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Abstract 

To meet the surging demands for quantitative and nondestructive testing at the nanoscale in 

various fields, ultrasonic-based scanning probe microscopy techniques, such as contact-

resonance atomic force microscopy (CR-AFM), have attracted increased attention. Despite 

considerable success in subsurface nanostructure or defect imaging, the detecting capabilities of 

CR-AFM have not been fully explored yet. In this paper, we present an analytical model of CR-

AFM for detecting subsurface cavities by adopting a circular freestanding membrane structure as 

an equivalent cavity. The parameters describing the detection limits of CR-AFM for such 

structures include the detecting depth and the detectable area. These parameters are 

systematically studied for different cantilever eigenmodes for structures of different sizes and 

depths. The results show that the detecting depth depends on the structure size. The higher 

eigenmodes generally provide better detecting capabilities than the lower ones.  

For an experimental verification, samples were prepared by covering with HOPG flakes a 

polymethylmethacrylate (PMMA) substrate with open pores at its surface. CR-AFM imaging on 

the HOPG-covered area was carried out using different eigenmodes in order to detect the pores 

in the PMMA. In addition, the influence of the applied tip load is also discussed. 

Keywords: Contact-resonance atomic force microscopy; subsurface imaging; nondestructive 

testing; defect detection. 
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1. Introduction 

Nondestructive subsurface imaging techniques on a nanoscale are of great importance in a wide 

range of fields. In material science, for example, the rapid development of composite materials 

based on the dispersion of nano-fillers into a matrix has created demands for characterization 

methods to quantitatively study the influence of the fillers on the physical properties of the 

composite. In biology, tracking the uptakes of living cells is fundamental for assessing the drug 

efficiency. Imaging of buried defects in nano-electronic devices is still a challenge. Conventional 

non-destructive subsurface testing methods, such as scanning acoustic microscopy, possesses a 

spatial resolution of no better than a few hundred nanometers according to the Rayleigh criterion. 

In addition, high-spatial resolution techniques, such as scanning electron microscopy or 

transmission electron microscopy, usually require destructive sample preparations in order to 

scan subsurface features.  

By combining it with ultrasonic technology, atomic force microscopy (AFM) has been 

developed into a powerful tool for nanoscale nondestructive subsurface imaging in the past two 

decades. For example, ultrasonic force microscopy was first invented and used to image 

subsurface features in a graphite sample.1 Then heterodyne force microscopy was introduced, 

and its analogues, such as scanning near-field ultrasound holography, were successfully applied 

to detect nanoparticles in a polymer substrate, buried voids in microelectronic structures, malaria 

parasite and the intake of nanoparticles in living cells.2,3 Especially contact-resonance atomic 

force microscopy (CR-AFM), including the so-called atomic force acoustic microscopy (AFAM) 

and ultrasonic atomic force microscopy (UAFM), are among the most promising techniques for 

realizing quantitative characterization. By recording the CR spectra of the cantilever while 

keeping the tip in contact with the sample surface and by subsequent analyzing with proper 

contact mechanics and cantilever dynamic models, CR-AFMs were used in quantitative 

mechanical characterization.4-10 There are also some reports of employing CR-AFM for 

subsurface imaging, such as the observation of subsurface dislocation in highly oriented 

pyrolytic graphite (HOPG), the adhesion mapping of a buried interface, and the detection of 

embedded nanostructures.11-13 

Even though much work has been carried out using analytical models by applying CR-

AFMs in quantitative mechanical characterization, their subsurface detecting capabilities have 

not been fully explored yet. By now there are only a few papers published on this issue. For 

example, Yaralioglu et al proposed a radiation impedance based method in order to calculate the 

contact stiffness of layered materials in UAFM,14 which was further employed by Sarioglu et al 

in order to investigate the sensitivity of UAFM to interface defects in film/substrate structures.15 

