a cantilever with L1 = 410 µm, W2 =
16 µm, L2 = 160 µm, as functions of the normal con-
tact stiffness. The simulated mode shapes of such a can-
tilever’s first three flexural eigenmodes are accompanied
in Fig. 2(c) for typical normal contact stiffnesses of re-
spectively 10, 100 and 1000 N/m. It can be seen that the
first and the third eigenmodes which correspond to the
first two flexural eigenmodes of the base cantilever shift
gradually to significantly higher frequencies by increasing
the contact stiffness. This is expected from the resonance
model of a surface-coupled cantilever beam [7, 8]. In ad-
dition, a second eigenmode can be seen to have a quite
stable resonance frequency around 102 kHz, which is con-
firmed to correspond to the first flexural eigenmode of
the inner cantilever. The mode shape of this eigenmode
is seen to vary little compared to the other two eigen-
modes by varying the contact stiffness (see Fig. 2(c)).
A frequency change of only approx. 1.2 kHz is observed
for this eigenmode within the contact stiffness range over
10∼1000 N/m.

Finally, the designed cantilevers that meets our target
are fabricated. Here, we fabricate cantilevers with the
same parameters as above (Fig. 2(b)). Although the
fabrication can be done by etching with FIB based ma-
chining [17–20], here we carry out batch production based
on a micromachining process as illustrated in Fig. 3. The
fabrication starts on a 300 µm thick ⟨100⟩-oriented SOI

(silicon on insulator) wafer which has a 15 µm thick top
silicon layer and a 1 µm thick buried oxide layer (Fig.
3(a)). For the first step, the AFM tips are patterned by
using E-beam lithography (6300FS, JEOL) and follow-
ing anisotropic dry etching with SF6 and O2 at cryogenic
temperature with a deep silicon etching system (Estre-
las100, Oxford Instruments) (Fig. 3(b)). Then the inner-
paddled cantilevers are patterned with maskless lithogra-
phy (DWL 66+, Heidelberg Instruments) and following
anisotropic dry etching with SF6 and C4F8 (Figs. 3(c)
and 3(d)). A 300 nm thick SiO2 layer is then grown as
shown in Fig. 3(e) by dry oxidation at 1000 oC for 4 hours
in order to sharp the tips after etching the oxidation layer
in later process. In addition, a thick layer of photoresist
(PR) is coated as shown in Fig. 3(f) to protect the tip
in the following process of fabricating the cantilevers by
anisotropic deep dry etching of the wafer backside in a
high inductive coupled plasma reactor (ICP380, Oxford
Instruments) (Fig. 3(g)). Here, the buried oxide layer is
used as the stop-etching layer and the photoresist layer
is removed by acetone afterwards. The top and back-
side oxide layers are then etched as shown in Fig. 3(h)
with a hydrofluoric acid (HF) vapor phase etching sys-
tem, which is a convenient technique to release fragile,
suspended structures. Finally, a 30 nm thick Aluminum
(Al) layer is deposited by using an Ebeam evaporator
system (Lab 18, Kurt J. Lesker Company) on the back-
side of the cantilever which serves as the reflecting layer
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FIG. 3. Diagrams of the fabrication process of inner-paddled cantilevers.
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FIG. 4. Scanning electron microscope images of (a) a fabricated inner-paddled cantilever and (b) its tip end in sideviews, as
well as (c) another cantilever in top view.

for optical detection in AFM (Fig. 3(i)). Such resulting
cantilevers are shown in Fig. 4 by their scanning electron
microscope (SEM) images (SU8220, Hitachi, Japan).

3. RESULTS AND DISCUSSION

3.1. Verification Measurements.

To verify that the proposed inner-paddled cantilever
indeed provides an eigenmode whose resonance frequency
is not sensitive to the contact stiffness changes, we first
carried out spectroscopy measurements of the cantilever
both in free air and while the tip is brought into con-

tact with a sample surface with different tip loads. A
polystyrene (PS) sample with a nominal Young’s modu-
lus of 2 GPa, as provided by the manufacturer Bruker, is
used for the measurements. The measurements are per-
formed on a commercial AFM (Dimension Icon, Bruker,
CA) with excitations provided by the shake-piezo in the
cantilever holder with the same amplitude of 100 mV.
The free resonance (FR) spectrum of the cantilever, as
shown in Fig. 5(a), illustrates resonances at around 14
(FR1), 90 (FR2), and 343 kHz (FR3) which correspond
to the free resonances of the base cantilever. Addition-
ally, a resonance at around 141 kHz (FRinner) can also
be seen which is induced by the inner cantilever. When
the tip is brought into contact with the PS sample, shifts
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a PS sample; (b) The resonance spectra and (c) the resonance frequencies of the first contact resonance of the base cantilever
and of the inner cantilever measured at various tip loads on the PS sample.

