Size Evolution of the 2e-Superatom in Ligand-Protected Au Nanoclusters: Au$_2$-(AuL)$_{1−12}$ (L = Cl, SH, SCH$_3$, PH$_2$, and P(CH$_3$)$_2$)

Wangdan Liu and Longjiu Cheng*

Department of Chemistry, Anhui University, Hefei, Anhui 230601, People’s Republic of China

Supporting Information

ABSTRACT: Ligand-protected gold (Au-L) nanoclusters have attracted much attention due to their unique properties, and the superatom concept as a significantly well-known concept to explain the electronic stability was suggested. Although there has been a lot of major progress in this field, size evolution of the superatom is still little known because of limited experimental data. To give a direct and overall view of size evolution of the superatom in Au-L clusters, the Au$_2$-(AuL)$_{1−12}$ (L = Cl, SH, SCH$_3$, PH$_2$, P(CH$_3$)$_2$) system is taken as a test case. The global minimum geometries are studied by using a method combining the genetic algorithm with density functional theory. The gold cores in these structures consist of Au$_{10}$, Au$_{20}$, and Au$_{22}$ 2e-superatoms protected by staple motifs. The 2e-superatoms were confirmed by chemical bonding analysis using the adaptive natural density partitioning method. The aromatic properties of the center of these compounds have been explored by the nucleus-independent chemical shift method, which indicates that the superatoms are highly aromatic. This work gives a clear size evolution of the 2e-superatomic Au-L clusters with 1 to 12 ligands, which discovers the growth mechanism of Au-L clusters with different ligands.

1. INTRODUCTION

Ligand-protected gold clusters have attracted interest both experimentally and theoretically over the past few years because of their unique electronic, optical, chemical, and catalytic properties.1—10 Numerous experimental studies have been devoted to the synthesis or characterization of ligand-protected gold nanoparticles in the size range of 1–2 nm.11—15 The first major breakthrough in this field was achieved in 2007 for the crystallization and X-ray structure determination of the (Au$_{102}$-p-MBA)$_{44}$ gold nanoparticle.13 They found that adatom-bound RS-Au-SR-type “staple” bonding motifs cover the surface of a Au$_{79}$ core in the stable Au$_{102}$(SR)$_{44}$ cluster, in agreement with the previous “divide-and-protect” model.16 After one year, the second breakthrough was achieved in which the crystal structure of the Au$_{125}$(SR)$_{18}$ cluster was determined.14,15 Then, Au$_{14}$,(SR)$_{26}$ Au$_{16}$(SR)$_{28}$, Au$_{19}$(SR)$_{32}$, Au$_{20}$(SR)$_{32}$, Au$_{24}$(SR)$_{44}$, and Au$_{44}$(SR)$_{48}$ compounds were experimentally isolated and characterized by the mass and/or optical spectra.

There are many theoretical ones devoted in this field. A great achievement was the prediction of the existence of the Au$_{13}$(SR)$_{15}$ nanoparticle.28 On the basis of density functional theory (DFT), the structure of Au$_{13}$(SR)$_{15}$ was found to be a compact Au$_{13}$ core protected by six (RS)$_5$Au$_3$ complexes. The calculated X-ray diffraction (XRD) based on the predicted structure was in agreement with the experimental data. DFT is used in an implementation where the Kohn–Sham orbitals are expanded in Gaussian basis functions.29 DFT predictions of the structures for many synthesized compounds were in agreement with the experimental X-ray diffraction and/or UV/vis spectra, successfully.30—36 The structures of these clusters were all based on the “divide-and-protect” model.16 To understand the stability and electronic structures of these compounds, a significant known aspect which the superatom model of electronic stability obtained from the jellium theory was proposed.37 For Au($5d^{10}6s^1$) clusters, the fully filled 5d electrons are mostly localized, and 6s1 are free valence electrons. The model states that the number of available Au 6s electrons must be a “magic number” such as 2, 8, 18, 34, 58, and 92. In particular, the total number of free valence electrons (n^*) associated with Au-SR clusters can be counted based on the formula $n^* = N_{eA} - M - z$, where N_{eA} is the number of Au(6s1) electrons, M the number of electron-localizing (or electron with drawing) ligands, and z the overall charge on the complex. On the basis of this superatom model, the n^* of the Au$_{102}$(SR)$_{44}$ compound was 58e, considered as a Au$_{79}$ core covered with 19 RS-AuSR and 2 RS-(AuSR)$_2$ staple motifs.13 The superatom theory has achieved great success in the stability of many experimentally produced ligand-protected gold nanoparticles, which can be understood by the magic numbers, such as Au$_{14}$(SR)$_{14}$ (34e),38 Au$_{16}$(SR)$_{28}$ (18e),18 Au$_{19}$(SR)$_{32}$ (18e),18 and Au$_{12}$(SR)$_{3}$ (2e).31

