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Continuous extremal optimization for Lennard-Jones clusters
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We explore a general-purpose heuristic algorithm for finding high-quality solutions to continuous optimiza-
tion problems. The method, called continuous extremal optimization (CEQ), can be considered as an extension
of extremal optimization and consists of two components, one which is responsible for global searching and
the other which is responsible for local searching. The CEO’s performance proves competitive with some more
elaborate stochastic optimization procedures such as simulated annealing, genetic algorithms, and so on. We
demonstrate it on a well-known continuous optimization problem: the Lennard-Jones cluster optimization

problem.
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I. INTRODUCTION

The optimization of a system with many degrees of free-
dom with respect to some cost function is a frequently en-
countered task in physics and beyond. One special class of
algorithms used for finding the high-quality solutions to
those NP-hard optimization problems is the so-called nature
inspired algorithms, including simulated annealing (SA)
[1,2], genetic algorithms (GA) [3-5], genetic programming
(GP) [6], and so on.

In recent years, a nature-inspired algorithm named ex-
tremal optimization (EOQ) was proposed by Boettcher and
Percus [7-11], which is very sententious and competitive
compared with some well-known algorithms like SA, GA,
GP, etc. To make the underlying mechanism of EO more
concrete, let us focus on the natural selection of a biological
system. In nature, highly specialized, complex structures of-
ten emerge when their most inefficient elements are selec-
tively driven to extinction. For example, evolution
progresses by selecting against the few most poorly adapted
species, rather than by expressly breeding those species best
adapted to their environment. The principle that the least-fit
elements are progressively eliminated has been applied suc-
cessfully in the Bak-Sneppen model [12,13], where each in-
dividual corresponding a certain species is characterized by a
fitness value, and the least fit one with smallest fitness value
and its closest dependent species are successively selected
for adaptive changes. The extremal optimization algorithm
draws upon the Bak-Sneppen mechanism, yielding a dy-
namic optimization procedure free of selection parameters.

Here we consider a general optimization problem, where
the system consists of N elements, and we wish to minimize
the cost function C(S) depending on the system configuration
S. The EO algorithm proceeds as follows.

(1) Choose an initial configuration S of the system at
will; set Speq:=1S.

(2) Evaluate the fitness value f; for each individual i and
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rank each individual according to its fitness value so that the
least-fit one is in the top. Use k; to denote the individual i’s
rank; clearly, the least-fit one is of rank 1. Choose one indi-
vidual j that will be changed with the probability P(k;), and
then, only randomly change the state of j and keep all other
individuals’ state unaltered. Accept the new configuration S’
unconditionally S:=S’, and if C(S)<C(Spes), then set Sp.q
=S.

(3) Repeat step (2) as long as desired.

(4) Return to Speq and C(Spesy)-

The efficiency of the EO algorithm is sensitive to the
probability function P(k). In basic EO, P(1)=1, and for any
k(2<k<N), P(k)=0. A more efficient algorithm, the so-
called ~EO, can be obtained through a slight modification
from basic EO. In 7EO, P(k) ~ k™" where 7>0. Of course,
aiming at idiographic optimization problems, one can design
various forms of P(k) to improve the performance of basic
EO. For example, Middleton has proposed the jaded ex-
tremal optimization (JEO) method for the Ising spin glass
system by reducing the probability of flipping previously se-
lected spins, which remarkably improved the efficiency of
EO [14].

The previous studies indicate that the EO algorithm can
often outperform some far more complicated or finely tuned
algorithm, such as SA and GA, on some famous NP-hard
[15] discrete optimization problems, including graph parti-
tioning [7,8,16], traveling salesman problem [7], three-
coloring problem [17,18], finding the lowest-energy configu-
ration for the Ising spin glass system [14,17,19], and so on.
However, many practical problems cannot be abstracted to
discrete form. Thus to investigate EO’s efficiency on con-
tinuous optimization problems [20] is not only of theoretic
interest, but also of prominent practical worthiness.

