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1. Introduction

Chemistry is based on reactions. The understanding of a reac-
tion is based on the knowledge of the dominant interactions
that determine its energy landscape. Therefore, in recent years,
energy-landscape theory has emerged as a unifying language
for experimentalists and theorists to describe very different re-
actions, for example, structure formation and dynamics in pro-
tein folding, the complex behavior of glasses, and the structure
and dynamics of atomic/molecular clusters.[1–6]

The energy landscape describes how the energy of a system
changes with geometry. At a minimum, a small displacement
in any direction increases the potential energy, just as in a
basin surrounded by mountains. For complex systems, the
number of local minima on the potential energy surface (PES)
is extremely large and the dimension is generally high. As a
result, it is almost impossible to directly describe the energy
landscape. A number of methods describe the energy land-
scape indirectly. The energy landscape can be conceptualized
as a low-dimensional free-energy surface, with two axes de-
picting the energy–entropy balance associated with competing
physical processes and a ruggedness denoting the presence of
frustration that leads to specific kinetic behavior.[3] “Disconnec-
tivity graphs” were proposed to visualize the PES more quanti-
tatively,[7] and a method for describing the PES of atomic clus-
ters by using the disconnectivity graph was developed.[8] On
the other hand, the term “funnel” was introduced in describing
the situation of protein folding[9,10] and was used to describe
the PES of cluster systems.[2,8,11–15] An inherent structure net-
work (ISN) was also employed to represent the topology of
energy landscapes, with which local minima and transition
states can be represented by nodes and edges.[16] Furthermore,
Monte Carlo (MC) simulation[17] and molecular dynamics (MD)
simulation[18] were also used for understanding energy land-

scapes by viewing the residence time in various funnels and
translations between funnels.
To understand the PES of a cluster system, an efficient opti-

mization method is necessary, because in some respect the
PES consists of local minima. Geometric optimization finds
local minima (including the global minimum) on the PES. A
good optimization method is the prerequisite for description
of the energy landscape. Although the above-mentioned
methods can be used successfully to describe the energy land-
scape of many systems, for more complex systems, more effi-
cient optimization methods are still needed due to the expo-
nential growth of the search space with increasing system size.
There are two kinds of methods for cluster optimization.

One consists of modeling methods with lattice searching.[19–21]

In such methods, a large and complete lattice with a special
motif is built in advance. Then cluster optimization with lattice
searching means simply determining which lattice sites should
be occupied. In this way, a problem with continuous search
space is simplified to a combinatorial optimization problem.
Therefore, such methods can be very fast, but the disadvant-
age is that motifs not contained in the lattice cannot be found
and some motifs are difficult to model. The other comprises
stochastic global optimization methods, for example, genetic
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A newly developed unbiased structural optimization method,
named dynamic lattice searching (DLS), is proposed as an ap-
proach for conformational analysis of atomic/molecular clusters
and used in understanding the energy landscape of large clusters.
The structures of clusters are described in terms of the number of
basic tetrahedron (BT) units they contain. We found that the hit
numbers of different structural motifs in DLS runs is proportional
to the number of BTs. A parameter Tmax is defined to limit the

maximal number of atoms moved in a structural transition. Re-
sults show that Tmax is a key parameter for modulating the effi-
ciency of the DLS method and has a great influence on the hit
number of different motifs in DLS runs. Finally, the effect of po-
tential range on the conformational distribution of the (Morse)98

cluster is also discussed with different potential-range parame-
ters.
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algorithms,[22–24] the basin-hopping method,[25–27] conformation-
al space annealing,[28] hierarchical greedy algorithm (HGA),[29]

fast annealing evolutionary algorithm (FAEA),[30] random tun-
neling algorithm (RTA),[31] and adaptive immune optimization
method (AIOA).[32,33] Due to the continuity of the search space,
in most of these methods, local minimization is adopted to
turn the problem into a discrete one. In most of the stochastic
optimization methods, the search for new solutions is based
on perturbations, and local minimization is necessary after
each perturbation. For large clusters, the number of perturba-
tions to find the global minimum is generally very large, and
local optimization is always time-consuming due to the com-
plexity of the problem and the large number of parameters to
be optimized. Furthermore, due to the characteristic of the
energy landscape, going uphill is very difficult when the struc-
ture has fallen into a wide funnel. Therefore, stochastic optimi-
zation methods are generally not sufficient for large clusters or
for clusters with very rough energy landscapes, for example,
the (C60)N molecular clusters