In terms of Au-L nanoclusters, Au$_{15}$(SR)$_{13}$ and Au$_{13}$(SR)$_{9}$ compounds as 2e clusters have been experimentally isolated to...
Au24(SR)20 can be explained as a 2e-superatom based on the 2-electron (4c-2e) tetrahedral Au4 superatoms. Previously, three hypothetical formulas, Au12(SR)9, Au10(SR)8, and Au8(SR)6, have been proposed to be candidates for the magic number 2. Au12(SR)9 has an octahedral (Au6) core with three dimer motifs; Au10(SR)8 has a tetrahedral (Au4) core with two interlocking trimer motifs; and Au8(SR)6 has a tetrahedral (Au4) core protected by staple motifs. There are only a few reports about Au-L nanoclusters with the 2e-superatom. Some Au-L nanoparticles such as Au18(SR)14, Au20(SR)16, and Au24(SR)20 can be explained as a 2e-superatom based on the superatom-network (SAN) model. The Au8(4c-2e) core of the three clusters should be viewed as two nonconjugate 4-center 2-electron (4c-2e) tetrahedral Au4 superatoms.

Despite that there has been major progress in resolving the structure of ligand-protected gold clusters, there is still little known about the size evolution of superatoms in ligand-protected gold clusters in general because of the limited experimental data on structures of gold clusters in the small-to-medium size range. For 2e-superatomic Au-L nanoclusters, only two compounds have been observed. It is significant for us to make predictions of 2e clusters and find the growth mechanism of them, which can lead to some preparations for 2e-superatomic Au-L clusters in future experiments. In this work, we report a systematic study of low-lying structures of 2e-superatom ligand-protected Au nanoclusters: Au2-(AuL)1−12 (L = Cl, SH, SCH3, PH2, and P(CH3)2). Major attention is placed on the search for structures of the lowest-energy clusters of Au2-(AuL)1−12. The structures of Au2-(AuL)1−12 nanoclusters with five different ligands are given, and the size evolution of the 2e-superatom Au cores can be seen clearly. We think that the size evolution of the 2e-superatom is significant for small size ligand-protected Au clusters, which can be useful in predicting the structures of Au-L nanoclusters with a magic number of 2 and understanding the evolution of the superatom.

2. COMPUTATIONAL METHODS

The geometries of Au2-(AuCl)1−12 are located by using the method combining the genetic algorithm (GA) with DFT implemented in our group, which has been successfully applied in the structural prediction of a number of systems. GAs belong to a larger class of evolutionary algorithms, which generate solutions to optimization problems using techniques inspired by natural evolution, such as inheritance, mutation, selection, and crossover. All our DFT computations were performed using the GAUSSIAN09 package. The TPSS functional was proven to give reasonably accurate energetic properties of small Au clusters. In general research of the potential energy surface, the sto-3g and LanL2MB basis sets are employed for ligands (L = Cl, SH, SCH3, PH2, and P(CH3)2) and metals (Au), respectively. After global optimizations, the low-lying isomers are fully relaxed at the TPSS/6-31G*//LanL2DZ level. The calculations of molecular orbital (MO) and the natural bond orbital (NBO) analyses are also calculated at the same level. Molecular visualization is performed using MOLEKEL.49

