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ABSTRACT 

A method based on contact resonance atomic force microscopy was proposed to determine the 

mechanical properties of thin films. By analyzing contact resonance frequencies of an AFM 

probe while the tip-sample is in contact, stiffness and residual stress of a freestanding circular 

SiNx membrane were evaluated quantitatively. The obtained magnitude of residual stress was in 

reasonable accordance with that from wafer curvature measurement. The method was verified to 

have much better mechanical sensitivity than the popular AFM bending test method. And its 

promising application on fast, nondestructive mechanical mapping of thin-film-type structures at 

the nanoscale was also demonstrated. 
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With the rapid development of nanoscience and nanotechnology, thin films have been 

extensively applied in a wide range of fields, including microelectromechanical systems, sensors 

and actuators, optical devices and so on.1-4) Among their many concerned characteristics, the 

mechanical properties are of fundamental importance for reliable device performances. 

Therefore, there is an urgent demand for developing fast, nondestructive and quantitative 

characterization methods. Unfortunately, due to different thermal expansion coefficients between 

the deposited material and the substrate, residual stress presents commonly in prepared thin films, 

which will greatly affect their mechanical behaviors and make the characterization more 

challenging.5) To measure the mechanical properties of thin films, especially the residual stress, 

several techniques have been developed, such as wafer curvature measurement,6) bugle test,7) 

nanoindentation,8) resonant based techniques,9) and X-ray method.10) In case of 2D material films 

and nanowire beams, atomic force microscopy (AFM) static point-deflection method is attracting 

more and more attention owing to its ultrahigh force and displacement resolutions.11,12) However, 

only by utilizing a probe having a matching force constant with the stiffness of the investigated 

film, can satisfactory accuracy be acquired. 

Acoustic-based AFM techniques, which combine contact mode AFM with ultrasonic 

frequency vibrations, have emerged as powerful tools for mechanical characterization of 

materials in the past two decades. Such techniques have already been successfully applied to 

study the elastic properties of advanced materials, detect subsurface defects and nanostructures, 

and explore interface characteristics.13-16) Among which, by recording the contact resonance (CR) 

frequencies and by subsequent analyzing with proper tip-sample contact model and cantilever 

dynamic model, quantitative mechanical characterizations can be realized with CR-AFM 

techniques. However, most of such investigations focused on evaluation of the elastic modulus 
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or stiffness while few publications concerned the residual stress until now. In this letter, we 

proposed a new method to study the mechanical properties, especially the residual stress, of thin 

films with CR-AFM techniques. The stiffness distribution of a freestanding circular SiNx 

membrane was firstly measured. Then, the residual stress was evaluated by modeling the 

mechanics of the pre-stressed circular membrane under a point load. The obtained residual stress 

value was in reasonable agreement with that from wafer curvature test. The method was verified 

to have much better mechanical response sensitivity than quasi-static AFM bending test method. 

And its capability for fast, nondestructive mechanical mapping at nanoscale was also 

demonstrated, which is quite appealing especially for applications on nano-films with irregular 

shapes, heterogeneous mechanical properties, or defects. 

The schematic illustration of exploiting CR-AFM on mechanical characterization of thin 

films is shown in Figure 1. The following experiments were performed on a commercial AFM 

platform (MFP-3D Origin, Asylum Research, Santa Barbara, CA) with the ultrasonic excitation 

applied on the probe, that is the so-called ultrasonic-AFM (UAFM) mode.17) By recording the 

CR spectra with the lock-in amplifier under a sweeping frequency excitation, CR frequencies at 

different positions on the membrane can be obtained, which are relevant to local stiffness and 

modulus. Additionally, by oscillating the probe around one of the CR frequencies while the tip is 

scanning on the surface, and by extracting the amplitude and phase signals, a qualitative 

mechanical mapping of the membrane can be realized. Furthermore, with aiding techniques such 

as Dual AC™ Resonance Tracking (DART),18) CR frequency image can also be easily acquired 

which can be quantitatively converted into corresponding mechanical properties maps. 

