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Contact-resonance atomic force microscopy (CR-AFM) has been used to measure the viscoelastic loss tangent
of soft materials such as polymers. Usually, the damping is attributed to the dissipation in the contact volume
due to internal friction and air damping of the cantilever. However, partial slip or even full sliding can exist in
the contact zone under tangential loading, and thus the accompanying energy dissipation must be taken into
account when measuring the damping constant Q−1loc. Here, the stick-to-sliding transition of the tip-sample
contact in CR-AFM was studied. Amplitude drops were observed in the resonance curves caused by such
stick-to-sliding transitions. The results show that the stick-to-sliding transition arises under small contact
forces and large excitation amplitudes. Extra energy loss from full sliding induces large contact damping. The
critical lateral displacement needed for the stick-to-sliding transition varies linearly with the contact radius.

Atomic force microscopy (AFM) was originally in-
vented for high-resolution topography imaging. A va-
riety of AFM modes have since then been developed
in order to measure other surface or near-surface quan-
tities. Among them, CR-AFM techniques have at-
tracted much attention for mechanical characterization
at the nanoscale.1 In addition to the progress in elas-
tic properties measurements2–5 and subsurface detection
of defects6–9, CR-AFM was further developed in order to
determine both the storage modulus E′ and the loss mod-
ulus E′′10,11. This was first applied to polymeric materi-
als in order to measure the viscoelastic loss tangent.12–14

Furthermore, local internal friction of metallic and insu-
lating glasses15–17 and of nanocrystalline Ni18 was exam-
ined.

As postulated by Mindlin19,20, micro-slip or partial
slip exists in the contact area under tangential loading
between contacting bodies, resulting in energy dissipa-
tion. Micro-slip was verified on the macro- and the micro-
scale21–24 and it has been suggested that in tip-sample
contacts it contributes to damping in CR-AFM15–17,25.

A clear understanding of the tip-sample contact mech-
anism under tangential loading as well as the influence
of interfacial friction on CR-AFM measurements is still
missing. Therefore, we studied the transition from stick-
ing to total sliding of the tip-sample contact in CR-AFM.
The conditions for the initiation of lateral sliding of the
tip-sample contact pair were investigated, and the stick-
to-sliding induced effects both on the cantilever response
and the measured contact damping were analyzed.

a)Electronic mail: chfuma@ustc.edu.cn
b)Present address: OP Jindal University, Raigarh 496109, Chhat-
tisgarh, India

k*Lat
k*

θ

Δx

γ

γLat

Slip annulus

a

c

Stick center

FIG. 1. Illustration of a vibrating AFM cantilever with the tip
under viscoelastic contact, which is modeled by Kelvin-Voigt
elements (k∗, γ), (k∗Lat, γLat) in the normal and lateral di-
rections, respectively. The inset demonstrates the tip-sample
contact area under tangential loading, with a stick center and
a slip annulus. The cantilever is tilted by 11◦due to technical
reasons.

In CR-AFM, the tip-sample contact is usually mod-
eled by Kelvin-Voigt elements (Fig. 1). Assuming small
vibration amplitudes, the tip-sample contact forces are
approximated by elastic and viscoelastic forces. Contact
forces are represented by springs and dashpots both in
the normal (k∗, γ) and the lateral (k∗Lat, γLat) direc-
tions. Models describing the cantilever dynamics with-
out damping lead to characteristic equations between the
contact stiffness and the wave number of the cantilever
motion.1,3 When taking damping into account, a complex
wave vector η = (κr + iκi)/L describing the cantilever’s
motion is introduced, with L the cantilever length. In
this way the mode-shape of the cantilever is taken into
account. The real part κr and the imaginary part κi
can be determined from the measured free and contact-
resonance frequencies with their quality factors (fFR,
QFR) and (fCR, QCR) by fitting the resonance curves
to Lorentzians (see also supplementary material).12 This
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yields a complex contact stiffness k∗ = kr + iki, where
kr is the real part of the contact stiffness and ki = ωγ
is the imaginary part, with ω the angular frequency.
The local contact-damping factor is then given by Q−1loc
= tan δ = E′′/E′ = ωγ/kr = ki/kr. Here, kr = 2aE′

and ki = 2aE′′ where a is the tip-sample contact radius.