3. RESULTS AND DISCUSSION

A. Geometric Structures. Using the combination of GA and DFT, we obtained a series of structures for Au2-(AuL)1−12. Jiang predicted a novel structure model for Au12(SR)13, which features a cyclic [Au-SR] pentamer in the ligand shell, together with two regular trimer motifs protecting a Au4 nucleus. The most stable geometries of Au2-(AuCl)1−12 are shown in Figure 1. We emphasize the color of Au cores as pink of each structure in order to see it more clearly. When n = 1−4, the Au cores of a1 to a4 (Au2-(AuCl)n−12) are triangle (Au4) covered by one stable motif with different lengths, −Cl−, −Cl−Au−Cl− (monomer), −Cl−Au−Cl−Au−Cl− (dimer), and −Cl−Au−Cl−Au−Cl−Au−Cl− (trimer), respectively. Such a Au4 2e-superatom has not been viewed in the experimentally produced Au-L clusters. One atom of the Au core is isolated of a1, a2, and a3, so they disagree with the “divide-and-protect” model; however, a4 follows the model because the isolated Au is protected by Au···Au contact. For a5 to a8 (Au2-(AuCl)n−8), each cluster contains a core of Au4 tetrahedron protected by staple motifs each connecting two next-nearest-neighbor vertices of the tetrahedron, which follows the “divide-and-protect” model. Note that the tetrahedral Au4 core has been predicted by DFT calculations, such as in Au10(SR)8 and Au12(SR)6. Interestingly, a8 has a Au4 core with two interlocking trimer motifs and in a high D2d symmetry. These interlocking staple motifs were previously viewed in some Au-L clusters, such as Au122(SR)18 and Au24(SR)20. When n = 9−12, the regularity of two motifs each connecting two next-nearest-neighbor vertices of the Au cores is broken, of which one vertex in the Au cores can be connected with two staple motifs, which does not follow the “divide-and-protect” model. a9 has an irregular pentahedral (Au5) core covered by three dimer motifs. Such a Au5 2e-superatom has not been viewed in the experimentally produced Au-L clusters. From a10 to a12, each compound contains a Au6 octahedron protected by four motifs. Such a Au6 2e-superatom has not been observed experimentally in ligand-protected Au nanoclusters.
$\text{Au}_2-(\text{AuSH})_n$ ($n = 1-12$). The putative global minima (GM) of $\text{Au}_2-(\text{AuSH})_n$ ($n = 1-12$) clusters are shown in Figure 2a. When $n = 1-9$, their structural frameworks are the same as those of a1 to a9 discussed above. The Au cores are triangle (Au_3) from b1 to b4 and tetrahedron (Au_4) from b5 to b9. For $\text{Au}_8(\text{AuSH})_6$ (b6), two trimer motifs wrap around two faces of the tetrahedron and connect two vertices, which agrees with the prediction in ref 42. b8 has a Au_4 core with two interlocking trimer motifs and in a high D_{2h} symmetry, which is in agreement with the structure predicted in ref 41. $\text{Au}_{12}(\text{AuSH})_{10}$ (b10) is also the tetrahedral core (Au_4) surrounded by two $\text{Au}_4(\text{SH})_5$ motifs. b11 can be viewed as an octahedral (Au_6) core stapled by three dimer units and one monomer unit, where two vertices of the octahedron are overprotected. b12 consists of a tetrahedral (Au_4) core protected by one $-\text{Au}_3(\text{SH})_9$ and one $-\text{Au}_5(\text{SH})_{12}$ motif, where the pattern for the interlocking staple motifs is similar to that in the $\text{Au}_{24}(\text{SR})_{20}$ cluster.

$\text{Au}_2-(\text{AuP})_n$ ($n = 1-12$). The most stable geometries of $\text{Au}_2-(\text{AuP})_n$ ($n = 1-12$) clusters are shown in Figure 3a. Different from L = Cl and SH, the Au_3 triangular core is broken at $n = 1$ (d1). The GM structures are quasiplanar up to $n = 5$ (one Au_3 triangular core protected by one staple motif), where there is a long staple motif ($-\text{PH}_2-(\text{AuPH}_2)_4$) in d5. When $n = 6-12$, each structure follows the “divide-and-protect” model which contains a tetrahedral Au_4 core and an outside protective layer of two staple motifs. d6 is a tetrahedron core (Au_4) protected by two dimer units in C_2v symmetry. d7 is covered by one dimer and one trimer motif. d8 is a tetrahedron core protected by two interlocking trimer units in C_2v symmetry. d9 is a Au_4 core stapled by one $\text{Au}_4(\text{PH}_2)_4$ and one $\text{Au}_4(\text{PH}_2)_5$ oligomer. d10 is protected by two $-\text{PH}_2(\text{AuPH}_2)_4$ staple motifs. d11 is a Au_4 core covered by one trimer and one long $-\text{PH}_2(\text{AuPH}_2)_6$ unit. d12 is a tetrahedral core stapled by one trimer and one long $-\text{PH}_2(\text{AuPH}_2)_6$ motif. We find that the experimentally produced $\text{Au}_{24}(\text{SR})_{20}$ cluster can be viewed as two Au_4 cores protected by four interlocking motifs, and d12

Figure 2. Putative global minima of (a) $\text{Au}_2-(\text{AuSH})_n$ and (b) $\text{Au}_2-(\text{AuSCH}_3)_n$ ($n = 1-12$) clusters, and the symmetries are labeled. Au, yellow; S, blue; C, black; H, white. The superatomic Au cores are shown in pink.