[34–36] or the Morse clusters[12,37]

with a short potential range.[38]

To combine the advantages of the two kinds of method,
that is, fast and stochastic, the dynamic lattice searching (DLS)
method was proposed.[39,40] In DLS, a lattice-searching ap-
proach is adopted to explore new solutions around a locally
minimized starting structure instead of perturbations. Applica-
tion of the DLS method in the optimization of Lennard–Jones
(LJ) clusters and (C60)N clusters showed that it is very efficient
compared to methods based on stochastic perturbation. Start-
ing from a randomly generated structure, a metastable local
minimum (which in some sense corresponds to the lowest
local minimum in a “basin” or “funnel” in the basin-hopping
method) or the global minimum on the PES can be located
after only a few leaps. Therefore, DLS can be used as a tool for
conformational analysis of cluster systems.

2. Theory and Methods

2.1. Dynamic Lattice Searching

DLS starts from a randomly generated and locally minimized
structure of a cluster. Then all possible vacant sites around the
structure can be found. The surface atoms with higher energy
(active atoms) in the structure and the vacant sites are termed
dynamic lattice. Finally, by searching the lattice with a simple
greedy method (SGM), local minima with lower energy can be
found. By repeating the lattice-construction and lattice-search-
ing procedures until no minimum with lower energy can be
found, the global minimum can be found. Therefore, a DLS run
includes generation of the starting structure and repeated lat-
tice construction and lattice searching. In generating the start-
ing structure and lattice searching, local minimization is used
to minimize the structure to a local minimum.
In the previous version of DLS,[39] the possible vacant sites

around a cluster are located by testing from starting points in
various directions with a local minimization approach. But in
this study, the starting points for the potential vacant sites are
modeled by a geometric method. In this method, all the trian-

gular planes on the surface of a cluster structure are found
first ; then, for each triangular plane, the two points that form
a regular tetrahedron on both sides of the triangular plane are
located. If no atom is near the point (less than the unit length
of the regular tetrahedron), it is adopted as a starting point for
a vacant site, and after local minimization to the single site
(supposing an atom is in the site), the new position is taken as
a dynamic lattice site. Compared with the previous version, the
geometric method is much faster, and it promises to find all
possible vacant sites around the cluster. Note that the geomet-
ric method is related to the packing style, so for other cases,
for example, water clusters or carbon clusters, modifications
are needed. Because clusters may be distorted a little after
adding or deleting atoms, the dynamic lattice sites are not
exact, but they are accurate enough for the lattice searching
procedure. Furthermore, because the coordination number of
the atoms on the {111} face is 9, only the sites with coordina-
tion number less than 10 are taken as dynamic lattice sites in
the lattice searching procedure. On the other hand, active
atoms are defined as those atoms with higher energy in the
previous version of DLS, and a parameter Nmov is used to con-
trol the number of movable atoms. However, in this work, all
the surface atoms (generally with higher energy compared
with inner atoms) with coordination number of 9 or less are
taken as active atoms (Nmov), but the number of moved atoms
can be controlled with a parameter Tmax defined below.
Lattice searching is a key step of DLS which determines the

overall performance. Suppose the lattice size is NL and the
number of active atoms is Nmov, then the lattice search must
occupy Nmov atoms in the NL lattice sites with searching space
CNmov

NL
. For a large cluster, the search space is not small, so an

SGM is adopted to search the lattice. First, calculate the total
energy of the atoms except for the lattice sites EC, the energy
between each lattice site and the remaining cluster EDLC(i) (i=
1,2,…,NL), and the energy of each pair of lattice sites EDL ACHTUNGTRENNUNG(i,j)
(i,j=1,2,…,NL).