In this paper, a so-called continuous extremal optimiza-
tion (CEO) algorithm aiming at the continuous optimization
problem will be introduced, which can be considered as a
mixing algorithm consisting of two components: one is re-
sponsible for global searching and the other is responsible
for local searching. The CEO’s performance proves competi-
tive with some more elaborate stochastic optimization proce-
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dures such as simulated annealing, genetic algorithms, and
so on. We demonstrate it on a well-known continuous opti-
mization problem: the Lennard-Jones (LJ) cluster optimiza-
tion problem.

This paper is organized as follows: in Sec. II, the LJ clus-
ters optimization problem will be briefly introduced. In Sec.
III, we will give the algorithm proceeds of CEO. Next, we
give the computing results about the performance of CEO on
the LJ cluster optimization problem. Finally, in Sec. V, the
conclusion is drawn and the relevance of the CEO to the
real-life problems is discussed.

II. LENNARD-JONES CLUSTER OPTIMIZATION
PROBLEM

The continuous optimization problem is ubiquitous in ma-
terials science: many situations involve finding the structure
of clusters and the dependence of structure on size is particu-
larly complex and intriguing. In practice, we usually choose
a potential function to take the most steady structure since it
is considered to be in possession of the minimum energy.
However, in all but the simplest cases, these problems are
complicated due to the presence of many local minima. Such
a problem is encountered in many areas of science and
engineering—for example, the notorious protein folding
problem [21].

As one of the simplest models that exhibits such behavior
[22] one may consider the problem of finding the ground-
state structure of a nanocluster of atoms interacting through a
classical Lennard-Jones pair potential, in reduced units,
given by

Vo=, (1)

where r is the distance between two atoms. This potential has
a single minimum at r,={2, which is the equilibrium dis-
tance of two atoms. It can, of course, easily be reduced to an
arbitrary LJ potential by a simple rescaling of length and
energy units. The ith atom has energy

1
Ei=22 Vi), @

J#Fi

and the total energy for N atoms is
E=2E;. (3)
i

The optimization task is to find the configuration with mini-
mum total potential energy of a system of N atoms, each pair
interacting by potential of the form (1). Clearly, a trivial
lower bound for the total energy is —N(N—1)/2, obtained
when one assumes that all pairs are at their equilibrium sepa-
ration. For N=2,3,4 the lower bound can actually be obtained
in three-dimensional space, corresponding, respectively, to a
dimer, equilateral triangle, and regular tetrahedron, with all
interatomic distances equal to r,. However, from N=5 on-
wards it is not possible to place all the atoms simultaneously
at the potential minimum of all others and the ground-state
energy is strictly larger than the trivial lower bound. This
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system has been studied intensely [23] and is known to have

an exponential increasing number of local minima, growing

2 . .
roughly as e%36N003N" near N=13, at which point there are

already at least 988 minima [23]. If this scaling continues,
more than 10'*" local minima exist when N approaches 100.

III. CONTINUOUS EXTREMAL OPTIMIZATION

The continuous extremal optimization algorithm consists
of two components: one is the classical EO algorithm re-
sponsible for global searching and the other is a certain local
searching algorithm. We give the general form of CEO algo-
rithm by way of the LJ cluster optimization problem as fol-
lows:

(1) Choose an initial state of the system, where all the
atoms are placed within a spherical container with radius

[24,25]
1 3N 13
R=re 5+<4ﬂ-\/§) N (4)

where r,= §2 is the equilibrium distance and N denotes the
number of atoms. Set the minimal energy E,;,=0.

(2) Use a certain local searching algorithm to find the
local minimum from the current configuration of system. If
the local minimal energy is lower than E_;,, then replace
E ., by the present local minimum.

(3) Rank each atom according to its energy obtained by
Eq. (2). Here, the atom that has highest energy is the least-fit
one and is arranged in the top of the queue. Choose one atom
j that will be changed with the probability P(k;) where k;
denotes the rank of atom j, and then, only randomly change
the coordinates of j and keep all other atoms’ positions un-
altered. Accept the new configuration unconditionally. Here
one should repeat step (3) several times to make the system
configuration far away from last local minimum.

(4) Repeat steps (2) and (3) as long as desired.

(5) Return to the minimal energy E,;, and the corre-
sponding configuration.