Figure 3. Putative global minima of (a) $\text{Au}_2-(\text{AuPH}_2)_n$ and (b) $\text{Au}_2-(\text{AuP(CH}_3)_2)_n$ ($n = 1-12$) clusters, and the symmetries are labeled. Au, yellow; P, orange; C, black; H, white. The superatomic Au cores are shown in pink.
has the same structure feature with one-half of the Au24(SR)20 cluster.

\[\text{Au}_2^-(\text{AuP(CH}_3)_2)_n \] (n = 1–12). The putative global minima are shown in Figure 3b. As the ligand changed from PH3 to P(CH3)3, the skeleton of the structures does not change at n = 1–4. The Au core in e5 is a tetrahedron (Au4), but that in d5 is a triangle (Au3) core. At n = 6–12, the Au–P bond lengths of Au-L nanoclusters. These compounds both have Au core (Au4, Au5, or Au6) covered by one to four staple motifs except Au2-(AuPH2) and Au2-(AuP(CH3)2) clusters. When cluster size is small, the Au cores are quasi-planar, and they just follow the superatom model but disagree with the “divide-and-protect” model. The GM structures change from quasi-planar to three-dimensional with cluster size increasing. Ligand effects are also very important for Au-L clusters. The structural frameworks of Au2-(AuP(CH3)2)n clusters are very similar to Au2-(AuSH)n clusters, so we can use SH to replace SR in DFT prediction for lower computational costs. Similarly, we can use PH2 to replace P(CH3)2 in structural predictions. For L = Cl, the Au cores of Au2-(AuCl)n clusters tend to be large with cluster size increasing, and the length of the staple motifs of the clusters is preferred to be short (the longest staple is trimmer). The “divide-and-protect” model is not maintained strictly in the Au–Cl structures due to the high polarity of Au–Cl bonds and the strong attraction of Au–Au contacts. However, for L = PH2 and P(CH3)2, the Au cores in the clusters tend to be Au4, following strictly the “divide-and-protect” model at large cluster sizes, and the length of staple motifs can be very long twining around the Au core. The reason may be that the Au–P bonds are of less polarity but the Au–Au contact is weaker compared to those in the Au–Cl system. For L = SH and SCH3, structure features of the clusters fall in between those of L = Cl and L = PH2, P(CH3)2, and the polarity of Au–S bonds and strength of Au–Au contacts in the Au–S system are in between.

B. Stability. In this part, the atomization energies (average interaction energy per Au-L formula unit in the cluster, \[E_{at} = \frac{1}{2n} \sum_{i=1}^{n} E_{Au-L} \]) of \(n \) Au-L clusters, is a four-parameter fitting of the GMs: \[E_{at} = a + b n^{1/3} + c n^{2/3} + d n \] of the clusters is calculated. The R groups do not affect much of the structure feature of the compounds, thus we just calculated the energies of Au2-(AuCl)n, Au2-(AuSH)n, and Au2-(AuPH2)n clusters. To show the relative stability of the global minimum structures at different cluster sizes, the energies \(E_{at} = E_{ave} \) of the GMs are depicted in Figure 4 in a manner that emphasizes particular stable minima or “magic numbers”. In such a curve, upward peaks represent that the atomization energy is higher than the average, and the structure is more stable.