A 3D finite element analysis (FEA) model was used by Parlak and Degertekin to simulate the 

contact stiffness between an AFM tip and a substrate with buried nanostructures, and to 

theoretically investigate the influence of multiple subsurface structures, contact forces, and 

material properties in subsurface defect detection.16 Experimentally, Kimura et al employed 

various AFM techniques to elucidate the imaging mechanisms for deeply buried Au 

nanoparticles in a soft polymer.17 Striegler and co-workers fabricated well-defined subsurface 

reference structures to verify the detection capabilities of AFAM, and their results demonstrated 

that buried void structures at depths ranging from 180 nm to 900 nm, corresponding to up to 

~10-times the contact radius of the tip, can be detected depending on the defect dimensions.18 

In this paper we present an analytical model for detecting subsurface cavities or void 

structures by CR-AFM, which are a major type of defects in many advanced materials and 
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devices. By considering circular freestanding membrane structures as an equivalent for 

subsurface cavities, the detecting capabilities of CR-AFM for such structures were systematically 

studied. The detectable depth, the detectable area of the cavities for different cantilever 

eigenmodes and the influence of the applied tip load were theoretically investigated. Moreover, 

the detecting depth sensitivities for different cantilever eigenmodes were also discussed. 

For an experimental verification, samples were prepared by covering with HOPG flakes the 

polymethylmethacrylate (PMMA) substrates that have open pores at the surface. When covered 

by the flakes, the open pore structure became subsurface cavities. CR-AFM imaging on the 

HOPG-covered areas was carried out for different eigenmodes and contact forces. The results 

show that the detecting depth depends on the structure’s diameter. Deeper features can be 

detected by choosing higher eigenmodes and by applying larger contact forces. 

  

2. Methods 

2.1 Contact-resonance atomic force microscopy 

A schematic of the CR-AFM system scanning a sample with subsurface cavity structures is 

illustrated in Fig. 1a. Ultrasonic excitations were applied via the signal generator to the piezo-

shaker which vibrates the cantilever at its suspension (UAFM mode) while the tip is in contact 

with the sample. The applied tip load is monitored and kept constant by the AFM feedback 

controller. The existence of subsurface features will alter the tip-sample contact stiffness, which 

will influence the cantilever oscillation. Thus, by extracting the amplitude, phase, and 

frequencies of the CR-AFM spectra, information of the subsurface cavity structures is obtained 

in images which are not visible in the topography image. A detailed description of the CR-AFM 

can be found elsewhere.19 

 
FIG. 1. (a) Schematic illustration of CR-AFM monitoring of a sample with subsurface cavity 

structures; (b) Mechanical model of the AFM cantilever in contact with the sample surface; (c) 

Equivalent model of subsurface cavities as edge-clamped circular free-standing membrane 

structures.  
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Our experiments were performed with a commercial AFM platform (MFP-3D Origin, 

Asylum Research, Santa Barbara, CA) using the UAFM mode. A ContAl-G cantilever 

(BudgetSensors, Innovative Solutions Bulgaria Ltd., Bulgaria) was employed. Prior to the 

measurements, the spring constant of the cantilever was determined to be 0.24 N/m by using the 

thermal calibration method.20 The first four free resonance (FR) frequencies of the cantilever 

were measured to be respectively 14.7 kHz, 88.6 kHz, 244.9 kHz, and 481.3 kHz. UAFM 

imaging with different eigenmodes and contact forces was carried out. 

 

2.2 Analytical models 

Figure 1b shows a simplified equivalent model without damping of the vibrating cantilever in 

contact with the sample surface. Both the normal and the lateral contact forces are considered, 

represented by kN and kL, respectively. The cantilever has a total length of L = L1 + L2 from the 

clamped end to the free end, and the tip is located at position L1 with the height h. Due to the 

mounting of the cantilever holder, a cantilever tilt of α0, which is usually between 11-15º, is also 

introduced in the model. The characteristic equation to describe the oscillation of an AFM 

cantilever based on the Euler-Bernoulli theory with the corresponding boundary conditions is 

well-known.19,6,10 Here, we only give the final equation in order to determine numerically the 

contact stiffness: 