of the first two resonances (FR1, FR2) of the base can-
tilever to higher contact resonances (CR) at respectively
around 80 (CR1) and 317 kHz (CR2) can be clearly ob-
served. However, the contact resonance corresponding to
the inner cantilever (CRinner) can be observed to coin-
cide with its free resonance. Furthermore, by changing
the applied tip loads which induces various contact stiff-
nesses, we can observe from the spectra and the resonance
frequencies shown in Figs. 5(b) and 5(c) that the reso-
nance induced by the inner cantilever (CRinner) again
keeps stable. However, the first contact resonance of the
base cantilever shifts to higher frequencies with increas-
ing the tip loads, which agrees with our analyses in Fig.
2(b). This indicates that the inner-paddled cantilever in-
deed provides a new eigenmode whose resonance keeps
stable for varying contact stiffness.

It should be mentioned that the fabricated cantilever
reported here demonstrates a resonance frequency of ap-
prox. 141 kHz, showing a deviation from the simulated
one of around 102 kHz, see Fig. 2(b). We suggest that
this is largely due to the deviation of the cantilever thick-
ness from the assumed one of 2 µm, which is difficult to
be precisely controlled in fabrication and plays the major
role in affecting the cantilever’s resonances. By adopting
L = 446 µm, W = 49 µm, L1 = 407 µm, W1 = 21 µm,
L2 = 158 µm and W2 = 15 µm for the cantilever, as
measured by SEM imaging (see Fig. 4(c)), our FEA sim-
ulation indicates that the measured resonance frequency
corresponds to a cantilever thickness of approx. 2.7 µm,
and such a cantilever still meets our design target as also
confirmed by the experiments here.

Next, we investigate how the amplitude of the new
eigenmode induced by the inner cantilever responds to

contact stiffness changes. To do so, contact resonance
spectra corresponding to the inner cantilever are mea-
sured for different tip loads. Both the PS sample and
a stiffer sample of fused silica with a nominal Young’s
modulus of 72.9 GPa, also provided by the manufacturer
Bruker, are used for the measurements. It can be seen
again from the spectra on both samples shown in Fig.
6(a) that the resonance induced by the inner cantilever
shows almost unchanged frequency on both the fused sil-
ica and PS samples. In fact, measurements on both sam-
ples under various tip loads show that the resonance fre-
quency deviates as little as 0.011 kHz. Although the new
eigenmode induced by the inner cantilever, which is of our
concern, isn’t sensitive in its frequency to contact stiff-
ness changes, its amplitude does change sensitively. This
can be seen from the higher peak amplitude on the stiffer
fused silica sample than on the PS sample as shown in
Fig. 6(a). To more clearly reveal the amplitude response
of the eigenmode induced by the inner cantilever to con-
tact stiffness variations, we measure its peak amplitudes
on both the fused silica and the PS sample for various
tip loads under the same excitation amplitude. The re-
sults are shown in Fig. 6(b). It can be seen that for
all the tip loads, the cantilever indeed shows larger reso-
nance amplitudes on the stiffer fused silica sample than
on the PS sample. In addition, with increasing the tip
loads which means an increase of the contact stiffness [7],
the resonance amplitude increases monotonously for both
samples. This indicates that the proposed cantilever can
be employed to distinguish samples with different moduli
or to map the stiffness distribution of a sample surface
at least semi-quantitatively by simply measuring its res-
onance amplitude.
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It should be mentioned here that quantification of the
applied tip loads in AFM requires the knowledge of the
sensitivity of the optical lever detection scheme, that is
the so-called inverse optical lever sensitivity (invOLS )
[21], as well as the spring constant of the cantilever kC .
The invOLS parameter can be calibrated by recording
a force-distance curve on a stiff sample. The inverse
slope of the contact part of the force curve then yields
the invOLS. Here, the invOLS is calibrated to be 243.3
nm/V. The spring constant kC of a normal rectangu-
lar cantilever can be calibrated by using for example the
thermal noise method [22]. However, this is not applica-
ble for the proposed inner-paddled cantilever here which
alters the shape and mass of the cantilever. Therefore,
the spring constant kC of the inner-paddled cantilever is
estimated by calculating the deflection of the cantilever
for a known load applied at the tip by using FEA. This
yields a kC of approx. 0.29 N/m, which is approx. 60% of
the original base cantilever without the inner cantilever.
Then the applied tip loads are quantified by multiplying
the applied loads in voltage (setpoints) with invOLS and
kC .