For L = Cl, Figure 4a shows upward peaks at \(n = 2, 5, 8, \) and 11, indicating higher stability of Au2-(AuCl)2, Au2-(AuCl)5, Au2-(AuCl)8, and Au2-(AuCl)11 compared to other sizes. For L = SH, as shown in Figure 4b, there are obvious upward peaks at \(n = 2, 6 \), indicating relatively more stability of Au2-(AuSH)2 and Au2-(AuSH)6 clusters. For L = PH2, the red curve shows that Au2-(AuPH2)2, Au2-(AuPH2)6, and Au2-(AuPH2)12 have not been observed experimentally in Au-L nanoclusters. From the above analysis, we can see that each of these Au-L clusters has one Au core (Au4, Au5, or Au6) covered by one to four staple motifs except Au2-(AuPH2) and Au2-(AuP(CH3)2) clusters. When cluster size is small, the structures are quasi-planar, and they just follow the superatom model but disagree with the “divide-and-protect” model. The GM structures change from quasi-planar to three-dimensional with cluster size increasing. Ligand effects are also very important for Au-L clusters. The structural frameworks of Au2-(AuP(CH3)2)n clusters are very similar to Au2-(AuSH)n clusters, so we can use SH to replace SR in DFT prediction for lower computational costs. Similarly, we can use PH2 to replace P(CH3)2 in structural predictions. For L = Cl, the Au cores of Au2-(AuCl)n clusters tend to be large with cluster size increasing, and the length of staple motifs of the clusters is preferred to be short (the longest staple is trimmer). The “divide-and-protect” model is not maintained strictly in the Au–Cl structures due to the high polarity of Au–Cl bonds and the strong attraction of Au–Au contacts. However, for L = PH2 and P(CH3)2, the Au cores in the clusters tend to be Au4, following strictly the “divide-and-protect” model at large cluster sizes, and the length of staple motifs can be very long twining around the Au core. The reason may be that the Au–P bonds are of less polarity but the Au–Au contact is weaker compared to those in the Au–Cl system. For L = SH and SCH3, structure features of the clusters fall in between those of L = Cl and L = PH2, P(CH3)2, and the polarity of Au–S bonds and strength of Au–Au contacts in the Au–S system are in between.

This indicates that Au2-(AuCl)2, Au2-(AuCl)5, and Au2-(AuCl)8, and Au2-(AuSH)2, Au2-(AuSH)5, and Au2-(AuSH)8 are of less polarity but the Au–Au contacts are much of the structure feature of the compounds, thus we just calculated the energies of Au2-(AuCl)n, Au2-(AuSH)n, and Au2-(AuPH2)n clusters. To show the relative stability of the global minimum structures at different cluster sizes, the energies \(E_{at} = E_{ave} \) of the GMs are depicted in Figure 4 in a manner that emphasizes particular stable minima or “magic numbers”. In such a curve, upward peaks represent that the atomization energy is higher than the average, and the structure is more stable.

Figure 4. Plots of the energetic gaps (\(E_{at} - E_{ave} \)) of (a) Au2-(AuCl)n, (b) Au2-(AuSH)n, and (c) Au2-(AuPH2)n clusters as a function of cluster sizes \(n \), where \(E_{at} \) is the atomization energy (\(E_{at} = [E_{Au2-(AuL)n} - (n + 2)E_{Au} - (n+1)E_{L}] \)) and \(E_{ave} \) is a four-parameter fitting of the GMs (\(E_{ave} = a + b n^{1/3} + c n^{2/3} + d n \)). Upward peaks represent that the atomization energy is higher than the average, and the structure is more stable.

C. Aromaticity. Aromaticity is a concept invented to account for the unusual stability of an important class of organic molecules. The nucleus-independent chemical shift (NICS) value is the most widely used as a quantitative measure for aromaticity (negative NICS values mean aromaticity, and positive NICS values mean antiaromaticity). In 2001, Boldyrev and Wang et al. reported experimental and theoretical evidence of aromaticity in all-metal systems (Al\(_3^2\)-). NICS values at the geometric centers of the rings [NICS(0)] were calculated, which are better suited for evaluation of the aromaticity for all-metal species.