[39] Then a single SGM procedure can be sum-
marized as follows:

1. Randomly select Nmov sites from the lattice to generate a
starting solution S0 and calculate its energy with the estab-
lished EC, EDLC(i), and EDL ACHTUNGTRENNUNG(i,j). Then calculate the energy of
each site (occupied or not) in the lattice. For site i, the
energy is EDLC(i)+

P
j

EDLði; jÞ, where site j is an occupied site.
2. With the current solution Sk (k=0,1,2,…), move the atom in
the occupied site with highest energy to the vacant site
with lowest energy to form S

0

k , and update the energy of S
0

k

by subtracting the energy contribution of the original site
and adding the energy contribution of the new site.

3. If E S
0

k

� �
< E Skð Þ, take S

0

k as the starting solution of the next
generation (Sk+1) and return to step 2. Otherwise, terminate
the iteration with the current solution Sk as the best solu-
tion of this SGM search.

The above SGM procedure is very fast. For example, for LJ98
the cost of one SGM is only about 1/500 of one local minimiza-
tion. By running the SGM procedure a reasonable number of
times (e.g. 500), various solutions with lower energy may be lo-
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cated. Because the lower energy structure found by SGM may
slightly change after local minimization, instead of the best
one, several (e.g. 10) located solutions with lowest energy will
be minimized. If the best located minimum is lower in energy
than the current starting structure, it will be accepted as the
starting structure of the next repetition, and the lattice-con-
struction and lattice-searching procedures are repeated. Other-
wise, DLS will be terminated with the current starting structure
as a result.
For a better understanding of the DLS procedure, an illustra-

tion for the optimization of the LJ cluster with size N=98 (LJ98)
is given in Figure 1. Figure 1a shows the case of finding the
tetrahedral global minimum, and Figure 1b that of finding the
best icosahedral minimum. The structural transition approach
is also presented in this figure to show the movements of the
atoms in the transition from one structure to another. The
number over the arrow is the number of atoms moved from
the white sites to the black sites in each transition. It can be

seen that, starting from a randomly generated minimum
(seed), the metastable minimum structure neighboring the
starting seed can be located after several leaps. Of course, DLS
may fall into other metastable structures because the seeds
are generated randomly. Moreover, the randomly generated
seeds should have a higher chance of being contained in a
wider funnel on the energy landscape, so the metastable local
minima in a wider funnel will have higher chance of being lo-
cated by DLS.
For a better understanding of the lattice construction and

lattice-searching approach, the last transition (from repetition
3 to repetition 4) in Figure 1a is illustrated in Figure 2. The pu-
tative global minimum structure of LJ98 is a tetrahedron (Fig-
ure 2d), first given by Leary and Doye,[41] which is known as a

case that is very difficult to locate with many unbiased global
optimization methods.[27,28,33] Figure 2a is a metastable struc-
ture (S0) of LJ98 with nine atom locations (black balls) different
from the global minimum. Then all possible sites outside the
surface of S0 can be modeled (small white balls in Figure 2b),
which denote the dynamic lattice. Figure 2c is a back view of
Figure 2b in which the small black balls are in the correct posi-
tions for the nine atoms. By searching the lattice with an SGM,
the structure can very easily jump to the global minimum from
S0 without any uphill and downhill step. The transition in
Figure 2 seems very simple, but in fact it is very difficult for
perturbation-based methods; for example, in ref. [42] , the tran-
sition usually cannot take place after 500 perturbations.
Similar strategies for moving highest energy surface atoms

into lowest energy vacancies were adopted in other methods.
For example, Hartke[22] developed a method for searching
lower energy structures by moving the single worst atom into
the best vacant site, and Takeuchi[43] recently developed a very
efficient method for global optimization of LJ clusters, in
which a surface operator Sm and an interior operator Im were

Figure 1. Illustration of a DLS run for LJ98. The y axis is potential energy of
the minima (e is pair well depth). DLS starts from a randomly generated min-
imum whose structure is labeled repetition 0. Then by lattice construction
and lattice searching a new lower energy minima is located (repetition 1).
The global minimum can be found by repeating lattice construction and lat-
tice searching until no lower energy minima can be found. In the selected
cases, starting from random minimum, a) the tetrahedral global minimum of
LJ98 was found in four repetitions, and b) an icosahedral minimum was
found in five repetitions.