 
𝐶

3

𝑘𝐶

𝑘𝑁
+ 𝐵1 + 𝐵2

𝑘𝐿

𝑘𝑁
+ 3𝐴

𝑘𝐿

𝑘𝐶
= 0,                                                 (1) 

where 

𝐴 = (
ℎ

𝐿1
)
2
(1 − cos 𝜆𝑛𝐿1 cosh 𝜆𝑛𝐿1)(1 + cos 𝜆𝑛𝐿2 cosh 𝜆𝑛𝐿2),                    (2) 

𝐵1 = sin2 𝛼0 𝐵1
∗ − 𝐵2

∗ + cos2 𝛼0 𝐵3
∗,                                                                (3) 

𝐵2 = cos2 𝛼0 𝐵1
∗ + 𝐵2

∗ + sin2 𝛼0 𝐵3
∗,                                                                (4) 

𝐶 = 2(𝜆𝑛𝐿1)
4(1 + cos 𝜆𝑛𝐿 cosh 𝜆𝑛𝐿),                                                            (5) 

with 

𝐵1
∗ = (

ℎ

𝐿1
)
2
(𝜆𝑛𝐿1)

3[(1 + cos 𝜆𝑛𝐿2 cosh 𝜆𝑛𝐿2)(sin 𝜆𝑛𝐿1 cosh 𝜆𝑛𝐿1 + cos 𝜆𝑛𝐿1 sinh 𝜆𝑛𝐿1) −

(1 − cos 𝜆𝑛𝐿1 cosh 𝜆𝑛𝐿1)(sin 𝜆𝑛𝐿2 cosh 𝜆𝑛𝐿2 + cos 𝜆𝑛𝐿2 sinh 𝜆𝑛𝐿2)],                     (6) 

𝐵2
∗ = (

ℎ

𝐿1
) (𝜆𝑛𝐿1)

2 sin 𝛼0 cos 𝛼0 [(1 + cos 𝜆𝑛𝐿2 cosh 𝜆𝑛𝐿2) sin 𝜆𝑛𝐿1 sinh 𝜆𝑛𝐿1 + (1 −

cos 𝜆𝑛𝐿1 cosh 𝜆𝑛𝐿1) sin 𝜆𝑛𝐿2 sinh 𝜆𝑛𝐿2],                                         (7) 
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𝐵3
∗ = 𝜆𝑛𝐿1[(1 + cos 𝜆𝑛𝐿2 cosh 𝜆𝑛𝐿2)(sin 𝜆𝑛𝐿1 cosh 𝜆𝑛𝐿1 − cos 𝜆𝑛𝐿1 sinh 𝜆𝑛𝐿1) −

(1 − cos 𝜆𝑛𝐿1 cosh 𝜆𝑛𝐿1)(sin 𝜆𝑛𝐿2 cosh 𝜆𝑛𝐿2 − cos 𝜆𝑛𝐿2 sinh 𝜆𝑛𝐿2)].      (8) 

Here, kc is the spring constant of the cantilever and λnL is the normalized wave number of the n-

th flexural mode which can be related to the contact resonance frequency fn
c and the free 

resonance frequency fn
0 by the dispersion equation 

 

(𝜆𝑛𝐿)
𝑐 = (𝜆𝑛𝐿)

0√
𝑓𝑛
𝑐

𝑓𝑛
0 = 1.8571√

𝑓𝑛
𝑐

𝑓1
0.                                             (9) 

 

Thus, the relation between the normal contact stiffness and the CR frequency can be built 

analytically. 

When the tip scans over subsurface cavities, deformations of the structure will be 

experienced besides local deformations of the material. This will alter the normal contact 

stiffness and thus the cantilever oscillation, and that is why subsurface cavities can be sensed. As 

quite small loads were applied, the material deformation and structure deflection can both be 

assumed to be elastic. Therefore, the normal contact stiffness kN can be regarded as a series 

connection of the deflection stiffness kS and the material deformation stiffness kM as shown in 

Fig. 1b, that is 1/kN = 1/kS + 1/kM. According to the Hertz contact mechanics, the material 

deformation stiffness can be determined to be kM = (6E*2RFN)1/3 where E* is the reduced Young’s 

modulus with 1/E* = (1-νt
2)/Et + (1-ν2)/E, R is the tip radius, and FN is the applied normal tip load. 