3.2. Rapid Mechanical Mapping.

Here we demonstrate the capability of the proposed
inner-paddled cantilever probe for rapid mechanical map-
ping. The experiments are carried out on a sample con-
taining MoS2 nanosheets that are suspended over well-
defined circular holes on a silicon oxide wafer which has
an oxidation thickness of 300 nm (XFNANO, Nanjing,
China). The optical image of the MoS2 sheet on which
our measurements are performed is shown in Fig. 7(a).
The thickness of the MoS2 sheet is determined to be ap-
prox. 46 nm by measuring with the AFM at its edge.
It covers circular holes with depths of around 2 µm and
different radii of approx. 5, 4, 3, and 1 µm. As illus-
trated in Fig. 7(b), the suspend of the MoS2 sheet over
the holes creates edge-clamped circular plate structures
whose stiffness kS decrease gradually from their edges to
the centers which can be described by [23]

kS =
16πDr20
(r20 − r2)2

, (1)

where D = Est
3/(12(1−ν2s )) is the flexural rigidity of the

plate, Es is its Young’s modulus and νs is its Poisson’s
ratio, t is its thickness, r0 is its radius, and r ≤ r0 is the
distance from its center.
In Figs. 7(c) and 7(d), we show the simultaneously

obtained topography and amplitude images of an area at
the edge of the MoS2 sheet by using the proposed inner-
paddled cantilever. The excitation frequency is set as
140.4 kHz which is at the resonance of the inner can-
tilever (see Fig. 6(a)), and an excitation amplitude of
100 mV is used. It can be seen that the covered holes are
barely distinguishable from the topography, however they
are clearly revealed by the amplitude image due to their
stiffness differences from the supported region. In addi-
tion, the amplitude can be observed to decrease gradually
from the supported region to the centers of the covered
holes. This can be more clearly seen from the amplitude
profiles shown in Fig. 7(e) which are extracted across
the centers of four structures with different sizes as indi-
cated in Fig. 7(d). Furthermore, smaller amplitudes are
seen at the centers of structures over larger holes. Such
observations meet the expectations of Eq. (1) that the
stiffness of an edge-clamped circular plate structure de-
creases from its edge to its center, and that a larger such
structure has a smaller stiffness at its center. This thus
demonstrates that the proposed inner-paddled cantilever
indeed can be used for at least semi-quantitative mapping
of sample stiffness with rapid amplitude imaging.
To compare with the amplitude imaging by conven-

tional contact resonance AFM, we show in Fig. 8 the
contact-resonance AFM amplitude images of an area on
the same sample as in Fig. 7 which contains two buried
hole structures. The measurements are done by work-
ing at the first contact-resonance of the inner-paddled
cantilever. Different working frequencies around the res-
onance ranging over 60 kHz to 80 kHz are employed.
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FIG. 8. Contact-resonance AFM amplitude images using the first contact resonance of the inner-paddled cantilever of an
area containing two holes on the SiO2/Si substrate covered by the MoS2 sheet as in Fig. 7. Different working frequencies as
indicated are employed. Scalebar: 10 µm.

Since the first contact-resonance of the cantilever shifts
for different contact stiffnesses (see Fig. 5(a)), the con-
trasts of the subsurface features are therefore observed
to change for different working frequencies. It is there-
fore difficult to infer which structure or which part of the
structure is stiffer from such amplitude images of the con-
ventional contact-resonance AFM. To quantitively char-
acterize the structure stiffness, time-consuming contact-
resonance AFM spectroscopy measurements are required
[24]. A detailed explanation of the observed contrasts as
in Fig. 8 can be found in Ref. [24].

