Adsorption properties of pyramidal superatomic molecules based on the structural framework of the Au$_{20}$ cluster†

Qiman Liu,†a*ab Manli Zhang,a Dawen Zhang,a Yunhu Hu,a Qiyong Zhu,a and Longjiu Chengb,b*

The pyramidal Au$_{20}$ cluster is a highly inert and stable superatomic molecule, but it is not suitable as a potential catalyst for covalent bond activations, e.g., CO oxidation reaction. Herein, the adsorption and electronic properties of CO molecules on various pyramidal clusters based on the structural framework of Au$_{20}$ are investigated using density functional theory. According to the SVB model, we constructed isoelectronic superatomic molecules with different pyramid configurations by replacing the vertex atoms of the Au$_{20}$ using metal M atoms (M = Li, Be, Ni, Cu, and Zn group atoms). After the CO molecules are adsorbed on the vertex atoms of these metal clusters, we analyzed the CO adsorption energies, C–O bond stretching frequencies, and electronic properties of the adsorption structures. It was found that the adsorption of CO molecules results in minimal changes in the parent geometries of the pyramidal clusters, and most adsorption structures are consistent with the geometry of CO adsorption at the vertex site of the Au$_{20}$ cluster. There are significant red shifts when CO molecules are adsorbed on the Ni/Pd/Pt atoms of the clusters, and their CO adsorption energies were also greater. The molecular orbitals and density of states reveal that there are overlaps between the frontier orbitals of the clusters and CO, and the electronic structure of NiAu$_{19}$. is not sensitive to CO. The ETS-NOCV analysis shows that the increase in the density of the bonding area caused by the orbital interactions between the fragments is higher than the decrease in the density of the bonding area caused by Pauli repulsion, presenting that the direction of charge flow in the deformation density is from CO clusters. From energy decomposition analysis (EDA) and NPA charge, we find a predominant covalent nature of the contributions in CO–M interactions (σ-donation). Our study indicates that the SVB model provides a new direction to expand the superatomic catalysts from the superatom clusters, which also provides inference for the extension of the single atom catalysis.

1. Introduction

Considering the global demands for new energy materials, improved methods to reduce pollution, advanced methods for the production of fine chemicals, sensors for detecting harmful substances, and new methods for evaluating medical and biological problems, it is clear that catalysis affects all of these, which are very basic subjects of scientific research.1–6 Nowadays, numerous metal clusters are being studied with atomic accuracy, which have attracted widespread research interest recently in the search for significant catalytic reactions with high catalytic activities and unique selectivity.1,4–8 After the earlier findings that Au clusters have fantastic activities for CO oxidation reactions, several studies have been dedicated to reveal catalytic/adsorption reactions of O$_2$ and CO molecules on Au clusters that are isolated in the gas phases or supported on the surfaces of metallic oxides.9–15 Gold clusters that show propensity for O$_2$ adsorption can also adsorb CO molecules at the same time, thus indicating them as possible catalyst models for the CO oxidation reactions.10,16–18 Among them, the chemisorption and dissociation of gas molecules on the gold surfaces are the focus.11,18–20 It has been confirmed that CO molecules have a propensity to be adsorbed on low-coordinated gold atoms, where the carbon atoms bind to Au atoms at the peripheries of the clusters.21–23 For example, Zhai and Wang found strong chemisorption of few CO molecules on

Received 4th April 2022, Accepted 2nd May 2022
DOI: 10.1039/d2cp01552h
rsc.li/pccp

†Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d2cp01552h
top of low-coordinated atoms in anions of Au clusters using photoelectron spectroscopy combined with density functional theory (DFT).24 Lopez et al. attributed the origins of catalytic activities to the abundances of low-coordinated Au on the cluster surfaces and interactions between the clusters and substrates.25

Structures of metal clusters are critical for investigating molecular adsorption. Interestingly, the naked neutral Au20 tetrahedral cluster, which showed high stability in the gas phase, is like a fragment of the fcc (face-centered cubic) bulk gold, which was verified by photoelectron spectroscopy and theoretical calculations.26 Cheng et al. suggested that Au20 can be considered as a superatomic molecule using chemical bonding analyses, where a molecule-like electronic structure of the pyramidal cluster is achieved by four D3h hybridization orbits of superatomic Au16 bonding with four vertical Au atoms.27 Recently, this system was reanalyzed by Muñoz-Castro et al. Their computation results indicated that Au20 was described as the integration of concentric structures, which is depicted by Au16−Au4 with a considerable sharing of the electron densities between the different concentric structures, where the superatomic Au16 core shares electron density with the four capping gold atoms, further verifying that the tetrahedral cluster is a superatomic molecule.28 Such magic configuration makes all gold atoms appear on the surface of the cluster, where each of four triangular planes of the tetrahedron represents a (111) lattice surface of the bulk Au solids with different coordination environments (adsorption sites, involving edge, inner, and vertex).21,29–33