Parameters E, Et, ν, νt are the Young’s modulus and the Poisson’s ratios of the sample and the tip, 

respectively. The lateral contact stiffness 𝑘𝐿 can be estimated to be 2(1-ν)/(2-ν) times of kM.21  

In the experiments the tip load FN is kept constant and hence kM and kL should be constant 

during a measurement. As a consequence, the deflection stiffness kS can directly be related to the 

CR frequencies. Additionally, kS is determined by the structure and material properties of the 

cavity and the tip position.  

Because the shapes of cavity structures are usually irregular, it is difficult to build 

corresponding equivalent models which reflect their stiffness. Here, we use an edge-clamped 

circular freestanding membrane as an equivalent model for the subsurface structure with a 

diameter of 2r0 and a thickness of d, respectively, representing the lateral dimension and its 

depth, see Fig. 1c. For a membrane with an eccentric point force P acting at a distance of rP from 

its center, the maximum deflection can be expressed as:22 

 

𝑤(𝑟𝑃, 0) =
𝑃

16𝜋𝐷

(𝑟0
2−𝑟𝑃

2)2

𝑟02
,                                                (10) 

 

where D = Ed3/12(1-ν2) is the flexural rigidity of the membrane. Then, the membrane deflection 

stiffness can be expressed as kS(rP,0) = P/w(rP,0). For simplicity, no residual stress is taken into 

account which can be added in a later stage.10 

 

2.3 Detecting capabilities 

The analytical model described above relates the shifts of the measured CR frequencies on a 

circular freestanding membrane structure with its diameter and thickness (depth) and the 
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experimental parameters. We define a minimal detectable frequency shift ∆f for our experimental 

set-up. Only when the CR frequency at the structure center shifts more than ∆f from the substrate 

or bulk material, the subsurface structure becomes detectable. This also determines the detecting 

depth. Moreover, even though a structure is distinguishable when the cantilever tip is above its 

central axis, it does not mean that the whole structure can be sensed because the deflection 

stiffness of the structure will approach the stiffness of the bulk material at its edges. Therefore, 

the detectable area will be another important parameter in studying the detecting capabilities. 

Here, we demonstrate an analytical evaluation of the two detecting capabilities. A 

conservative estimation of the CR frequency resolution ∆f = 1 kHz is considered. To remain 

consistent with our verification experiments, a HOPG sample with a Young’s modulus of 18 

GPa and a Poisson’s ratio of 0.25 is used in all our analytical calculations, with a tip load of 82 

nN and a tip radius of 50 nm. The cantilever length is 450 µm, and the tip height is ℎ = 17 µm 

with the ratio L1/L = 435/450. The cantilever tilt is set to be α0 = 11°. The Young’s modulus and 

Poisson’s ratio of the silicon tip are respectively 127 GPa and 0.278. 

 
FIG. 2. (a) Relations between the normalized CR frequencies of the first four eigenmodes and the 

normalized contact stiffness; (b) Contact stiffness at the structure center as a function of depth 

for various diameters; (c) Contact stiffness of a 500 nm diameter structure at a depth of 50 nm 

versus radial position. The determination of the detecting depths (di) and the detectable widths 

(Ai) are indicated in (b) and (c). 