As illustrated in Fig. 1, the flexural vibration of the
cantilever in contact induces a periodical deflection with
angular amplitude θ at the tip position, leading to a pe-
riodical lateral displacement of the tip apex. If the tip
is free, this displacement is ∆x = tan θ · h, with h the
tip height. When the tip is in contact and not slid-
ing, a tangential force develops. According to Mindlin’s
theory19–22,26, increasing tangential forces result in pro-
gressive micro-slipping contacts. In the contact area with
radius a, tip-sample slip first arises in an annulus at the
periphery of the contact as partial slip, whereas in the cir-
cular center of radius c the tip still sticks to the surface.
With increasing lateral displacement ∆x, the slip area
increases and the stick center decreases, until a critical
displacement D is reached where the stick center van-
ishes, initiating total sliding. For a constant normal load
of FN , the lateral force is FL = FT + FF during this
process. Here, FT is the shear force in the stick center,
FF = µFN is the friction force in the slip annulus, and
µ is the friction coefficient. Total sliding sets in when
FL = FF .

In order to study the stick-to-sliding transition and
its influence on the CR-AFM measurements, CR spectra
were acquired under various applied tip loads and excita-
tion amplitudes. The experiments were performed with
a Dimension Icon, Bruker Nano AFM. Cantilever oscil-
lations were either induced by a transducer beneath the
sample (atomic force acoustic microscopy, AFAM mode)
or via the piezo-shaker under the cantilever chip (ultra-
sonic atomic force microscopy, UAFM mode). All mea-
surements were carried out with the same silicon AFM
probe (MPP-21100-10, Bruker Nano), prior to which
the fresh tip was scanned in order to reach a steady
wear state. The static inverse optical lever sensitivity
(InvOLS) was determined to be about 92 nm/V. The
cantilever’s spring constant was measured to be 5.8 N/m
using the thermal method. The free resonance of the first
eigenmode in air was fFR = 85.4 kHz and its Q-value
QFR = 131. The samples used were a silicon wafer and
a 40 nm thin film of La0.6Sr0.4MnO3 (LSMO) deposited
on a single-crystal SrTiO3 (111) substrate17. The mea-
sured root mean square roughness (Rq) of the samples in
1.5×1.5 µm2 test areas were 0.93 nm for the Si sample
and 1.09 nm for the LSMO sample. All measurements
were conducted in humidity controlled air (≈ 33%) at
290 K.

Fig. 2 shows the contact-resonance curves for the first
cantilever mode on the silicon sample obtained with the
AFAM technique. Tests were carried out with eleven dif-
ferent excitation amplitudes from 0.1 V to 3.0 V, each
with thirteen different tip loads from 31 nN to 325 nN.
All tests were repeated five times for each case under

the same excitation amplitude and tip load. The pull-off
forces, around 84 nN for the silicon sample and 35 nN for
the LSMO sample, were included in the total tip loads for
all measurements. To calibrate the amplitude, an FEA
model of the cantilever dynamics was used.27 For simplic-
ity, a single value for the calibration factor (InvOLSCR)
of 9.9 nm/V determined for a CR frequency of 400 kHz,
was used to calibrate the normal amplitudes in Figs. 2
and 4(b) for all frequencies. This entails a maximum er-
ror of 7%. Moreover, the deflection angle θ, and thus the
lateral displacement ∆x can also be calibrated from the
model. Other parameters used in the calibration model
are listed in reference [38].
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FIG. 2. AFAM amplitude spectra of the first contact-
resonance on a silicon wafer under different applied tip loads
and excitation amplitudes: (a) - (d): excitation amplitudes of
0.5, 1.5, 2.0, and 3.0 V, respectively. For clarity, only a few
typical spectra are shown.

The amplitudes of the contact-resonance curves de-
pend on the excitation amplitudes and on the static loads
(Fig. 2). They increase approximately linearly with
the excitation amplitude for all static loads. Further-
more, larger static loads increase the contact area lead-
ing to larger contact stiffness and hence to higher CR
frequencies.1 In addition, the amplitude becomes larger
because an increase in contact stiffness entails a larger Q-
value for the same damping as noticed by various groups
and worked out in detail earlier11.