Figure 2. Illustration of a dynamic lattice-searching step for LJ98. a) A local
minimum with nine atoms (black balls) that differ in position from the
global minimum. b) The modeled dynamic lattice sites (small white balls).
c) Back view of (b) in which the small black balls represent the correct loca-
tions for the nine atoms in (a). d) Structure of the global minimum.
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developed to move the high-energy atoms. However, the
movement operation is very different; for example, in Hartke’s
method, a single atom was selected, and in Takeuchi’s method,
a combination of several atoms was used. So, the number of
moved atoms must be very small in the latter method due to
the large number of possible combinations. In the DLS
method, the number of moved atoms can be very large, as
shown in Figure 1. In the cases with smooth energy land-
scapes, for example, icosahedral motifs of LJ clusters, a small
number of moveable atoms can gain sufficient efficiency, but
for other cases, for example, tetrahedral motifs of LJ clusters or
(C60)N clusters, generally larger numbers of moveable atoms
are required to guarantee optimizability.
Evidently, each local minimum located by DLS can be taken

as a point on the PES, and the local minima, including the
global minimum, found in a large number of runs, can be used
to describe the PES of a cluster system. When a new local mini-
mum is found in a lattice search, the current structure jumps
to a new position. In some respects, this is like hopping on the
PES. In this way, starting from random positions on the PES,
various metastable local minima, including the globally most
stable minimum, can be visited by hopping. Therefore, a con-
formational analysis can be carried out by counting the hit
numbers of various local minima in a large number of DLS
runs. Due to the characteristic of the PES and the statistical
property, the local minima in a wide funnel should be visited
more frequently than those in a narrow one, because the DLS
starts from randomly generated structures. Therefore, an un-
derstanding of the energy landscape can be obtained by such
conformational analysis approach. Due to the efficiency of the
DLS, clusters of comparatively large size can be studied.
On the other hand, in some respects, DLS is similar to the

annealing procedure because it finds structures with lower
energy by moving the outer atoms. The difference is that only
downhill steps are accepted in DLS. In DLS, instead of only one
atom, a number of atoms may change their location compared
to the starting structure. This is an important characteristic
that makes the structural transition in the optimization of DLS
easier. In this study, a parameter Tmax was defined to limit the
maximal number of atoms whose location changes in the lat-
tice-searching procedure. With this parameter, the number of
moved atoms in a structural transition is limited, and thus Tmax
may affect the search capability of the lattice searching proce-
dure. With this limitation, the relationship of conformational
distribution with Tmax is discussed in Section 3.3. Note that Tmax
is defined just for discussion; in other calculations, the maximal
number of moved atoms is not limited, or is only limited by
Nmov, which is a much larger number than Tmax.

2.2. Conformational Sequences and Basic Tetrahedra (BT)

Structures of clusters can be sorted by their symmetry and
point group. However, in this study, for more convenient con-
formational analysis, conformations of clusters are sorted by
their packings: face-centered cubic (F), F plus a small antilayer
(F+ ), close packing (cp), icosahedral (I), I plus antilayers (I+ ),
face-sharing I (FI), decahedral (D), D plus antilayers (D+ ), and

tetrahedral (T). All these packings are ordered structures with
maximal coordination numbers of not more than 12. There are
also some low-symmetry packings with maximal coordination
number larger than 12, which are called “amorphous” or disor-
dered packings.[38]