Atomically precise clusters should be ideal catalyst models because they have well-defined structures and uncoordinated surface sites as the active centers. Fortunately, the pyramidal Au20 cluster provides a unique opportunity for such ideal model systems. However, it was well known that the Au20 cluster only has weak interactions with CO molecules and hardly interacts with O2.21 The presence of other metal atoms in gold clusters provide convenient opportunities to modulate the geometric and electronic characteristics of corresponding Au-based clusters. Consequently, their reactive activations can be altered in desirable manners. For example, the icosahedral Au12Ag cluster showed enhancement in CO adsorption in comparison to that of the pure gold cluster.34 The presence of alkali metal atoms such as Li and Na, as well as transition atoms such as Ti, V, Pd, and Pt can dramatically enhance the chemical reactivity of the parent Au clusters toward the adsorption of CO and O2 molecules.7,35–37 Tapan reported a systematic research on the structural properties of one Li atom substitution in Au20 and found that Li substitution generates a noteworthy increase in the adsorption energy of the CO molecule in Au19Li than that of pyramidal Au20.32 Subsequently, they also reported that the low coordinated vertex-Pt atom site of Au19Pt clusters is much more reactive than Au atom sites.38

There are some specific clusters, termed as superatoms, which can mimic the chemical behaviors of single atoms or a group elements in the periodic table of elements.39–41 In fact, the existing idea of the theory depends on achieving stabilities through the electronic shell closures of paired electrons. A well-known example of Al13, with 39 valence electrons, needs one extra electron to close the 2p5 shells and behave as a halogen atom.42 The concept of superatomic molecules (SVB model) proposed by Cheng and Yang is a quite recent and interesting field that has been highly successful in understanding the stability of clusters and interactions between superatoms.43 In this model, superatoms could form delocalized super bonds by sharing both valence pairs and nuclei with other superatoms or atoms, which gives new insights into the structures of nonspherical clusters.

Adsorption is the basic behavior of the interface. This process has an impact on the atomic structure, electronic structure, catalysis/photoelectric, and other properties of the interface; thus, it is a very basic and important problem. Moreover, the SVB model provides a new direction to expand the superatomic catalyst from superatom clusters, which can be used as an extension of single atom catalysis. Hence, the adsorption properties of CO molecules on various pyramidal clusters based on the structural framework of Au20 were investigated using DFT. According to the SVB model, we construct isoelectronic superatomic molecules with different pyramid configurations by replacing the vertex atoms of the pyramidal Au20 using different metal M atoms (M = Li, Be, Ni, Cu, and Zn group atoms). After CO molecules are adsorbed on the vertex atoms of these metal clusters, the CO adsorption energies, C=O stretching frequencies, geometries, and electronic properties of adsorption structures are analyzed.

2. Computational methods and details

The optimization of the cluster structures and their subsequent calculations was carried out using the non-empirical hybrid GGA functional PBE0 level of theory with the Def2-TZVP basis set.14,44 The basis set is used in connection with the relativistic effective core potential for heavy metal atoms. The structure energies of pyramidal clusters reported herein considered the contributions of zero-point energy (ZPE) corrections. The vibrational frequencies were verified to guarantee that our structures belong to the true local minima at the same theoretical level. The calculations of the electrostatic potential V(r) are performed to analyze the distributions of atom charges on the surfaces of the clusters, and these methods are rigorously defined from the ref. 46. All computations are realized using the GAUSSIAN 09 package.47 The visualizations of the molecular orbitals (MOs) are performed based on the MOLEKEL 5.4 program.48 The energy decomposition analysis (EDA) from the symmetry-adapted perturbation theory (SAPT) is performed using the Psi4 package, and the lowest-order expansion in the SAPT is given by SAPT0.49,50

