Density functional investigation of \(X@B_nH_n \) (\(X = B^+, Be; n = 5–8 \))

Lifen Li, Chang Xu, Longjiu Cheng*

Department of Chemistry, Anhui University, Hefei, Anhui 230039, People’s Republic of China

A R T I C L E I N F O

Article history:
Received 8 May 2013
Received in revised form 1 July 2013
Accepted 1 July 2013
Available online 9 July 2013

Keywords:
Borane cluster
Aromaticity
Density functional theory

A B S T R A C T

The stability of \(X@B_nH_n \) (\(X = B^+, Be; n = 5–8 \)) is investigated by density functional theory. Geometry optimization shows that both the radius of the center atom and the ring size make contribution to the stability of \(X@B_nH_n \) structure. All the optimized structures are thermodynamics stable according to the large HOMO–LUMO gap, bonding energy, vertical ionization potential and vertical electron affinity. Nuclear independent chemical shift reveals that the (quasi-)planar structures are \(\pi \) aromatic, which is confirmed by chemical bonding analysis.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Boron and boron-based clusters have attracted much attention in the past 20 years owing to their interesting physical and chemical properties. Experiment and theory studies over the last decades have demonstrated that positively charged boron clusters are shown to become 3D at \(B_{10}^+ \) [1–3], while negatively charged and neutral boron clusters are still planar at \(B_{12} \) and \(B_{21} \) [4–14], respectively, except for \(B_{14} \) [15]. The in-plane \(\sigma \) and the out-of-plane \(\pi \) bonding are found in the planar boron clusters, each of which follows the \((4n + 2)\) Hückel rule for aromaticity. The delocalized bonding results in multiple aromaticity and enhances the stability of the planar clusters, such as molecular wheel-type clusters \(D_{7h}B_6\@B_2^+ \) and \(D_{5h}B_8\@B_2^+ \) [16]. In the \(B_6\@B_2^+ \) and \(B_8\@B_2^+ \) molecular wheels, two electrons contribute to the \(B–B \) peripheral covalent bonds by each B atom in the circumference and one electron to the delocalized bonds by the central B atom. Both species are doubly aromatic with 6\(\sigma \) and 6\(\pi \) delocalized electrons and have closed shell electronic configurations, rendering these clusters with enhanced stability. Pure boron clusters have been proposed as novel building blocks of solid materials, and recently a series of planar tetra-, penta-, and hexa-coordinate carbon–boron mixed clusters has been reported by numerous theoretical reports [17–23].

Lots of hydrogenated small boron clusters were reported [24–27], however, most boron hydrides adopt three-dimensional aromatic structures. In 2009, Yu and co-workers [28] presented a borane cation \(B_4H_4^+ \) in \(D_{5h} \) symmetry, which is the global minimum according to their calculation. A question arises: how do the structure and the bonding change when the ring size increases? And can we replace the central boron atom with isoelectronic atom Be?

Therefore, we adopted density functional theory (DFT) method to investigate the stability of \(X@B_nH_n \) (\(X = B^+, Be; n = 5–8 \)) clusters. The three valence electrons of the peripheral boron formed three \(\sigma \) bonding among \(B_nH_n \) and the \(p_z \) orbitals of the peripheral boron are empty due to the electron deficiency of boron. The electronic number occupied the \(\pi \) molecular orbital is decided on the valence electronic number of the center atom. The two valence electrons of \(B^+ \) and Be, which delocalized on the \(\pi \) molecular orbital combined with the \(p_z \) atom orbitals of the center atom and the peripheral boron, are satisfied the Hückel aromatic rule. The calculated results show that the stability of \([B@B_8H_8]^-\) reduces as the rings increasing due to the small radius of boron and that of \(Be@B_8H_8 \) raises up to \(n = 8 \). Besides, \([B@B_5H_5]^+, [B@B_6H_6]^+\) and \(Be@B_8H_8 \) are aromatic according to the electronic analysis.