 

From the contact model, the normal contact stiffness kM on the bulk material was calculated 

to be about 191 N/m. So the lateral contact stiffness kL was determined to be 164 N/m. The 

contact radius is estimated to be about 5.7 nm using Eq. (4.19) of Johnson.23  According to Eq. 1, 

the relations between CR frequencies and the normal contact stiffness for the first four 

eigenmodes are shown in Fig. 2a, normalized to the first free resonance frequency and to the 

cantilever stiffness. For a contact-resonance frequency resolution of 1 kHz, the smallest 

detectable contact stiffness difference ΔkN is about 80.9 N/m, 19.5 N/m, 4.4 N/m and 1.4 N/m for 

the first four eigenmodes, respectively. Therefore, only when the contact stiffness at its center 

has a difference larger than these thresholds, can a subsurface cavity be detected. The relation 

between the contact stiffness at the structure’s center and its thickness is shown in Fig. 2b for 

various diameters. It can be seen that the contact stiffness at the center approaches the value of 

the bulk material for a large structure depth. However, a rapid decrease of the contact stiffness 

can be found with decreasing depth. When we marked ∆kN on the stiffness versus structure depth 

curves, as illustrated for a diameter of 500 nm, the detecting depths d1, d2, d3, and d4 can be 

determined for the first four eigenmodes, with larger detecting depths for higher eigenmodes. 
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Moreover, for a structure with a diameter of 500 nm and a depth of 50 nm, the normal contact 

stiffness distribution along its radial direction is shown in Fig. 2c. A rapid increase of the contact 

stiffness from the center to the periphery is found. By matching again with ∆kN, the detectable 

areas A1, A2, A3, and A4 are determined for the first four eigenmodes with the higher eigenmodes 

showing larger detectable areas. 

 

3. Results and Discussion 

3.1 The effect of chosen eigenmodes 

We investigated the detecting capabilities of the first four CR eigenmodes. As shown in Fig. 3a, 

detecting depths for subsurface cavity structures with different diameters were calculated. It can 

be seen that much deeper structures can be sensed if they are bigger in the horizontal dimension. 

In addition, the detecting depth of the CR-AFM can be much improved by applying higher 

eigenmodes, which opens the possibility of using multimode CR-AFM techniques for the 

tomographic reconstruction of subsurface void or cavity defects. Figure 3b depicts the detectable 

diameter ratios for structures with a diameter of 500 nm for various depths. There is a decrease 

of the detectable area for all eigenmodes with increasing depth. The increased sensitivity of the 

higher eigenmodes is again demonstrated with much larger detectable areas in comparison to the 

lower eigenmodes, and the advantages become more significant for deeper structures. 

 
FIG. 3. Detecting capabilities of the first four CR eigenmodes: (a) Detecting depths for 

structures with different diameters; (b) Detectable diameter ratios for structures with a diameter 

of 500 nm and with various depths. 
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A more comprehensive study was carried out in which the detectable diameter ratios of the 

first four eigenmodes were calculated for structures with various diameters and depths. Figure 4 

shows the results while the diameters and the depths were respectively up to 1000 nm and 500 

nm. It should be mentioned that detecting depths for structures with certain diameters can also be 

acquired from Fig. 4, indicated by the contour line, where the detectable diameter ratio values 

turn to zero. The results illustrate a significant impact of the chosen CR eigenmodes on 

subsurface imaging for cavity structures, with larger detecting depths and more realistic 

visualization of the structures from the lateral dimensions by applying higher eigenmodes. Such 

maps can provide an easy-to-understand and comprehensive guide to evaluate the detecting 

capabilities of CR-AFM for subsurface cavity structures under certain settings. 

 
FIG. 4. Detectable diameter ratios for structures with various diameters, and (a)-(d) depths for 

the first four eigenmodes, respectively. 

 

Furthermore, we evaluated and compared the depth detecting sensitivities of the first four 

eigenmodes. To this end, the CR frequency shifts induced by a unit depth change were calculated 

for various structure depths while the diameter was set to be 500 nm. The results are shown in 

Fig. 5 from which the maximal depth sensitivity can be discerned for each eigenmode which is 

the peak value. For the first four eigenmodes they are approximately 1.4, 3.2, 3.8, and 2.5 

kHz/nm, respectively. In addition, depth sensitivity differences can be found between the first 

four eigenmodes, with each eigenmode having the best sensitivity with increasing structure depth. 
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This is analogous to the frequency sensitivity behavior of different eigenmodes for contact 

stiffness changes in CR-AFM as studied elsewhere.24 

 

 
FIG. 5. Depth detecting sensitivities of the first four eigenmodes under various structure depths 

(diameter: 500 nm). 