Furthermore, the ordered packings can be considered as
packed by basic tetrahedra (BT), where the BT can be distorted
or incomplete.[40] Figure 3 shows a BT structure and various BTs
in the 38-atom fcc (F), 55-atom Mackay icosahedron (I), 75-
atom Marks decahedron (D), and 98-atom Leary tetrahedron

(T). As shown in the figure, no BT unit can be found in the
structure of the 38-atom fcc, but it can be considered to be
contained in a BT unit with 7 atoms in the edge. Also, there is
no BT unit in the structure of the 75-atom Marks decahedron,
but it can be divided into five parts, each of which can be con-
sidered to be contained in a BT unit with a 5-atom edge. For
the 55-atom Mackay icosahedron and 98-atom Leary tetrahe-
dron, a complete BT unit with 3- or 4-atom edge can be found
in the structure, and the remaining atoms can also be consid-
ered to be contained in edge- or face-sharing BT units with the
same size. Therefore, the four clusters shown in Figure 3 can
be designated 7F, 3I, 5D, and 4T, respectively. If m is the
number of atoms in an edge of BT, a sequence with variable m

Figure 3. Definition of the basic tetrahedron (BT) in various packings: 38-
atom fcc, 55-atom Mackay icosahedron, 75-atom Marks decahedron, and 98-
atom Leary tetrahedron. The number is the size of BT (number of atoms in
an edge).
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can be defined, for example, mI, mI+ , mFI, mF, mF+ , mD,
mD+ , mT.
In this way, the BT can be taken as the basic unit of a cluster

structure and the number of BT contained in a structure can
be easily calculated. For example, as shown in Figure 3, 98-
atom 4T is packed by 17 BT, that is, there is one complete BT
in the core and four BT which share the four faces of the core
BT. For each of the four BT, except for those face-sharing with
the core BT, there are another three face-sharing BT. So, the
total number of BT contained in the structure is 1+1O4+4O
3=17. Similarly, the number of BT of the 38-atom 7F is only 1,
55-atom 3I is packed by 20 slightly distorted edge-sharing BT,
and 75-atom 5D is packed by 5 edge-sharing BT. In Section 3.2,
the relationship between conformational distribution and the
number of BT contained in the structure is discussed.

3. Results and Discussion

3.1. Conformational Analysis for Understanding
Energy Landscapes

With disconnectivity graphs, Doye et al.[8, 44] successfully studied
the energy landscape of small LJ clusters with cluster size N=

13, 19, 31, 38, and 75. In this study, energy landscapes of LJ
clusters of larger size are studied. Figure 4 shows the confor-
mational distribution of some selected LJ clusters : LJ38 (Fig-
ure 4a), LJ98 (Figure 4b), LJ200 (Figure 4c), and LJ400 (Figure 4d).
Figure 4 seems somewhat similar to the mass spectrum in out-
line, but the abscissa is potential energy and ordinate is hit
number of various conformations over 1000 independent DLS
runs. Based on the principle of DLS mentioned above, a con-
formation with larger hit number should correspond to the
metastable local minima in a wider funnel, so the height (the
hit number) and the position on the abscissa (potential) of
these peaks correspond respectively to the width and depth of
the funnels on the energy landscape. Therefore, conformation-
al analysis with such figures emphasizes more of the appear-
ance (or shape) characteristic of the energy landscape, espe-
cially the width and depth, which show the complexity of the
energy landscape, while a disconnectivity graph gives more
detailed information on the energy landscape.
From Figure 4, the difference of the energy landscape be-

tween differently sized clusters can be investigated. First, from
Figure 4a it can be seen that there are many disordered struc-
tures for LJ38, because the number of possible ordered struc-
tures for small clusters is less than that for large clusters. With
increasing cluster size, as shown in Figure 4b–d, the number
of metastable local minima with ordered structures located by
DLS clearly increases. Examination of the located minima and
hit numbers shows that, for all the investigated clusters, the
number of located icosahedral packings (I, I+ , FI) is small but
the hit number is comparatively large. This indicates that the
landscape of icosahedral motifs is comparatively smooth, so
icosahedral local (or global) minima can be easily converged
with DLS even for large cluster size, while for other packings
the number of located minima is bigger than that of icosahe-
dral packing. This indicates that, compared with icosahedral