A thin clamped freestanding circular SiNx membrane was fabricated to test the method, as 

the process described in Fig. S1 in the supplementary material. The measurements started with a 
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demonstration of the mechanical characterization ability based on CR-AFM. The tested 

membrane was determined to have a thickness of 524 ± 0.9 nm after a wafer-scale measurement 

with a film thickness mapping tool (SRM300, Angstrom Sun Technologies, Acton, MA), and a 

diameter of about 504 µm by an optical microscope. As shown in the optical view in Fig. 2(a), a 

ContAl-G cantilever (BudgetSensors, Innovative Solutions Bulgaria Ltd., Bulgaria) was first 

brought into contact with sample surface, and then CR spectroscopy and UAFM imaging were 

applied. Before the measurements, the inverse optical lever sensitivity was determined to be 

157.6 nm/V, and the spring constant of the cantilever was 0.28 N/m by thermal calibration.19) 

The first four free resonance (FR) frequencies of the cantilever were respectively 14.4 kHz, 91.6 

kHz, 252.6 kHz, and 495.1 kHz. And all the experiments were conducted under a tip load of 

approximately 88 nN. 

Then CR spectra tests were conducted on the substrate and at the membrane center area 

respectively. As shown in Fig. 2(b), the first three CR frequencies were around 79 kHz, 230 kHz, 

and 450 kHz. And it can be unambiguously seen that there was much larger frequency shift for 

the 3rd CR eigenmode than the 1st and 2nd modes, with the frequency at the center smaller than 

the one on the substrate. Actually, as compared with those on the substrate, the first three CR 

frequencies at the center were respectively no difference, 8 kHz smaller, and 35 kHz smaller 

approximately (see Fig. S2). This indicates that the 2nd and 3rd CR modes have considerable 

better sensitivities, where the 3rd one has the best, to the mechanical difference between the solid 

substrate and the freestanding membrane. Consequently, the 3rd CR mode was chosen in 

following experiments. Next, to demonstrate the mechanical mapping capability of CR-AFM, a 

UAFM scan was applied with the drive frequency set at 440 kHz around the 3rd CR frequency. 

Figures 2(c)-(e) show the obtained topography, amplitude and phase images in the 90 µm × 90 
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µm scan area around the membrane periphery. It can be found that the amplitude and phase 

images can unambiguously distinguish the freestanding membrane from the substrate, which is 

not visible from the topography. 

To characterize the stiffness distribution of the membrane, CR spectra were swept at 

different positions along its radial axis, as illustrated in Fig. 1. Figure 3(a) shows the 3rd CR 

frequencies extracted from these spectra, which has a bowl-shaped distribution along the 

membrane’s radial direction indicating that the membrane center area has the lowest stiffness, 

and there is a rapid increase of the stiffness while moving to the periphery. 

A simplified analytical model of the cantilever in contact with the sample, as schematically 

shown in Fig. 3(b), was used to convert the measured CR frequencies to contact stiffness values. 

Both the normal and lateral contact interactions (represented by 𝑘𝑁 and 𝑘𝐿  respectively), the 

cantilever tilt of 𝛼0 induced by the mounting angle of the cantilever holder, and the tip position 

(𝐿1, 𝐿2) and height ℎ were considered. The characteristic Euler-Bernoulli equation describing the 

transverse flexural vibration of the cantilever is, 

𝐸𝐼
𝜕4𝑦(𝑥,𝑡)

𝜕𝑥4 + 𝜌𝐴
𝜕2𝑦(𝑥,𝑡)

𝜕𝑡2 = 0,                                       (1) 

where E is the Young’s modulus, I is the area moment of inertia, 𝜌 is the mass density and A is 

the sectional area. 𝑦(𝑥, 𝑡) denotes the cantilever deflection and the general solution is in form of, 

𝑦(𝑥, 𝑡) = (𝑎1𝑒𝜆𝑥 + 𝑎2𝑒−𝜆𝑥 + 𝑎3𝑒𝑖𝜆𝑥 + 𝑎4𝑒−𝑖𝜆𝑥)𝑒𝑖𝜔𝑡.                    (2) 

Here, 𝜔 is the angular frequency, 𝜆 is the wave number. Constant parameters 𝑎1, 𝑎2, 𝑎3 and 𝑎4 

can be determined from the boundary conditions. First, the deflection and the slope are zero at 

the clamped end. Second, no moment and shear force present at the free end. Last, the tip-sample 

interactions 𝑘𝑁  and 𝑘𝐿  induce corresponding shear force and bending moment, and deflection 
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and slope should be continuous for the two cantilever sections 𝐿1  and 𝐿2  at the tip position. 