3. Results and discussion

3.1 Adsorption properties of pyramidal Au20 clusters

Our optimized Au20 structure agrees with previous works.26,28 Based on the SVB model, it has been confirmed that the cluster
can be viewed as a super CH₄ molecule analogue in the bonding framework. In fact, removing any one of its four external Au atoms, the remaining Au₁₉ is in Cᵥ symmetry and exposes a bonding site. Here, it is very important to mention that the globally minimal structure of the neutral Au₁₉ cluster has been reported to be a truncated pyramid.¹¹ Moreover, earlier, Fielicke and coworkers found that the reduction in the symmetry when a vertex Au atom is removed from the tetrahedral Au₂₀ cluster can be directly characterized in the vibrational spectrum of Au₁₁₉.²² The electrostatic potential surface V(r) of the Au₂₀ cluster (Fig. 1a) shows that four vertex Au atoms have positive charge excesses with four significant σ-hole regions, while the negative charge excesses are distributed in other gold atoms. These results indicate that vertex Au atoms are active sites for both charge-controlled and frontier-controlled interactions with some electron donors, e.g., CO and NH₃ molecules. For instance, the negatively charged site of C atom in the CO molecule adsorbs at the vertex Au atoms for the subsequent formation of adducts by electrostatic interactions.

To obtain the initial adsorption structures of the cluster-CO complexes, we placed a single CO molecule in various sorts of geometries have imaginary frequencies or cannot converge to stable structures. The three stable structures of the Au₂₀–CO complexes with the singlet state are shown in Fig. 1b, and the detailed information on the interactions of the CO molecule with the vertex and edge and surface Au atoms (v-site, e-site, and s-site isomers). The v-site isomer is the global minimum. It can be seen that the adsorption of the CO molecule generates minimal changes in the Au₂₀ cluster. (b) Selected optimized geometries of the pyramidal Au₂₀–CO system. Labeled are the energies (eV) relative to the global minimum.

The Au₂₀ delocalize toward the antibonding σ-orbitals of the CO molecule. However, it is clear that the pyramidal Au₂₀ has very weak interactions with CO, where the interactions of the σ-donation coordinations contributed to values of Eₑ. Overall, Au₂₀ is a highly inert and stable molecule, but it is not suitable as a potential catalyst for covalent bond activation.

3.2 Adsorption characters of pyramidal superatomic molecules

Although gas molecules (e.g., CO and O₂) weakly interact with the free Au₁₉ cluster and are not very effective in putting into practice CO gas oxidation, it has been confirmed that low-coordinated Au sites on the surface of the pyramidal cluster play a prominent role in many other catalytic reactions. The most active sites (vertex sites) for the Au₂₀ superatom have been identified; thus enlightening the rational design of pyramidal nanostructures with special sites based on the structural framework of Au₁₉. It is well known that the chemical activity of the Au clusters can be tuned by the way of doping another atom. Here, our purpose is to study the effects of local environments on CO adsorption; thus, the adsorption of doped structures is only studied on the top Au sites. Compared to the pure Au₂₀ cluster, metal clusters with two types of atoms have very uneven charge distributions by the doping strategy, resulting in the formation of different Lewis acid and Lewis base sites that can make clusters reactive.

As mentioned before, the vertex sites of the Au₁₉ cluster have been confirmed to be an excellent model for studying the adsorption behaviors of CO molecules compared to the Au atoms at other sites. Our main purpose is to construct isoelectronic superatomic molecules in pyramid configurations according to the guidance of the SVB theory. Hence, we need to know the correct geometric structures of these systems. We retrieved the relevant literatures and the periodic table of elements to find other metal atoms that have isoelectrons with the Au atom. The calculations of the response properties are carried out by employing the optimized structures of the Au₁₉M clusters where the structures are generated from the tetrahedral geometry of the Au₁₉ cluster by replacing one vertex Au atom by other metal M atoms (M = Li, Be, Ni, Cu, and Zn groups). Vibration frequencies analyses indicated that all the optimized structures indeed correspond to real local minima on the potential energy surfaces. These pyramidal structures of the 20e Au₁₉M clusters satisfy the magic numbers of the SVB model.

To get the initial adsorption structures of [Au₁₉M]–CO, we placed a single CO molecule in the vertex sites of the pyramidal frameworks. All adsorption structures of the Au₁₉–M clusters with CO molecules are then optimized at the theoretical level of

![Fig. 1](a) The optimized structure and electrostatic potential surface of the Au₂₀ cluster. (b) Selected optimized geometries of the pyramidal Au₂₀–CO system. Labeled are the energies (eV) relative to the global minimum.