2. Computational details

The geometries of \(X@B_nH_n \) (\(X = B^+, Be; n = 5–8 \)) were optimized by using the TPSSh functional [29]. The structures of \([B@B_8H_8]^+\) and \([B@B_8H_8]^+\) were investigated using the method combining the genetic algorithm (GA) with DFT implemented in our group [30–33]. All the optimization and the calculations of the energies and HOMO–LUMO gaps are performed at the TPSSh/6-31+G** level. The TPSSh functional was proven to give reasonably accurate energetic properties of boron and boron-based clusters [15,33–36]. To confirm the stability of structures, we analyzed the vibrational frequencies. If an imaginary vibrational mode was found, a relaxation along the coordinates of this mode should be carried out until the true local minimum is obtained. Thus, all isomers for each cluster are true local minima. The binding energy of the compound Eb

[2210-271X/$ - see front matter © 2013 Elsevier B.V. All rights reserved.]

http://dx.doi.org/10.1016/j.comptc.2013.07.001
(X@BnHn) is defined as E (X@BnHn) – E (X) – E (BnHn). Then, vertical electron affinity (VEA) of \([\text{Be@B}_5\text{H}_5]^+\) – E (\([\text{Be@B}_5\text{H}_5]^+)\). VEA of Be@BnHn = E (Be@BnHn) – E ([Be@BnHn]) + and the vertical ionization potential (VIP) of Be@BnH5 = E ([Be@BnH5]) – E (Be@BnH5) are given out. All calculations are carried out using the GAUSSIAN 09 package [37].

3. Results and discussion

We optimized DnB X@BnHn (X = B+, Be; n = 5–8) at TPSSh/6-31+G** level. Fig. 1 plots the local minima of X@BnHn (X = B*, Be; n = 5–8) from two sides. The bonding energy of X@BnHn, energy gap, VEA of X@BnHn and benzene, VIP of Be@BnHn and benzene, and nuclear-independent chemical shifts (NICS) value [38] above the molecular plane 1 Å of [B@B7H7]^+", [B@B8H8]^+, Be@B7H7 and benzene are listed in Table 1. The planar structures may not be global minima, so we performed global optimization on [B@BnHn]^+ and [B@BnHn]^+ using the method combining GA with DFT. The results show that the global minimum of [B@BnHn]^+ is the planar structure in D3h symmetry, whereas that of [B@BnHn]^+ is 3D structure (see Supporting Information). The interesting bonding style between the center atom and ligand boron attract our attention due to the electron deficiency of boron. We infer there may be delocalized π and/or σ bonds in the molecules. Thus, we focus on only the (quasi-)planar structures hereby instead of the local minimum one.

3.1. Geometry structures

The optimized [B@BnHn]^+, the same as Yu and co-workers reported, is in D3h symmetry. The Bcen-Bper (Bcen and Bper represent for center B and the peripheral B, respectively) bond length is 1.58 Å and the Bper-Bper bond length is 1.85 Å. A small distortion is happened after the optimization of [B@BnHn]^+ (D3h), of which the hydrogenated cyclic boron presented chair-like model. The Bcen-Bper and the Bper-Bper bond length are 1.68 Å and 1.71 Å, respectively. As the ring size increasing, the symmetry of [B@BnHn]^+ (Cn) and [B@BnHn]^+ (C2) are broken completely. Replaced the center B atom with Be atom, Be@BnHn (Cn), Be@BnHn (C2) and Be@BnH2 (C2) distorted seriously due to the large radius of Be atom. Crown-shaped Be@BnHn is in D3h symmetry with Bcen-Bper and the Bper-Bper bond length of 2.05 Å and 1.63 Å respectively.

3.2. Stability

The stability of those local minima was evaluated theoretically. First, all the minima are verified to be true local minima by frequency check. Second, the fairly large HOMO–LUMO energy gaps (3.28–4.32 eV) strongly suggest high stability of those systems. In the last, the VEA values (6.45–6.87 eV) of [B@BnHn]^+ are smaller than the VIP (8.18–9.39 eV) values of Be@BnHn and the VEA (9.94–1.41 eV) and VIP (8.18–9.39 eV) values of Be@BnHn are similar to benzene (1.33 eV and 9.17 eV, respectively), which indicates that the cations of Be@BnHn and the natural molecules of Be@BnHn are stable. Note that we did not expect the minima to keep good chemical stability under ambient atmospheric conditions because therein most of the borohydride molecules are active.