 
FIG. 6. (a) Schematic illustration of the scanned sample, prepared by covering a porous PMMA 

substrate with HOPG flakes. (b) CR amplitude spectrum obtained on the HOPG surface 

containing the first three eigenmodes with the first four FR frequencies marked by dashed lines; 

(c) AFM topography image on the flake and on the exposed PMMA substrate; (d) UAFM 

amplitude images on the same area as in (c) using a frequency of 440 KHz just below the 

contact-resonance frequency of 440.7 kHz; (e) Line-scans through two indications, one for 

subsurface cavity feature (in red) and one for an open pore (black open circles). 

 

3.2 UAFM imaging 

UAFM imaging experiments were carried out to verify our analysis. To this end, samples were 

first prepared by covering a porous PMMA substrate with HOPG flakes (see Fig. 6a). The 

investigated pores in the PMMA substrate have a mean diameter of approximately 503 nm, and 

HOPG flakes with three different thicknesses of about 102 nm, 65 nm and 33 nm are studied in 
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our experiments. Then, contact-resonance spectroscopy tests were conducted on one of the 

HOPG flakes to determine the CR frequencies. Figure 6b shows a typical amplitude spectrum 

over a range of 0 - 500 kHz for a tip load P ≈ 82 nN for the first three CR frequencies of 73.0 

kHz, 214.4 kHz, and 440.7 kHz. The first four FR frequencies are also shown. Finally, UAFM 

images were obtained on the HOPG flakes to examine the subsurface imaging capabilities for 

different eigenmodes and/or different tip loads. Figure 6c and Fig. 6d show respectively the 

obtained topography and UAFM amplitude images near a HOPG flake with the operation 

frequency set to be 440 kHz. The thickness of the HOPG flake was about 102 nm. It can be seen 

that the subsurface cavities below the HOPG flake are clearly revealed by the amplitude image 

but are not visible in the topography image. Neither the image contrast of the subsurface cavities 

nor the contrast of the open pores on the bare PMMA relate to their stiffness in a simple way. 

The amplitude images of the open pores on the bare PMMA are encircled by dark ring-like 

features located at the pore edges (Fig. 6e). Many of the subsurface cavities imaged through the 

flakes exhibit the opposite contrast. Such contrast inversions have been observed earlier and are 

caused by changes of the contact stiffness due to variations in elasticity, contact area, and by the 

operating frequency relative to the contact-resonance frequency.25,26,27 In addition, there are two 

“parasitic” fin-shaped multilayer graphene membranes around the flake edge having a thickness 

of about 4 nm. They can easily be distinguished in the UAFM images from the PMMA substrate 

and HOPG flake for their different elastic properties. We will concentrate our discussion on the 

main HOPG flake part hereafter. 

To study the influence of the chosen eigenmodes experimentally, UAFM images with 

different operation frequencies of 72.3 kHz, 213.9 kHz, and 440.2 kHz around the first three CRs 

were obtained. The results are shown in Fig. 7. It can be seen from Fig. 7a that the UAFM image 

for the first eigenmode shows no features of the subsurface cavities. This indicates that the 

detecting depth of the first eigenmode is smaller than the HOPG flake’s thickness. However, by 

applying higher modes, the subsurface cavities are gradually revealed. From Figs. 7b and 7c, it 

can be seen that both the second and the third eigenmodes have large enough detecting depths. In 

addition, it is obvious that the third eigenmode gives a much clearer contrast and reveals smaller 

cavities than the second eigenmode. 

 
FIG. 7. UAFM amplitude images obtained for the first three eigenmodes. The corresponding 

operation frequencies are respectively (a) 72.3 kHz, (b) 213.9 kHz, and (c) 440.2 kHz. 