<table>
<thead>
<tr>
<th>Sites</th>
<th>r(C–O) (Å)</th>
<th>r(Au–C) (Å)</th>
<th>Eₑ (eV)</th>
<th>Eᵥ (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v-site</td>
<td>1.125</td>
<td>2.00</td>
<td>2217.15</td>
<td>326.29</td>
</tr>
<tr>
<td>e-site</td>
<td>1.127</td>
<td>2.04</td>
<td>2186.08</td>
<td>291.38</td>
</tr>
<tr>
<td>s-site</td>
<td>1.126</td>
<td>2.02</td>
<td>2205.33</td>
<td>281.62</td>
</tr>
</tbody>
</table>

This journal is © the Owner Societies 2022.
PBE0/Def2-TZVP for different spin multiplicities (singlet and triplet) to find the spin multiplicities of the ground states. After geometry optimizations, we also calculated their vibrational frequencies to verify the stabilities. The geometries of CO-adsorbed Au$_{19}$–M clusters that are identified for the singlet spin states are displayed in Fig. 2. We can also find that the adsorption of CO molecules causes very minimal changes in the parent structures, due to which these superatomic molecules have very high electronic stabilities. Among them, most adsorption structures are consistent with the geometry structure of CO adsorption at the vertex site of the Au$_{20}$ cluster. In comparison, there are significant shifts when CO molecule is adsorbed on the Ni group atoms. In brief, the adsorbed Li, Be, and Zn group atoms have linear (perpendicular) geometries, while Ni group atoms change to bent geometries as a result of the strong C–Ni interaction. Moreover, we found that metal atoms with different atomic radii have no obvious effects on the alloy clusters maintaining the pyramid configurations. In general, only judging from the geometric structures are the results we want.

Fig. 3 showed the C–O stretching frequencies of the adsorption structures. In these complexes, the vibrational frequencies of the CO molecules are quite different from that of free CO (2239.79 cm$^{-1}$). As we know, the vertex Li, Be, and Zn group atoms contributed s valence-shell electrons to the pyramid structures, allowing them to satisfy the stable electronic structures of the superatomic molecule model. These metals typically engage in chemical bonding through their ns valence orbitals, where n is the principal quantum number. When the CO molecule binds to these vertex metal atoms, the major interactions are the σ-donation coordination from the 5s orbital of the CO molecule to the empty valence orbitals of the alloy clusters, and the p–π conjugated interaction leads to their vibrational frequencies in the 1, 2, and 5 rows showing very significant increases. However, the situations in the Ni group atoms are very different. For example, the CO vibration frequency of the [NiAu$_{19}$]–CO (2073.39 cm$^{-1}$) is less than that of the free CO. This is because that 5d lone pair electrons of the Ni atom of the superatom molecule delocalize toward the antibonding π orbitals of the CO molecule. Overall, the σ-donation of the electron density from CO to the metal and p–π backdonation from the metal to CO takes place. These situations have been also summarized in previous works. 53–55 For example, Professor Johnston’ team elaborated on the influence of Pd-doping on the interactions between CO molecules and small cationic gold clusters.53 Other molecules with multiple bonds (e.g., CN and N$_2$) are adsorbed on the vertex sites of these pyramidal clusters, and N–N bond lengths are also slightly elongated, while C–N bond lengths are in accordance with isolated CN (Fig. S1, ESI†).

The E_{ae} values measure the magnitude of the adsorption energies of the CO molecules to the metal clusters, and are given by the following equation: $E_{ae} = E_{cluster-CO} - E_{CO}$, where $E_{cluster-CO}$ is the total energy of the adsorbed systems, while $E_{cluster}$ and E_{CO} are the total energies of the clusters and the isolated CO molecule, respectively. The calculated results for the E_{ae} values are shown in Fig. 4, and it can be seen from this figure that the results for E_{ae} values match quite well with those of the frequency analyses of the previous paragraph. The E_{ae} values of CO molecules that bind with the Li and Zn group atoms are relatively small (<0.5 eV),
and the E_{ad} values of CO–Be are in the range of (0.5–1.0) eV. It is surprising that the E_{ad} values of the CO molecules that bind with Ni group atoms are in the range of 1.5–2.0 eV, which are in the category of the covalent bond. Moreover, we found that the E_{ad} values are independent of the atomic radii of the M atoms (M = Li, Be, Ni, Cu, and Zn groups).