packing, the landscape of this packing is more complex or
there are more metastable local minima on the PES. Interest-
ingly, however, the proportions between the hit numbers of
the different packings (I, D, T) do not change too much with
cluster size (N=38, 98, 200, and 400), and this indicates that,
in this range of cluster size, the proportions between the areas
of different packings on the PES are similar to each other.
The results can also be compared with those obtained by

perturbation-based methods of conformational analysis.[27,42] A
figure similar to Figure 4b for conformational analysis of LJ98
was also obtained by SGM with energy-based perturbations.[42]

By comparing Figure 4b with Figure 3 in ref. [42] , it can be
found that the the peaks are higher and the number of peaks

Figure 4. Conformational distribution of LJ clusters obtained by 1000 inde-
pendent DLS runs for cluster sizes N=38 (a), 98 (b), 200 (c), and 400 (d). The
x axis is the potential energy, and the y axis the hit number of each confor-
mation in 1000 DLS runs.
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is lower in the former. This implies that the small peaks in
Figure 3 of ref. [42] merge into the higher peaks in Figure 4b.
In fact, all the structures found in Figure 4b and Figure 3 of
ref. [42] were compared in detail. Six peaks with similar 4I
motif were found that differ only in a few surface atoms, but
in Figure 4b there is only one 4I peak. This may be caused by
the different strategy for exploring new structures and indi-
cates that DLS is much better converged. DLS finds new struc-
tures by moving the atoms on the surface of a cluster, but the
SGM in ref. [42] does this by energy-based perturbations. Fur-
thermore, the CPU time for 1000 runs of DLS is only about
103 s, while that for the SGM is about 2.2O104 s (both with
1.5 GHz Itanium2 processors).

3.2. Relationship of Conformational Distribution with
Number of BT

With the definition of the conformational sequences in Sec-
tion 2.2, it was found that, for different cluster sizes, structures
with smaller m value correspond to larger hit numbers, and for
the same cluster size, the sequence of hit number for various
packings is : I+> I>T>D+>D>cp, F.[40] This may be the
reason why I packings of LJ clusters are easy to locate by sto-
chastic optimization methods, while F and D are difficult.[24,45]

For (C60)N molecular clusters, conformational distribution as in
Figure 4 can also be obtained by using DLS. Figure 5 shows

the conformational distribution of (C60)98 with Girifalco poten-
tial.[34] From both Figure 4 and Figure 5, it can be found that,
for all the studied clusters, the packing with a small m value
corresponds to a large hit number, which completely agrees
with the results obtained before.[40]

For further investigation of the relationship between hit
number and m values, the number of BT and the nearest-
neighbor contacts[45] of some favored conformations of LJ98
and (C60)98 are summarized in Table 1. According to the defini-
tion above, for I, D, and F motifs, the numbers of BT are 20, 5,
and 1 respectively, and for I+ , D+ , F+ , and cp motifs, the an-
tilayers on the {111} faces will increase the number of BT; for
example, in the 3I+ motif of the 98 cluster, there are 14 anti-
layer outer {111} faces of the 55-atom Mackay icosahedral core,
so the BT number is 34 (20+14). The number of BT contained
in the 4T motif of the 98 cluster was analyzed above. However,

the BT numbers of 5T, 6T, and 7T motifs are smaller because
the BT are larger. Motifs with smaller m values generally corre-
spond to larger numbers of nearest-neighbor contacts and a
larger number of BT, and, as expected, motifs with a larger
number of BT are located more frequently for both LJ clusters
and C60 molecular clusters. There is good correspondence be-
tween the number of BT contained in a cluster structure and
the conformational distribution.