For an idiographic problem, one can attempt various local
searching algorithms and pitch on the best one. In this paper,
for the LJ cluster optimization problem, we choose the
limited-memory BFGS method (LBFGS) as the local search-
ing algorithm. The BFGS method is an optimization tech-
nique based on a quasi-Newtonian method proposed by
Broyden, Fletcher, Goldfard, and Shanno, which has become
more and more popular and today is accepted as one of the
best quasi-Newton methods [26], but of course, cannot es-
cape the local minima. The LBFGS method proposed by Liu
and Nocedal [25,27] is especially effective with problems
involving a large number of variables. In this method, an
approximation H, to the inverse of the Hessian is obtained
by applying M BFGS updates to a diagonal matrix H, using
information from the previous M steps. The number M de-
termines the amount of storage required by the routine,
which is specified by the user, usually 3=<M <7, and in our
computation M is fixed as 4.
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FIG. 1. The details of -CEO for 7 [1,2]. (a) shows the aver-
age energies obtained by CEO over 200 runs, and (b) exhibits the
success rate of hitting the global minima in 200 runs [28]. For both
(a) and (b), the four plots are the cases N=30, N=40, N=50, and
N=60, respectively. One can find that the best 7 corresponding low-
est average energy and highest success rate is approximate to 1.5.

IV. COMPUTING RESULTS

Similar to EO, we use 7CEO algorithm for the LJ clus-
ter optimization problem, where the probability function of
CEO is P(k) ~k". Since there are N?/2 pairs of interactional
atoms in a LJ cluster of size N, we require aN? updates
where « is a constant and fixed as 100 in the following
computation. In order to avoid falling into the same local
minimum too many times, before running the LBFGS algo-
rithm, we should make the system configuration far away
from last local minimum. Thus we run the LBFGS algorithm
every 20 time steps. That is to say, for a LJ cluster of size N,
the present algorithm runs EO 100N? times and LBFGS 5N?
times in total.

We have carried out the 7~CEO algorithm so many times
for different 7 and N, and find that the algorithm performs
better when 7 is in the interval [1,2]. In Fig. 1, we report the
details for 1 <7=<2, where Fig. 1(a) shows the average en-
ergies obtained by CEO over 200 runs, and Fig. 1(b) exhibits
the success rate R of hitting the global minima [28]. For both
Figs. 1(a) and 1(b), the four plots are the cases N=30, N
=40, N=50, and N=60, respectively. The readers should note
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that, although the difference of average energies between two
different 7 is great in the plot, it is very small in fact. One
can find that, for most cases, the best 7 corresponding lowest
average energy and highest success rate is approximate to
1.5. Only when N=40 does 7=1.6 perform better than 7
=1.5. Therefore, in the following computation, we set 7
=1.5. We have also compared the performance of CEO on
larger L] clusters for 7=1.5 and 7=1.6; the two cases are
pretty much the same thing and 7=1.5 is a little better.

It is clear that if 7 is too small, the algorithm will be close
to a random walk algorithm and the progress of the search
becomes undirected. On the other hand, if 7 is too large, the
process approaches a deterministic local search with only the
poorest atom being changed in each configuration; thus the
results must be of poor quality. Some researchers have sup-
posed that the optimal value of 7 is closely related to a tran-
sition from ergodic to nonergodic behavior [7]. This is an
interesting topic that may become one of our future works,
but now we cannot say anything about it.

We demonstrate that for all the LJ clusters of size N not
more than 100, the global minima can be obtained by using
CEO algorithm. In Fig. 2, we report the performance of CEO
on LJ cluster optimization problem according to 200 inde-
pendent runs. In Fig. 2(a), the black squares, red circles, blue
triangles, and green stars represent the global minima [28],
the average energies obtained by CEO, the average energies
obtained by the random walk (RW) algorithm, and the aver-
age energies obtained by the LBFGS algorithm only, respec-
tively. In the RW algorithm, we replace the EO process with
randomly exchanging the coordinates of a randomly selected
atom and keep other processes unaltered. Since the LBFGS
algorithm is not an active searching algorithm, it could not
deal with the large-scale optimal problems. And when some
active searching process is combined to the LBFGS algo-
rithm, the performance will be sharply improved. One can
see clearly that the CEO performs much better than the RW
algorithm, which exhibits the value of the EO part. However,
the deviation between the result of CEO and global mini-
mum becomes greater and greater when the cluster size gets
larger and larger, which indicates that for very large LJ clus-
ter, CEO may be a poor algorithm. Figure 2(b) shows the
success rate of hitting the global minima in 200 runs; the
inset is the success rate for N> 50, which may be unclear in
the main plot. For both cases N=95 and N=100, the global
optimal solution appears only once in 200 runs. The success
rate decreases sharply for N<<45 and then decreases gently.
According to Wille’s work [29], it is probably some cross-
over related to the finite run time.