Next, we explore how the amplitude imaging with
the inner-paddled cantilever responds to contact stiffness

variations. In Fig. 9(a), we show again the amplitude
image around the MoS2 structure suspended over one of
the largest hole on the SiO2/Si substrate, as well as the
profile across its center. The gradual decrease of the am-
plitude from the supported region to the structure center
indicates a similar trend of the contact stiffness sensed
by the tip. While the AFM is indenting on the sus-
pended structure, the contact stiffness kN between the
tip-sample can be regarded as a series connection of the
stiffness kS of the suspended plate structure and of the
stiffness kM due to local material deformation [24], that
is kN = 1/(1/kM + 1/kS), as illustrated in the inset of
Fig. 9(a). Since ks of an edge-clamped circular plate
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FIG. 9. (a) The amplitude image (inset) of a suspended MoS2 structure over a hole on the SiO2/Si substrate that has the
largest radius, and a profile extracted across its center (data points). A schematic model (inset) of the contact stiffness sensed
by the tip while contacting above the suspended MoS2 sheet is also shown, as well as the calculated contact stiffness (solid line)
across the structure considering a structure radius of 5.35 µm with the strip range representing errors for a structure radius
deviation of ±0.20 µm; (b) Contact stiffness as a function of the measured amplitude.

structure decreases from its edge to the center, see Eq.
1, and kM keeps constant for same experimental setups,
a gradual decrease of kN is indeed expected from the
supported region to the structure’s center.

More quantitatively, by applying contact-resonance
spectroscopy measurement on the supported region, we
obtain contact resonance frequency of approx. 73.0 kHz
for the first eigenmode of the cantilever. This results in
a contact stiffness of kN = kM ≈ 90 N/m by using our
FEA model on the supported region where kS becomes
infinite. Then, by further calculating kS using Eq. (1),
we obtain the contact stiffness sensed by the tip across
the center of the suspended structure. Here, a Young’s
modulus of Es = 238 GPa and a Poisson’s ratio of νs =
0.27 is adopted for the MoS2 sample [25]. The radius of
the covered hole is considered to be approx. r0 = 5.35
µm, as measured for a similar uncovered one on the bare
substrate, with an error of± 0.20 µm being considered for
fabrication and measurement deviations. The resulting
contact stiffness across the structure center is then shown
in Fig. 9(a). By overlaying it with the measured ampli-
tude profile, it can be seen that the amplitude imaging
with the inner-paddled cantilever indeed reveals contact
stiffness variations of the structure quite well.

Furthermore, from the amplitude measurements and
the contact stiffness estimations in Fig. 9(a), we relate
the inner-paddled cantilever’ amplitude to the tip-sample
contact stiffness as shown in Fig. 9(b). A monotonous in-
crease of the resonance amplitude can be observed with
increasing the contact stiffness, which agrees with our
discussion before. Such a relation then leads to the pos-
sibility of using it for contact stiffness calibration for mea-
surements on other samples.

Finally, let us give a brief discussion on the lateral reso-
lution of the mechanical imaging using the inner-paddled
cantilever. As same as in other AFM imaging meth-
ods based on the contact mode, for example contact-

resonance AFM, the lateral resolution of imaging with
the inner-paddled cantilever is determined by the tip-
sample contact radius and is typically below 10 nm [9].
For instance, considering a tip radius R of approx. 90
nm as measured for one of our cantilever by SEM, a
typical tip load of FN=100 nN results in a lateral res-
olution that is comparable to the contact radius of ac =
(3FNR/4E∗)1/3 ≈ 4.0 nm according to the Hertzian con-
tact model [7]. Here, E∗ = 1/((1−ν2t )/Et+(1−ν2s )/Es),
we use Et=169 GPa, νs=0.27 for the silicon tip, and
adopt Es and νs of MoS2 as above.

4. CONCULSIONS

In summary, we have proposed an inner-paddled AFM
cantilever design for semi-quantitative mechanical map-
ping with fast amplitude imaging. The proposed can-
tilever contains a secondary small cantilever that is in-
tegrated inside a normal rectangular cantilever. The
cantilever was designed to provide a resonance mode
whose frequency keeps relatively stable within a broad
range of contact stiffness, whereas its amplitude corre-
sponds monotonically to the changes of the tip-sample
contact stiffness. The capability of the proposed inner-
paddled cantilever for rapid semi-quantitative stiffness
mapping by amplitude imaging was demonstrated. The
possibility of quantitative contact stiffness calibration
from the amplitude measurement was also discussed.
The proposed inner-paddled AFM cantilever avoids the
problem of time-consuming spectroscopy measurement
by frequency sweep for quantitative mechanical charac-
terization in conventional contact-resonance AFM. It is
hoped to serve as an alternative method for fast semi-
quantitative mechanical mapping, with the possibility of
further quantitative calibration.
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