The thermal stabilities of the selected adsorption structures are were carried out using the *ab initio* molecular dynamics (AIMD) simulations. The simulations lasted for 10 ps with a time step of 2.0 fs at initial temperatures of 300 K and 500 K, respectively. Snapshots were extracted every 20 fs for demonstration and the snapshots after a 10 ps AIMD simulation are plotted. Details for the AIMD simulations are shown in Fig. S2 (ESI†). It can be observed that the adsorption structures maintain integrity at a temperature of 500 K, suggesting their good thermal stabilities in a high temperature environment.

3.3 Electronic properties of the adsorption structures

The pyramidal 20e metal clusters have molecule-like electronic structures, and the SVB model clearly describes their high electronic stabilities, which can be seen in the many references. Through heteronuclear metal atom doping, the original charge distributions are still broken even though the structural framework of the parent Au$_{20}$ is retained, and the obtained cluster structures form new adsorption sites. For these systems, CO adsorption is very weak on metal atoms with s valence-shell electrons, but it is very strong on the vertex Ni group atoms. More importantly, for the research scopes of the present paper, the SVB model is used as a theoretical guidance to search for novel catalytic sites, meaning that the pyramidal clusters need maintain to the integrities of their own electronic properties. It is natural to try to explore why the CO adsorption energies of metal clusters vary with different compositions, and to determine whether there are correlations between the valence-shell electrons and adsorption energies. In order to get deeper insights into the electronic properties that play a role in the adsorption of CO molecule, we analyzed the molecular orbitals (MOs) and density of states (DOS) of NiAu$_{19}^-$ and [NiAu$_{19}^-$]–CO structures, respectively.

Fig. 5a showed the frontier molecular orbits of the NiAu$_{19}^-$ cluster. The electron distributions of the first six filled orbitals (HOMO, HOMO–1, HOMO–2, HOMO–3, HOMO–4, HOMO–5) are mainly localized near the Ni atom. However, the electron clouds of its LUMO orbit are far away from the Ni atom, meaning that its empty valence orbits can be filled by the one lone pair electrons of the CO molecule. Such charge-flow tendencies, from ligand molecules to metal surfaces, also coincide with previous reports. When a CO molecule is adsorbed on the NiAu$_{19}^-$ cluster, there are overlaps between the frontier orbitals of gold nanoalloys and the molecules. For comparison, we observe from Fig. 5b that the HOMO and HOMO–1 orbits of the [NiAu$_{19}^-$]–CO structure show the σ bonding orbit between the C and Ni atoms. The HOMO–2, HOMO–3, and HOMO–4 orbits show a back-donation interaction from the occupied d states of Ni to the unoccupied 2π MO of CO. In brief, the donation interactions still play much more important roles than back transfers, and there exist some charge flows from CO to the Ni metal.

The above observations are further confirmed by the analyses of the density of states (DOS). It is very clear in Fig. 6 that the HOMO and LUMO orbit energies change very little when a CO molecule is adsorbed on the NiAu$_{19}^-$ cluster, respectively. The NiAu$_{19}^-$ cluster has a certain contribution to the total DOS of the studied complex near the HOMO/LUMO energy level. This result reveals that the electronic structure of the NiAu$_{19}^-$ anion is not sensitive toward the CO molecule and is a good candidate for catalysis.

ETS-NOCV analysis was carried out using the Multiwfn3.8 program, which is commonly used to examine chemical bonding between fragments. Here, the two fragments are given...
by a single CO molecule and a pyramidal cluster. From the graphs of $\Delta \rho^{\text{Pauli}}$ with large blue isosurfaces (Fig. 7), the Pauli repulsion makes the electron drop significantly in the regions between Au/Ni and CO. In contrast, there are large green areas between Au/Ni and CO in the $\Delta \rho^{\text{Orbital}}$ diagrams, reflecting a significant increase in the electron density of the bonding regions due to orbital interactions. From the perspective of the total deformation density, it is obvious that the increase in the density of the bonding area caused by the orbital interactions is higher than the decrease in the density of the bonding area caused by the Pauli repulsion. Therefore, the relationship between Au/Ni and C in the total deformation density diagram is obviously positive, presenting that the direction of charge flow in the deformation density is from CO \rightarrow clusters (σ-donation).