 

A more detailed comparison between the obtained UAFM images of the first three 

eigenmodes is shown in Fig. 8a within the same scan area on the HOPG flake cropped from the 

amplitude images in Fig. 7. A topography crop of the PMMA substrate image is also displayed. 

Figure 8b displays the equivalent diameter histogram of the largest 25 cavities obtained on the 

PMMA substrate. The equivalent diameters of the cavities are in a range from about 409 nm to 
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637 nm and have a mean value of about 503 nm. Therefore, we conclude that the detecting depth 

of the first eigenmode is smaller than 102 nm for subsurface cavities with such dimensions, but 

that the second and third eigenmodes have larger detecting depths. Furthermore, we analyzed the 

imaging contrasts and the areas of the detected cavity features to make a quantitative comparison 

between the second and the third eigenmodes. To do so, the same 25 cavity features having the 

best contrasts were selected for both eigenmodes. Firstly, the UAFM amplitude contrast of the 

cavity features’ centers from the HOPG bulk material were evaluated. The contrast or 

modulation depth M = (Abulk – Acenter) / (Abulk + Acenter) was determined, where Abulk and Acenter are 

amplitudes on the HOPG bulk material and the cavity center, respectively. The results are shown 

in Fig. 8c for the second and the third eigenmodes. A higher contrast or M can be found for the 

third eigenmode with a modulation depth of up to about 0.45, which is below that of 0.1 for the 

second eigenmode. Then, the apparent equivalent diameters of the detected features are 

evaluated and are shown in the histograms of Fig. 8d for both the second and the third 

eigenmodes. The results yield a clear difference between the two eigenmodes with mean values 

of about 420 nm and 470 nm for the second and the third eigenmodes, respectively. The third 

eigenmode still yields a better detecting contrast and gives precise dimensional information 

about the subsurface cavity structures. 

 
FIG. 8. (a) From left to right: topography on the uncovered PMMA substrate and UAFM 

amplitude images of the first three eigenmodes on the HOPG flake (scale bar: 2 µm); (b) 

Equivalent diameter histogram of the cavities on the PMMA substrate. (c) Modulation depth or 

contrast for different pores for the second and third eigenmodes; (d) Equivalent diameter 

histograms of the detected subsurface cavities for the second and third eigenmodes. 

 

Here, quantitative comparisons between the experiments and our theoretical analysis are 

carried out. It should be mentioned that the effect of the PMMA substrate has little influence on 

the theoretical calculation. Although PMMA possesses an elastic modulus of 3 GPa, appreciably 

lower than the HOPG flakes (18 GPa), the effective elastic modulus of the HOPG flakes-PMMA 
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substrate system is, for a contact-radius to thickness ratio of about 0.06 and a modulus ratio 

EPMMA/EHOPG ≈ 0.2 as in our case, at most 11% lower than flakes alone according to Perriot et 

al.28 Therefore, the substrate effect are omitted in our calculations. When the same parameters 

were used in the theoretical analysis as in the experiments, we obtained detecting depths of about 

51 nm, 104 nm, and 182 nm respectively for the first three eigenmodes, for subsurface cavities 

with a mean diameter of 503 nm. For such cavities with a depth of 102 nm, the analytically 

detectable diameters of the second and third eigenmodes will be around 83 nm and 374 nm, 

respectively. It can be found that even though differences between the theoretical and the 

experimental results exist, our theoretical analysis still gives good evaluations of the CR-AFM’s 

detecting capabilities for subsurface cavity structures. There are mainly two reasons for the 

differences: (1) A conservative frequency sensitivity ∆f of 1 kHz is used in our calculations. This 

will cause an underestimate of the detecting depths and the detectable areas in comparison to a 

real system which possesses a smaller frequency sensitivity; (2) The equivalent diameters of the 

subsurface cavities were statistically obtained from the topography of a different area. This will 

also lead to underestimates when larger subsurface cavities exist in the tested area covered by the 

HOPG flake. 