With increasing excitation, nonlinear behavior grad-
ually arises in the cantilever frequency response under
small tip load. Some of the distortions are highlighted
by arrows in Figs. 2(b)-(d), marked by sudden amplitude
drops. When applying higher tip loads, larger excitation
amplitudes are needed to reach a critical value again.
Moreover, for the same excitation, by increasing the tip
load, the nonlinear behavior gradually disappears and
the spectra return to Lorentzian shapes. This is a strong
hint that the nonlinerarity originates in the boundary
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of the tip-sample contact. Strictly speaking, the non-
linear behavior precludes the fit of the resonance curves
with Lorentzians. However, as can be seen experimen-
tally, the overall shape of the resonance curve remains
close to Lorentzian and therefore we continue to use the
procedure of Yuya et al11 to evaluate the local damp-
ing. Further details are discussed in the supplementary
material.

The resonance shapes described here are different from
the frequency response due to a softening nonlinearity
caused by tip-sample adhesion28 (see also supplemen-
tary material). Nonlinear frequency response curves have
also been used to reconstruct force-distance curves29. To
this end, large normal amplitudes were applied in order
to sweep the full force-distance curve at various static
loads using the second cantilever mode. Finally, in tor-
sional contact-resonance experiments plateaus in the fre-
quency response have been observed when exceeding crit-
ical amplitudes30.

To interpret the data, we suggest a stick-to-sliding
transition for the tip-sample contact facilitated by the
small lift-off due to sonolubrication27. A typical contact-
resonance showing nonlinear behavior taken on the sil-
icon sample is shown in the inset of Fig. 3 which was
taken by sweeping from low to high frequency. When
the frequency is far from the CR, the cantilever ampli-
tude and also the lateral displacement amplitude of the
tip are small, resulting in a lateral contact force smaller
than the tip sticking-force. Then, when approaching the
CR frequency, the cantilever amplitude and also the tip
lateral displacement get larger, leading to a micro-slip
contact between the tip and the sample with increased
shear force in the stick center and an expanding slip an-
nulus starting from the contact periphery. Finally, at a
critical point, the relative lateral displacement becomes
so large that the shear force in the stick center exceeds
the static friction force and the slip annulus expands to
the entire contact area, resulting in a sudden transition
from stick to total sliding of the tip-sample contact. Cor-
respondingly, the sudden change of the contact condition
and also the reduction of the lateral force to a kinetic
friction force induce a drop of the cantilever amplitude.
This is similar to the transition from static friction to
kinetic friction31. For further details, see supplementary
materials.

The amplitude drops in the CR spectra can be used
as indicators of the initiation of total sliding. By man-
ually extracting the critical cantilever amplitudes where
the amplitude drops occur and with calibration of the
lateral displacements, we determined the critical lateral
displacements D to initiate total sliding on the silicon
sample (AFAM) and on the LSMO sample (UAFM) un-
der various tip loads FN . The results show power-law
relationships D ∼ C(FN − Foffset)

n for both samples
where C is a constant. Best fits gave n = 0.486 ± 0.030
for the LSMO sample and 0.391 ± 0.093 for the silicon
sample. The offset forces Foffset used in the fits32 are
close to 23 nN for both samples. They indicate lower
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FIG. 3. Critical lateral displacement amplitudes D of the
tip to initiate total sliding as a function of contact radius a
both on the silicon sample and the LSMO sample. The solid
lines represent linear fits. Inset: Typical nonlinear behavior
of a contact-resonance on the silicon sample displaying an
amplitude drop; the dashed curve represents a Lorentzian fit
of the resonance curve.

adhesion forces compared to the pull-off forces. This is
most likely due to the fact that the contact is neither
spherical nor flat.

We relate the critical displacements D with the con-
tact radius a. The latter is calculated from the static
load FN with a = (3FNR/4E

∗)1/3 by considering a
Derjaguin-Muller-Toporov (DMT) contact32, where R is
the tip radius (≈ 80 nm as measured by SEM) and
E∗ is the reduced Young’s modulus. Here, E∗ = 91
GPa for Si and E∗ = 42 GPa for LSMO using 1/E∗ =
(1−ν2t )/Et + (1−ν2s )/Es where (Et, νt), (Es, νs) are re-
spectively the Young’s modulus and the Poisson’s ratio
of the tip and the sample, which are (169 GPa, 0.27)
for the tip and the Si sample, and (50 GPa, 0.3) for
the LSMO sample27. A nearly linear relation can be
found between D and the contact radius a for both
materials (Fig. 3). The slopes are 0.177 ± 0.014 for
the silicon sample and 0.119 ± 0.003 for the LSMO
sample. The finite intercepts in the experimental data
are caused by adhesion. Considering the friction force
FF = τA = τπa2 for a single asperity contact, the linear
relationship D ∼ a agrees with the Mindlin theory20,23