Combing the characteristic equation and the boundary conditions, the contact stiffness is 

computed by numerically solving the equation:20) 

𝐶

3

𝑘𝐶

𝑘𝑁
+ 𝐵1 + 𝐵2

𝑘𝐿

𝑘𝑁
+ 3𝐴

𝑘𝐿

𝑘𝑁

𝑘𝑁

𝑘𝐶
= 0,                                                (3) 

where 

𝐴 = (
ℎ

𝐿1
)

2
(1 − cos(𝜆𝑛𝐿1) cosh(𝜆𝑛𝐿1))(1 + cos(𝜆𝑛𝐿2) cosh(𝜆𝑛𝐿2)),               (4) 

𝐵1 = sin2 𝛼0 𝐵1
∗ − 𝐵2

∗ + cos2 𝛼0 𝐵3
∗,                                                                     (5) 

𝐵2 = cos2 𝛼0 𝐵1
∗ + 𝐵2

∗ + sin2 𝛼0 𝐵3
∗,                                                                     (6) 

𝐶 = 2(𝜆𝑛𝐿1)4(1 + cos(𝜆𝑛𝐿) cosh(𝜆𝑛𝐿)),                                                            (7) 

with 

𝐵1
∗ = (

ℎ

𝐿1
)

2

(𝜆𝑛𝐿1)3[(1 

+ cos(𝜆𝑛𝐿2) cosh(𝜆𝑛𝐿2) (sin(𝜆𝑛𝐿1) cosh(𝜆𝑛𝐿1) + cos(𝜆𝑛𝐿1) sinh(𝜆𝑛𝐿1)) 

−(1 − cos(𝜆𝑛𝐿1) cosh(𝜆𝑛𝐿1) (sin(𝜆𝑛𝐿2) cosh(𝜆𝑛𝐿2) + cos(𝜆𝑛𝐿2) sinh(𝜆𝑛𝐿2))],  (8) 

𝐵2
∗ = (

ℎ

𝐿1
) (𝜆𝑛𝐿1)2 sin 𝛼0 cos 𝛼0 [(1 + cos(𝜆𝑛𝐿2) cosh(𝜆𝑛𝐿2)) sin(𝜆𝑛𝐿1) sinh(𝜆𝑛𝐿1) 

+(1 − cos(𝜆𝑛𝐿1) cosh(𝜆𝑛𝐿1)) sin(𝜆𝑛𝐿2) sinh(𝜆𝑛𝐿2)],                                             (9) 

𝐵3
∗ = 𝜆𝑛𝐿1[(1 + cos(𝜆𝑛𝐿2) cosh(𝜆𝑛𝐿2))(sin(𝜆𝑛𝐿1)) cosh(𝜆𝑛𝐿1) 

− cos(𝜆𝑛𝐿1) sinh(𝜆𝑛𝐿1)  

−(1 − cos(𝜆𝑛𝐿1) cosh(𝜆𝑛𝐿1))(sin(𝜆𝑛𝐿2) cosh(𝜆𝑛𝐿2) − cos(𝜆𝑛𝐿2) sinh(𝜆𝑛𝐿2))].    (10) 
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Here, 𝜆𝑛𝐿 is the normalized wave numbers of the 𝑛𝑡ℎ flexural resonance eigenmode, and can be 

related with the CR frequencies 𝑓𝑛
𝑐  and FR frequencies 𝑓𝑛

0  from the dispersion equation as 

follows (the superscripts 𝑐 and 0 respectively denote the CR and FR modes here), 

(𝜆𝑛𝐿)𝑐 = (𝜆𝑛𝐿)0√
𝑓𝑛

𝑐

𝑓𝑛
0.                                                       (11) 

In our experiments, the cantilever length L is 450 µm and the tip has a height of 17 µm and 

a position 𝐿1 𝐿⁄  of 0.9667 as provided by the manufacturer. The cantilever tilt angle is 11°. And 

the contact stiffness ratio 𝑘𝐿 𝑘𝑁⁄  is estimated to be equal to 2(1 − ν)/(2 − ν) on the supported 

substrate, which yields 0.84 for a material with a Poisson’s ratio ν of 0.27.21) By submitting the 

measured CR frequencies on the substrate area into Eq. (3) with 𝑘𝐿 𝑘𝑁⁄  set to be 0.84, a mean 

value of 468.9 N/m was determined for 𝑘𝐿 . And as 𝑘𝐿  will keep constant across the entire 

measurement, the normal contact stiffness values on the membrane can be calculated with 𝑘𝐿 set 

to be 468.9 N/m. 