 

3.3 Influence of the applied load 

The applied load or contact force is another important parameter besides the eigenmodes in the 

set-up, which can be tuned to improve the detecting capabilities. Here, we examined its influence 

on detecting subsurface cavity structures by both theoretical evaluation and experimental 

demonstration. Figure 9a shows the calculated detecting depths of the first eigenmode under 

various tip loads for subsurface cavity structures with a diameter of 500 nm. It can be seen that 

the influence of the applied load on the detecting depth is significant only when small loads are 

applied. In our calculation the detecting depth increases with increasing applied load up to about 

400 nN. Then, the detecting depth gradually levels off with increasing load. In addition, when 

compared with the results for the higher eigenmodes (Fig. 3a), it can be concluded that the 

selected eigenmode has a larger influence on the detecting depth than the applied load. Thus, to 

obtain a better detecting depth for subsurface cavity structures, applying a relatively large tip 

load will not help much. In contrast, exploiting a higher mode will be a better idea. 

Figure 9b shows a topography image of another HOPG flake with some folded layers on the 

upper part and some graphene membrane around it. The heights of the main HOPG flake are 

approximately 33 nm and 65 nm on the substrate part (Area I) and on the folded area (Area II). 

Then, UAFM images were obtained for the first eigenmode with different tip loads. The 

amplitude images for loads of FN = 77 nN and FN = 153 nN are shown in Fig. 9c and Fig. 9d, 

respectively. Only a small amount of very blurry cavity features can be seen on area I for the 

smaller load. However, many cavity features are clearly revealed all over area I for the larger 

load, demonstrating the influence of the applied load on the detecting depth in accordance with 

our theoretical analysis. 

Figure 9b shows a topography image of another HOPG flake with some folded layers on the 

upper part and some graphene membrane around it. The heights of the main HOPG flake are 

approximately 33 nm and 65 nm on the substrate part (Area I) and on the folded area (Area II). 

Then, UAFM images were obtained for the first eigenmode with different tip loads. The 

amplitude images for loads of FN = 77 nN and FN = 153 nN are shown in Fig. 9c and Fig. 9d, 

respectively. Only a small amount of very blurry cavity features can be seen on area I for the 
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smaller load. However, many cavity features are clearly revealed all over area I for the larger 

load, demonstrating the influence of the applied load on the detecting depth in accordance with 

our theoretical analysis. 

 
FIG. 9. (a) Detecting depths of the first eigenmode under various tip loads for subsurface 

cavities with a diameter of 500 nm in HOPG; (b) Topography around a HOPG flake on the 

PMMA substrate; (c) and (d) UAFM amplitude images using the first eigenmode under tip loads 

of FN = 77 nN and FN = 153 nN, respectively. 

 

 

4. Conclusions 

By considering subsurface cavity structures as circular freestanding membrane structures, an 

analytical model of CR-AFM for detecting subsurface void structures was proposed. Based on 

the model, the detecting capabilities including the detecting depth and the detectable area of CR-

AFM were systematically studied. As an experimental verification, UAFM mapping was applied 

to image subsurface cavity structures on a PMMA substrate covered by HOPG flakes. 

Firstly, the influence of the selected eigenmodes was studied by evaluating the detecting 

depths and detectable areas for subsurface cavity structures with various depths and diameters. 

The results show that the detecting depths depend on the structure diameters. For cavities of the 

same diameter, larger detecting depths can be obtained with higher eigenmodes. Higher 

eigenmodes provide also larger detectable areas for structures having the same diameter and 

depth. In addition, the detecting depth sensitivities of different eigenmodes were also discussed, 

indicating a promising prospect of using multimode CR-AFM techniques for tomographic 

reconstruction of subsurface voids and cavities in different depths. Then, the influence of the 

applied load on the detecting depth was investigated and it was found to become significant only 

when small loads were applied. It was found that the employed eigenmode determines the 

detecting depth to a larger extent than the applied load. Finally, experimental UAFM images 
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gave good agreement with the theoretical analysis. The influence of both the chosen eigenmode 

and the applied load were well demonstrated. 
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