where D = 3FF /16aG∗ = (3π/16)(τ/G∗)a. Here, τ is
the shear strength, A is the contact area, andG∗ is the re-
duced shear modulus as 1/G∗ = (2−νt)/Gt+(2−νs)/Gs

where Gt and Gs are respectively the shear modulus of
the tip and the sample. From this relation, one obtains
τ/G∗ = 0.300 and 0.202 for Si and LSMO, respectively.
Taking G∗Si−Si = 18.9 GPa and G∗Si−LSMO = 8.7 GPa17,
one obtains τSi ≈ 5.7 GPa for Si and τLSMO ≈ 1.7 GPa
for LSMO. These values are smaller than that obtained
for small-scale objects33,34 of the same materials support-
ing the view that single asperity contacts can be regarded
as cracks in an infinite medium35.
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FIG. 4. (a) Q−1
loc mean values on Si with standard deviations

in five measurements under different tip loads and excitation
amplitudes; (b) All fitted cantilever amplitude data-sets for Si
under different tip loads, with the Q−1

loc mean values shown in
a colored map. Data in solid squares are the critical cantilever
amplitudes extracted manually from the spectra exhibiting a
nonlinear amplitude drop.

Additional energy dissipation is expected during the
sudden stick-to-sliding transition and the subsequent
sliding friction. This can be unambiguously observed
from the widened and flattened spectra where full slid-
ing happens (Fig. 2). We investigated the contribution of
the stick-to-sliding transition to the damping of CR more
quantitatively. Fig. 4(a) shows the averaged Q−1loc for the
silicon sample with standard deviation error bars for five
measurements. For all excitations, Q−1loc decreases gradu-
ally with increasing applied tip load until it stabilizes at
large contact forces. However, for the larger excitation
amplitudes of 1.5, 2.0, 2.5 and 3.0 V, differences can still
be seen. Q−1loc is increased under small loads, e. g. those
smaller than 200 nN for the 3.0 V excitation amplitude
case, compared with smaller excitations, indicating the
presence of tip sliding.

The Q−1loc data can be divided into three regions de-
pending on the tip load and the excitation amplitude,
as shown in Fig. 4(a). In region (1) with a large static
load, Q−1loc becomes stable with internal friction in the
contact volume becoming noticeable. A small amount of
energy dissipation due to micro-slip may still exist in this

region. For larger contact forces, additional dissipation
may arise from material abrasion or plastic deformation.
In region (2), near the attractive regime, adhesion dis-
sipation plays a large role as studied earlier28,36 which
also results in local damping. For small loads but large
excitation amplitudes in region (3), total sliding sets in,
dominating Q−1loc.

Furthermore, we plotted in Fig. 4(b) all cantilever am-
plitude data under different loads from Lorentzian fits,
with the corresponding Q−1loc values indicated by a colored
bar. The region shown in the dashed area with signifi-
cantly increased Q−1loc values determines under what con-
ditions stick-to-sliding occurs. For comparison, we also
plotted the critical cantilever amplitudes from spectra
showing nonlinear amplitude behavior (Fig. 4(b)). The
sliding region determined by Q−1loc values agrees well with
the sliding condition defined by the amplitude drops.

We conclude that the resulting Q−1loc in CR-AFM is
determined also by several other contributions in the
tip-sample contact volume besides internal friction of the
material: (i) adhesion dissipation; (ii) friction by partial
micro-slip; (iii) frictional dissipation from stick-to-sliding
events; and (iv) air damping15,37. With increasing tip
load, the role of adhesion diminishes and micro-slips
and stick-to-sliding events are suppressed. This leads
to a gradual reduction of Q−1loc, implies an accurate
measure of the internal friction under large elastic loads.
For materials with small internal friction, air damping
becomes the dominant contribution to Q−1loc at high
enough static loads and thus determines the lower limit
of Q−1loc measurements using CR-AFM in air which is of
the order of 10−3 to 10−2. However, relative damping
measurements where one takes a reference point on
the sample itself or on a calibration material, remain
a possibility to measure small changes of Q−1loc.

10–12,15

Finally, our data further support that Mindlin’s theory
for macroscopic contacts also applies to AFM tip-sample
contacts23,25,30.

See supplementary material for our discussions on the
resonance shape under a stick-to-sliding process and the
energy dissipation by micro-slip.
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