3.3. Aromaticity

[B@BnHn]^+, [B@BnHn]^+ and Be@BnHn are (quasi-)planar, which is always associated with delocalized electrons. Are there delocalized electrons in those structures? Since delocalization is always associated with aromaticity, we focus on the aromaticity of those clusters. NICS is an easy and efficient criterion to identify aromatic nature. A large negative NICS at the ring center (or inside and above the molecular plane) implies the presence of diamagnetic ring currents. Hereby, we calculated NICS values above the molecular plane 1 Å (NICS(1) = –8.55, –14.17 and –11.90 ppm for [B@BnHn]^+, [B@BnHn]^+ and Be@BnHn, respectively). Such large negative NICS(1) values indicate that the (quasi-)planar structures are aromatic as a comparison with the NICS(1) value of benzene (–10.19 ppm).

3.4. Electronic structures

According to the aromaticity of above structures, we infer that there must be delocalized electrons among the clusters. In order

![Fig. 1. Local minima of X@BnHn for X = B*, Be and n = 5–8. The symmetry is labeled in figure (two sides of views are given); H-white, B-blue, Be-green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image)
to get insight into the delocalized orbital and bonding style of those clusters, canonical molecular orbital (CMO) analysis and Adaptive natural density partitioning (AdNDP) is adopted. AdNDP is a new theoretical tool developed by Zubarev and Boldyrev [39] for analysis of chemical bonding and has been successfully applied recently to the analysis of chemical bonding in clusters, such as boron based clusters [15,33,35,40,41]. In the following we discuss their electronic structures based on CMO and AdNDP analysis.

Yu and co-workers [28] have given the CMO analysis of \([\text{B} @ \text{B}_5 \text{H}_5]^+\) (\(D_{5h}\)) and pointed out the \(p\) orbital (MO = 15 showed in Fig. 2a). However, it is indistinct to identify other orbitals. In order to gain more insights into bonding style of \([\text{B} @ \text{B}_5 \text{H}_5]^+\), we presented the AdNDP analysis of \([\text{B} @ \text{B}_5 \text{H}_5]^+\) in Fig. 2b. The AdNDP analysis shows that there are five two-center two-electron (2c–2e) \(\sigma\)-BH bonds, five 3c–2e \(\sigma\)-BBB bonds, and one 6c–2e \(\pi\) bond with occupy number (ON) of 1.98 |e|, 1.99 |e|, and 2.00 |e|, respectively. On the basis of the above AdNDP analysis, we suppose that all of the boron atoms are in \(sp^2\) hybridization. One hybridized orbital of \(B_{\text{per}}\) interacts with the 1s orbital of the adjacent H atom, which forms a \(\sigma\)-BH bond; and the other two hybridized orbitals of \(B_{\text{per}}\) overlap the three hybridized orbitals of \(B_{\text{cen}}\) composing five 3c–2e \(\sigma\)-BBB bonds. The \(\pi\) MO is comprised of the six B \(p\) orbitals, which is occupied by the two electrons of \(B_{\text{cen}}\).

\([\text{B} @ \text{B}_6 \text{H}_6]^+\) is in \(D_{3d}\) symmetry which contained a planar hexacoordinated B atom. The difference between the \(B_{\text{cen}}–B_{\text{per}}\) bond length (1.68 Å) and the \(B_{\text{per}}–B_{\text{per}}\) (1.71 Å) bond length is smaller than that of \(D_{5h}\) \([\text{B} @ \text{B}_5 \text{H}_5]^+\) (1.58 Å and 1.85 Å, respectively). CMO analysis reveals that there is also a \(\pi\) MO in the molecule (MO = 17 in Fig. 3a). The AdNDP analysis shows that there are six 2c–2e \(\sigma\)-BH bonds, six 3c–2e \(\sigma\)-BBB bonds, and one 7c–2e \(\pi\) bond (ON = 1.93 |e|, 1.95 |e|, and 2.00 |e|, respectively). Thus it can be seen that the three valence electrons of peripheral B form a 2c–2e \(\sigma\)-BH bond and two 3c–2e \(\sigma\)-BBB bonds, and the two valence electrons of the center B delocalized in the molecule.