Delocalization is always associated with aromaticity, and the delocalized \(n \)-\(2e \) bonds should also be aromatic, so we calculated the NICS(0) values of superatoms of Au2-(AuCl)n, Au2-(AuSH)n, and Au2-(AuPH2)n clusters at the TPSS/6-31G*+Lan2DZ level. Figure 5 plots the NICS(0) values as a function of the cluster sizes. For each cluster, the calculated NICS(0) values are largely negative (\(-40.3 \) to \(-22.1 \) ppm), suggesting very high aromaticity of the superatoms. Besides, the aromaticity of Au4 superatoms is stronger than those of Au6 superatoms. Interestingly, it is found that higher Au–Au aurophilic interaction may result in lower aromaticity. For example, Au2-(AuL)n is a Au4 core surrounded by two interlocking staple motifs with high Au–Au aurophilic interaction, and the aromaticity at \(n = 8 \) is much lower than that at \(n = 7 \) and 6. For quasiplanar structures, the Au–Au aurophobic interaction of a3, b3, and d4 is high, and the aromaticity is lower than that of a4, b4, and d5, respectively. This indicates that Au–Au aurophobic interaction is a kind of non-Lewis interaction, which can affect the feature of the 2e-supera.
the counts of magic number 2 in the superatom model. To give a direct evidence of the existence of these superatoms, the adaptive natural density partitioning (AdNDP) is used to analyze the chemical bonding. This method was developed by Zubarev and Boldyrev and used to analyze chemical bonding in organic molecules, boron clusters, and Au clusters. The AdNDP method is based on the concept of the electron pair as the main element of chemical bonding models, which recovers both Lewis bonding elements (1c-2e and 2c-2e objects) and delocalized bonding elements (nc-2e).

The results of nc-2e delocalized superatomic orbitals in (a) Au2-(AuCl)n, (b) Au2-(AuSH)n, and (c) Au2-(AuPH2)n clusters are displayed in Figure 6. AdNDP analysis reveals one 2c−2e bond in a1; one 3c−2e bond in a1 to a6, b1 to b6, and d2 to d5; one 4c−2e bond in a5 to a8, b5 to b8, b10 and b12, and d6 to d12; one 5c−2e bond in a9 and b9; and one 6c−2e bond in a10 to a12 and b11. The results of AdNDP chemical bonding confirm the existence of superatoms in our Au-L nanocluster systems. Moreover, we note the occupancy numbers (ONs) are of a wide difference of these compounds. Similar to aromaticity, the ONs of the delocalized superatomic 2e-bonding can also be affected by aurophilic interactions, in which higher Au⋯Au aurophilic interactions may result in lower ONs. For example, the ON at n = 8 is obviously lower than that at n = 6 and 7. Besides, the ON of a3, b3, and d4 is obviously higher than a4, b4, and d5, respectively. This indicates that although Au⋯Au aurophilic interaction is a kind of non-Lewis interaction it is rather strong and can clearly affect the superatomic 2e-bonding.

4. CONCLUSIONS

In this work, the superatomic structures of Au2-(AuL)n (L = Cl, SH, SCH3, PH2, P(CH3)2) clusters have been studied. These compounds have two free valence electrons in the gold core, which agree with the counts of magic number 2 in the superatom model. The putative GM structures of these clusters are investigated using the combination of genetic algorithm (GA) and DFT method, relying on TPSS functional. Each of these Au-L clusters has one Au core (Au3, Au4, Au5, or Au6) covered by one to four staple motifs except Au2-AuPH2 and Au2-AuP(CH3)2. The GM structures change from (quasi)-planar to three-dimensional with cluster size increasing, and these compounds basically follow the “divide-and-protect” model. Ligand effects of the structures are also analysed. For L = Cl, because the polarity of the Au⋯Cl bond is high and aurophilic interaction is strong, the Au cores tend to be large with increasing cluster size, and the length of the staple motifs is preferred to be short. For L = PR2, the picture is reversed because of the low polarity of the Au⋯P bond and weak aurophilic interaction. Direct evidence for the existence of 2e-superatoms is given by chemical bonding analysis using the AdNDP method. The aromatic properties of the superatoms have been explored by the NICS method, which indicates that the 2e-superatoms are highly aromatic. The Au⋯Au aurophilic interaction may also affect the superatomic 2e-bonding.
interaction is a kind of non-Lewis interaction; however, it can clearly weaken the aromaticity and ONs of the superatomic 2e-bonding. This work gives a direct and overall view of size evolution of 2e-superautos in Au-L clusters, which gives some new perspectives in terms of how Au-L nanoclusters change with increasing cluster size.

■ ASSOCIATED CONTENT

* Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b10612.

Structures and energies of the located global minimum and low-energy isomers of

\[\text{Au}_{12}-(\text{AuL})_{1-12} \]

clusters, with L = CI, SH, S\text{CH}_2\text{Ph}, and P(\text{CH}_3)\text{CH}_2, respectively (PDF)

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: clj@ustc.edu.

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work is financed by the National Natural Science Foundation of China (21273008, 21573001) and by the CSC. The calculations were carried out at the High-Performance Computing Center of Anhui University.

■ REFERENCES