To analyze the nature and magnitude of CO \cdots M interactions, we considered energy decomposition analysis (EDA), which computes the interaction energy (Δ_{int}) directly via a perturbative approach (SAPT0), involving perturbative expansions of fluctuation and interaction potentials of the fragments. The SAPT0 is given by $\Delta_{\text{int}} = \Delta_{\text{elst}} + \Delta_{\text{exch}} + \Delta_{\text{ind}} + \Delta_{\text{disp}}$, where Δ_{elst} is the classical electrostatic interaction term between the fragments; Δ_{exch} is the repulsive term associated with Pauli repulsion; Δ_{ind} is the inductive term; and Δ_{disp} is the term that corresponds to the long-range dispersion. Table 2 shows negative Δ_{int} values of Au$_{20}$–CO and [Au$_{19}$Ni]–CO, which are consistent with the above EDA analysis results, indicating that the systems from the fragments are thermodynamically favored. A further dissection of Δ_{int} to chemical meaningful terms within the EDA shows that the nature of the Au/Ni–C interactions in Au$_{20}$–CO and [Au$_{19}$Ni]–CO, with (51–62%) of electrostatic characteristics, followed by Δ_{ind} contributions (\sim 30%) and small Δ_{disp} (\leq16%) contributions. Based on the results, the Au/Ni–C interactions between the fragments are dominated by Δ_{elst} (electrostatic attractions) and Δ_{ind} (orbital interactions). Moreover, the NPA charge of the selected structures was further analyzed and listed in Table S1 (ESI†). The results show that CO loses a fraction of its charge and this is transferred to the pyramidal clusters, which is consistent with the above EDA analysis results, also corresponding to CO as an electron donor discussed earlier.

4. Conclusions

In summary, we investigated the structural stability, adsorption, and electronic properties of various pyramidal clusters using DFT. According to the SVB model, isoelectronic superatomic molecules with different pyramid configurations by replacing
vertex Au atoms of the pyramidal Au\textsubscript{20} using metal M atoms (M = Li, Be, Ni, Cu, and Zn group atoms) are constructed. These new clusters are confirmed to be local minima on the potential energy surfaces. We further found that the adsorption of CO molecules generate very minimal changes in the parent geometries of the pyramidal clusters, and most adsorption structures are consistent with the geometry structure of CO adsorption at the vertex site of the Au\textsubscript{20} cluster. The vibrational frequency analyses indicated that there are significant red shifts when CO molecules are adsorbed on the Ni/Pd/Pt atoms, where the C-O bond lengths are slightly elongated and their vibration frequencies are less than that of free CO. Moreover, the \(E_{ae}\) values of CO molecules binding with Li and Zn group atoms are relatively small (<0.5 eV), and the \(E_{ae}\) values of CO-Be are in the range of 0.5–1.0 eV. In comparison, the \(E_{ae}\) values of CO molecules binding with Ni group atoms are in the range of 1.5–2.0 eV, which are in the category of the covalent bond. The molecular orbitals and density of states reveal that there is an overlap between the frontier orbitals of the clusters and the CO molecule, and the electronic structure of NiAu\textsubscript{19}^− is not sensitive toward the CO molecule and is a good candidate for catalysis. ETS-NOCV analysis shows that the relationship between Au/Ni and C in the total deformation density diagram is obviously positive, showing that the direction of charge flow in the deformation densities is from CO \(\rightarrow\) clusters. We also pointed out the nature and magnitude of CO-M interactions by energy decomposition analysis (from SAPT0) and NPA charge. Our work demonstrates the feasibility of the SVB model as a theoretical direction for expanding superatomic catalysts from superatom clusters.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work is financed by the National Natural Science Foundation of China (21873001) and the Key Project of Scientific Research Foundation of Anhui Province Education Department (KJ2021A0962). The calculations were carried out at the High-Performance Computing Center of Anhui University.

References

22. N. Nikbin, G. Mpourmpakis and D. G. Vlachos, A Combined DFT and Statistical Mechanics Study for the CO Oxidation

based on spherical aromaticity, Nanoscale, 2019, 11, 13227–13232.

60 X. Wu, L. Zhao and J. Jin, et al., Observation of alkaline earth complexes M(CO)₈ (M = Ca, Sr, or Ba) that mimic transition metals, Science, 2018, 361, 912–916.