Figure 3(c) shows the calculated relation between the 3rd CR frequency and the normal 

contact stiffness, respectively normalized by the 1st FR frequency and the cantilever spring 

constant. When we marked the experimental CR frequencies on this curve, a good sensitivity of 

the 3rd mode was again demonstrated. Then contact stiffness values were calculated from the 

corresponding experimental CR frequencies and the results were shown in Fig. 3(d). The 

obtained contact stiffness along the membrane’s radial direction also has a bowl-shaped 

distribution, with the magnitudes range from about 558 N/m on the substrate to about 196 N/m at 

the membrane center. 

Then, the stiffness of the membrane was calculated by considering the model of a vibrating 

cantilever contacting a membrane as shown in Fig. 4(a). Overall deflection of the membrane 
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(structure) and local deformation of the material (material) exist during the measurement, both of 

which are assumed to be elastic under such small loading forces. Therefore, the contact stiffness 

kN can be regarded as series of membrane deflection stiffness kS and material deformation 

stiffness kM, that is 1/kN=1/kS+1/kM. Since there is no membrane deflection on the substrate area, 

that is kS→∞, we get (1/kN=1/kM)substrate. And this leads to (1/kS)membrane=(1/kN)membrane-(1/kN)substrate. 

Thus, by assigning (kN)membrane with the mean contact stiffness obtained on the substrate area, the 

membrane stiffness (kS)membrane can be evaluated from previously calculated contact stiffness 

values. Figure 4(b) displays the derived membrane stiffness at various positions along the radial 

direction, indicating a minimum stiffness of 302.5 N/m at the center and a sharp increase around 

the periphery. Such large a stiffness of the membrane strongly implies the existence of tensile 

residual stress. 

To determine the residual stress of the membrane, modeling the mechanics of a pre-stressed 

circular membrane is necessary. The deflection at the center of a circular membrane under a 

vertical point load P at the center and a radial tensile force per unit length N at the edge can be 

expressed as,22) 

𝑤 =
𝑃𝑅2

16𝜋𝐷
𝑔(𝑘),                                                       (12) 

where, 

𝑔(𝑘) =
8

𝑘2 [
{𝐾1(𝑘)−

1

𝑘
}

𝐼1(𝑘)
∙ {𝐼0(𝑘) − 1} + 𝐾0(𝑘) + ln (

𝑘

2
) + 𝛾],                    (13) 

and 𝐷 = 𝐸𝑡3/12(1 − 𝑣2) is the flexural rigidity of the membrane, with E the Young’s modulus, 

t the thickness, v the Poisson’s ratio; 𝑘2 = 𝑁𝑅2/𝐷 is a defined coefficient, with R the membrane 

radius; 𝐼0 and 𝐼1are respectively the modified Bessel function of the first kind of order 0 and 1, 

and 𝐾0 and 𝐾1respectively the modified Bessel function of the second kind of order 0 and 1; 𝛾 is 
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Euler’s constant. Thus the stiffness of a circular membrane at the center, that is the load-

deflection slope 𝑃 𝑤⁄ , is determined by the radius R, thickness t, Young’s modulus E and the 

residual stress σ  ( σ = 𝑁 𝑡⁄ ). Figure 4(c) shows the calculated center stiffness values of 

membranes with various residual stresses and Young’s moduli. In calculation, the radius and 

thickness were fixed at 252 µm and 524 nm respectively. It can be found that the membrane 

stiffness increases dramatically with the increase of the residual stress. However, the stiffness is 

much less sensitive to Young’s modulus. This makes it possible to determine the residual stress 

accurately enough by taking a reasonable assumption of the Young’s modulus. Here, Young’s 

modulus of the tested SiNx membrane was set within 150-250 GPa, which was the most 

frequently reported values according to literatures for thin films with the same fabrication 

process.23,24) Then, by matching the calculated load-deflection slopes with the obtained 

membrane stiffness at the center, 302.5 N/m, the residual stress was finally determined to be in a 

range of 366-393 MPa. 