3.3. Relationship of Conformational Distribution with Tmax

The calculated results for (C60)N molecular clusters agree with
annealing experiments at high temperature,[36,40] but at low
temperature, magic numbers observed in the experiments are
different from the results of our calculations.[40] Furthermore,
calculated results from DLS are different from those of some
other theoretical methods with regard to dominant conforma-
tions for some LJ clusters. For example, the Leary tetrahedron
is very difficult to locate for most stochastic global optimiza-
tion methods,[27,28,32] while it is a dominant configuration in the
results of DLS calculations. Therefore, the conformational distri-
bution obtained by DLS with different Tmax was investigated.
The conformational distributions with Tmax for the cases of

LJ98 and (C60)98 are given in Figure 6. For each motif, the hit
number has an increasing trend with increasing Tmax, which
shows that the efficiency of the DLS method increases with in-
creasing Tmax, or that the difficulty of structural transition de-
creases with increasing Tmax. On the other hand, the increasing
trend in hit number also indicates that these motifs are located
in deep (stable) funnels of the PES, because they did not jump
out into other places with increasing Tmax. In the case of LJ98
(Figure 6a), the hit number of the icosahedral motifs (4I and
3I+ ) is large even at low Tmax which implies that the landscape
of the motif is wide and smooth, so the structural transition
can easily take place even at low Tmax. However, the hit
number for some motifs, for example, 6D, is low over the
whole Tmax range, which implies that the landscape is much

Figure 5. Conformational distribution of (C60)98 cluster with Girifalco potential
obtained by 1000 independent DLS runs.

Table 1. Some favored conformations of LJ98 and (C60)98 located by 1000
DLS runs. Nnn is the number of nearest-neighbor contacts, NTe the number
of BT contained in the conformation, and Nhit the hit number of the motif
found in 1000 DLS runs.

Clusters Motifs Energy/e Nnn NTe Nhit

LJ98

4T �543.665361 432 17 124
4I �543.642957 437 20 127
6D �541.894959 428 5 10
5T �541.869748 429 8 11
5D+ �541.436260 430 10 47
6T �540.362599 427 5 5
3I+ �539.720452 444 34 249

ACHTUNGTRENNUNG(C60)98

6T �450.805528 427 5 28
10F �450.572640 427 1 1
6D �450.303293 428 5 11
7T �449.902553 426 4 39
5T �449.341712 429 8 69
5D+ �448.868280 427 7 66
4T �447.290084 432 17 127
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narrower. Most interesting is the hit number of the 4T motif,
which is very small at small Tmax, but increases suddenly at
Tmax=9. This indicates that the landscape of the motif is wide
but very rough, that is, there are many metastable local
minima on the PES. On the other hand, the searching perfor-
mance of the perturbation-based methods should be at the
same level as DLS at low Tmax, and this could explain why the
4T motif is dominant in DLS, while it is a very difficult case for
most stochastic optimization methods.
From Figure 6b, it can be seen that, at low Tmax, the hit

number of any motif is small, which means that the energy
landscape of (C60)N clusters is much rougher than that of LJ
clusters, so structural transitions are difficult at low Tmax. This
also can explain why (C60)N clusters are so difficult to optimize
for perturbation-based methods. Furthermore, only at high
Tmax is the 4T conformation dominant, that is, is a large barrier
on the PES separates the 4T motif and the other motifs.

3.4. Relationship of Conformational Distribution with
Potential Range

The energy landscape is determined by potential. For long-
range potential, icosahedral packing is more favored in poten-

tial energy, while for short-range potential, decahedral, tetrahe-
dral, and close packing are more favored. Morse clusters[37] can
be taken as a test system with the potential function of Equa-
tion (1)