Be and B⁺ are isoelectronic. As the ring size increasing, Be@B₈H₈ is quasi-planar in \(D_{4d}\) symmetry with the peripheral B showing a

Fig. 2. (a) Canonical molecular orbitals and (b) AdNDP localized bonding patterns of \([\text{B} @ \text{B}_5 \text{H}_5]^+\).

Fig. 3. (a) Canonical molecular orbitals and (b) AdNDP localized bonding patterns of \([\text{B} @ \text{B}_6 \text{H}_6]^+\).
crow shape. The CMOs are given in Fig. 4a. A π molecular orbital (MO=26) is found in the CMO analysis and the other MOs are unrecognizable. Again, in order to gain more information for the bonding style of Be@B₈H₈, we performed AdNDP analysis of Be@B₈H₈ in Fig. 4b, which suggests that Be@B₈H₈ possesses eight 2c–2e σ-BH bonds, eight 3c–2e σ-BBBBe bonds, and one 9c–2e π bond with ON of 1.92 |e|, 1.91 |e|, and 2.00|e|, respectively. Similar to [B@B₅H₅]+ and [B@B₆H₆]+, one valence electron of the peripheral B contribute to the 2c–2e σ-BH bond and the other two contribute to the two 3c–2e σ-BBBBe bonds. The π extrapolated energy of the peripheral and center boron atoms form π MO which stores the rest of two valence electrons of the center B atom.

Based on the analysis above, we can conclude that the bonding type of [B@B₅H₅]+, [B@B₆H₆]+ and Be@B₈H₈ are composed of n 2c–2e σ-BH bonds, n 3c–2e σ bonds and one (n + 1)c–2e π bond. However, the center atoms of [B@B₅H₅]+, [B@B₆H₆]+ and Be@B₈H₈ contribute different electrons to the 3c–2e σ bonds according to the natural bond orbital (NBO) analysis. The ONs of B₅–B₅ of [B@B₅H₅]+ and [B@B₆H₆]+ are 1.54 |e| and 1.60 |e|, respectively; while that of Be@B₈H₈ is 1.81 |e|. That is, compared with the ONs of 3c–2e σ bonds of [B@B₅H₅]+, [B@B₆H₆]+ and Be@B₈H₈ (1.99 |e|, 1.95 |e| and 1.91 |e|, respectively), the center boron of [B@B₅H₅]+ and [B@B₆H₆]+ contribute 0.45 |e| and 0.35 |e| to the 3c–2e σ bond, while the center Be of Be@B₈H₈ contribute 0.10 |e|. The reason for the difference between the 3c–2e bonds may be as follows: (1) the electronegative of B is larger than Be; (2) the energy of the sp² hybrid orbitals of the three centers for [B@B₅H₅]+ and [B@B₆H₆]+ are matching better than that for Be@B₈H₈.

4. Conclusions

In summary, we optimized X@BₙHₙ (X = B, Be; n = 5–8) at TPSSh/6-311+G** level. Besides of D5h [B@B₅H₅]+ reported by Yu, we gained two other stable planar minima D3d [B@B₆H₆]+ and D4d Be@B₈H₈. Just like many ring-like hypercoordinated planar molecules proposed, the peripheral and central atomic radius must fit each other harmoniously. NICS value reveals that the D5h [B@B₅H₅]+, D3d [B@B₆H₆]+ and D4d Be@B₈H₈ are aromatic, which is confirmed by MO and AdNDP analysis. The [B@B₅H₅]+, [B@B₆H₆]+ and Be@B₈H₈ possess π MO and are analog of benzene, which makes those species be good ligands possible.

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 21273008), by 211 project of Auhui University. The calculations are carried out on the High-Performance Computing Center of Anhui University. We acknowledge Professor Boldyrev for the AdNDP codes.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.comptc.2013.07.001.

References

[27] Q. Chen, S.D. Li. Pi-aromatic B_{12}H_{18}: a neutral boron hydride analogue of naphthalene. J. Cluster Sci. 22 (2011) 513.