In addition, a thoroughly uncertainty analysis of our method was performed. All the 

experimental and model parameters were considered in the analysis by taking random deviations 

with relatively large enough ranges for them, as listed in Table I. Then one thousand times 

calculations of the obtained residual stress were applied, and the results are shown in Fig. 4(d). A 

mean value of 374 MPa and a standard deviation of 39 MPa of the residual stress were 

determined which indicate a quite good stability of the method. 

The experimental results indicate that the developed CR-AFM spectroscopy based tests can 

be used to characterize the stiffness and residual stress of thin films simultaneously. The method 

was first compared with the quasi-static AFM based bending test. Force-displacement tests were 

performed in-situ during the CR spectroscopy experiments. Unlike the 2nd and 3rd mode CR 



10 

 

spectra, the results show that the AFM bending tests can even hardly reveal the existence of the 

freestanding membrane, as demonstrated in Fig. S2. That is to say, the CR method has much 

better mechanical sensitivity. Then, the obtained residual stress was compared with the one 

determined by the widely-used wafer curvature test on another SiNx membrane fabricated with 

the same processing conditions but with a little difference in the film thickness. A Stylus Profiler 

system (Dektak XT, Bruker Corporation, Billerica, MA) was used to measure the residual stress, 

which gave an averaged stress of 372 MPa with a standard deviation of about 59 MPa within an 

80 mm long profile (see Fig. S3). This ascertain that the acquired residual stress of 366-393 MPa 

is in reasonable agreement with that from the conventional wafer curvature test. 

In summary, a method based on CR-AFM techniques was proposed to study the stiffness 

distribution and residual stress of a freestanding circular SiNx membrane. The method was 

demonstrated to have much better mechanical sensitivity than the popular quasi-static AFM 

bending test. And the obtained residual stress value was verified to be in good accordance with 

that from wafer curvature test. In addition, the ability of CR-AFM for fast, nondestructive 

mechanical mapping of thin films at the nanoscale was also demonstrated. This paves a way for 

simultaneous measurement of modulus, stiffness and residual stress of thin films at the nanoscale. 

And it has potential applications in film-based micro-and-nano devices, including those of 2D-

materials. 
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FIGURE CAPTIONS 

FIG. 1. Schematic illustration of exploiting CR-AFM on mechanical characterization of a 

freestanding circular thin film. 

 

FIG. 2. (a) Optical view of the cantilever and membrane sample with CR spectroscopy test 

positions and the UAFM scan area illustrated. (b) Frequency spectra in air, in contact with the 

substrate and at the membrane center. (c)-(e) UAFM topography, amplitude, and phase images. 

 

FIG. 3. (a) Extracted 3rd CR frequencies under various positions along the radial direction. (b) A 

simplified analytical model of the cantilever in contact with the sample. (c) Relationships 

between the normalized 3rd CR frequency and the normalized contact stiffness. The experimental 

obtained CR frequencies were marked on the curve. (d) Calculated contact stiffness values. 

 

FIG. 4. (a) Schematic illustration of the vibrated cantilever contacting with the membrane. (b) 

Obtained deflection stiffness values at various positions along the radial direction of the 

membrane. (c) Calculated stiffness values at the membrane center with various residual stresses 

and Young’s moduli. (4) Values of the residual stress of one thousand times calculations in 

uncertainty analysis. 
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TABLES 

Table I. Parameters with their mean values and deviations considered in the uncertainty analysis. 

 

  

Parameter Symbol Unit Mean value Deviation 

Cantilever length 

Tip position 

Tip height 

Cantilever tilt 

Cantilever stiffness 

1st FR frequency 

CR frequencies 

𝐿 

𝐿1/𝐿 

ℎ 

𝛼0 

𝑘𝐶 

𝑓1
0 

𝑓𝑛
𝑐 

μm 

— 

μm 

° 

𝑁 𝑚⁄  

𝑘𝐻𝑧 

𝑘𝐻𝑧 

450 

0.9667 

17 

11 

0.28 

14.4 

— 

±10 

±0.0111 

±2 

±2 

±0.014 

±0.5 

±2 

Membrane radius 

Membrane thickness 

Young’s modulus 

Poisson’s ratio 

𝑅 

𝑡 

𝐸 

𝑣 

μm 

nm 

𝐺𝑃𝑎 

— 

252 

524 

200 

0.27 

±10 

±5 

±50 

±0.02 
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FIG. 3 

 

 

  



 

18 

 

FIG. 4 

 

 

 