UM ¼ e
X
i<j

e10 1�rijð Þ=r0 e10 1�rijð Þ=r0 � 2
h i

ð1Þ

where the parameter 10 determines the potential range and
thus allows it to capture aspects of the interactions for a wide
range of systems. For example, the LJ potential has the same
curvature at the bottom of the potential well when 10=6. Ap-
proximating the Girifalco potential for (C60)N clusters gives 10=
13.6. When 10 is small, the energy landscape is smooth and
structural transitions are easy, which makes it not too difficult
to locate the metastable local minima and global minimum on
the PES. However, for large 10, the extremely short range po-
tential makes the optimization notoriously difficult. For exam-
ple, Doye et al.[12] reported that, at 10=14, even for small clus-
ters with size N�80, their method is the first unbiased
method that can locate all known global minima. From Fig-
ure 6b, it also can be found that, for the Girifalco potential,
which is a very short range potential, it is really difficult to
locate any local minimum of the investigated motifs at low
Tmax in DLS. This means that the energy landscape is very
rough, so the structural transitions are difficult at low Tmax. But
at high Tmax, DLS achieves very good performance due to its
powerful searching capability, achieved by simultaneous move-
ment of several atoms. In our calculations, for each case of
Morse clusters with 10=14 and cluster size N�80, the known
global minimum can be located within several minutes on
average.

To investigate the effect of potential range, the conforma-
tional distribution of some favored motifs of (Morse)98 cluster
with 10 from 4 to 15 is plotted in Figure 7a. Potential energy
of some motifs as a function of 10 is given in Figure 7b. At a
very small 10 (10=4), the icosahedral motifs (3I+ , 3FI, 4I) are
dominant, and the hit numbers increase with increasing 10.
However, as seen from Figure 7b, the potential energy of the
icosahedral motifs increases rapidly with increasing 10, so the
hit numbers of these motifs decrease rapidly to zero when 10
approaches 12. With decreasing hit numbers of the icosahedral
motifs, the hit numbers for other motifs, especially that for 4T,
increase.
Figure 7 shows that, at large 10, the potential energy of

some motifs (4T, 5D+ ) is much higher than those of the
others (Figure 7b), while their hit numbers do not decrease
(Figure 7a). Figure 8a plots the strain energy[46] of the selected
motifs against 10. The strain energy, calculated according to
the method proposed in ref. [46], is a measure of the energetic
penalty for deviation of nearest-neighbor contacts from the
equilibrium pair distance. Strained motifs may be unstable. For
the unstrained motifs (6T, 10F, cp), the strain energy decreases
exponentially with increasing 10. For other motifs, the strain
energy decreases rapidly with increasing 10 at first but then in-
creases slightly. The decrease is caused by the decrease in
compressive strain energy of the atoms in the core, while the

Figure 6. Conformational distribution for some selected motifs as a function
of the parameter Tmax for the cases of LJ98 (a) and (C60)98 with Girifalco poten-
tial (b).
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increase is caused by enhancement of the tensile strain energy
of the atoms on the surface. Figure 8b plots the strain energy
of the single atom in the core of some selected motifs against
10. For the icosahedral motifs, the stain energies of the core
atoms of 3I+ and 4I are very high and increase rapidly with in-
creasing 10. This may be the reason why icosahedra are unsta-
ble at high 10, while the strain energies of the core atom of
other motifs is much lower than that of the icosahedral ones.
Therefore, the strain energy of the atom in the core may deter-
mine the stability of a cluster motif.

4. Conclusions

A modified version of the DLS method was developed for con-
formational analysis of cluster systems. With the conformation-
al distribution obtained by DLS, information on the energy
landscape is discussed for large LJ clusters, for example, LJ400,
and (C60)N molecular clusters. Then, by means of the number of
basic tetrahedra (BT) contained in a cluster structure and the
parameter Tmax, which controls the number of atoms moved in
the optimization, conformational distributions were investigat-
ed. Results indicate that motifs with larger numbers of BT can
be located more frequently. It was also shown that Tmax is a
key parameter to modulate the efficiency of the DLS method
in finding different cluster motifs. Finally, the conformational
distribution of (Morse)98 cluster was discussed with different
values of 10. It was shown that icosahedra are unstable at high
10 due to the instability of the atom in the core, and the tetra-
hedron is the dominant motif at high 10.
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