Finally, we investigate the average CPU time over 200
runs versus the size of the LJ clusters. The computations
were carried out in a single Pentium III processor (1 GHZ).
From Fig. 3, in the log-log plot, the data can be well fitted by
a straight line with slope 3.886+0.008, which indicates that
the increasing tendency of CPU time T versus cluster size is
approximate to a power-law form as 7~ N>3% That means
the CEO is a polynomial algorithm of order O(N*).

V. CONCLUSION AND DISCUSSION

In this paper, we explored a general-purpose heuristic al-
gorithm for finding high-quality solutions to continuous op-
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FIG. 2. (Color online) The performance of CEO algorithm on
the LJ cluster optimization problem. In (a), the black squares rep-
resent the global minima, and the red circles, blue triangles, and
green stars represent the average energies obtained by CEO, RW
algorithm, and LBFGS only, respectively. (b) shows the success rate
of hitting the global minima in 200 runs. The inset is the success
rate for N> 50, which may be unclear in the main plot.
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FIG. 3. (Color online) The average CPU time (ms) over 200
runs vs the size of LJ clusters. In the log-log plot, the data can be
well fitted by a straight line with slope 3.886+0.008, which indi-
cates that the increasing tendency of CPU time 7 vs cluster size is
approximate to a power-law form as T~ N>3%6,
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FIG. 4. (Color online) The performance of CEO algorithm on
the LJ cluster optimization problem. The black squares and red
circles represent the average energies obtained by CEO and using
EO process attaching the LBFGS algorithm in the end stage only.

timization problems. The computing results indicate that this
simple approach is competitive and sometimes can outper-
form some far more complicated or finely tuned nature-
inspired algorithm on a well-known NP-hard continuous op-
timization problem for LJ clusters. For example, by
combining the genetic algorithm and conjugate-gradient
minimization, one can get global minima for N<<100
[30,31]. Another example is to combine simulated annealing
and gradient minimizer [29]. However, this method is valid
only for very small N (e.g., N=6 and N=13) and the corre-
sponding success rate is much smaller than CEO. According
to EO’s updating rule, it is clear that EO has very high ability
in global searching; thus to combine EO and a strong local
searching algorithm may produce a highly efficient algorithm
for continuous optimization problems.

Recently, several algorithms aiming at the LJ cluster op-
timization problem have been proposed. Cai et al. have
schemed out a so-called fast annealing evolutionary algo-
rithm, which can obtain all the structure of known minimal
energy until N=116 [25]. Lee er al. proposed the
conformational-space annealing method, which finds all
known lowest-energy configurations up to 201 atoms [32].
The adaptive immune optimization algorithm proposed by
Shao et al. can find the optimal structure of N<<80 with a
very high efficiency [33]. And using the cluster similarity
checking method, this upper limit can be pushed to N=200
[34]. These algorithms are more concerned with the special
information about LJ clusters and perform better than CEO
in some aspects. However, we have not found compelling
evidence indicating that there exists a general-purpose algo-
rithm like SA or GA entirely preponderate over CEO on the
LJ cluster optimization problem. It is worthwhile to empha-
size that, in this paper, we do not want to prove that the CEO
is an all-powerful algorithm, even do not want to say that the
CEO is a good choice for chemists on the LJ cluster optimi-
zation problem since a general-purpose method often per-
forms poorer than some special methods aiming at an idio-
graphic problem. The only thing we want to say is that the
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CEO, an extension of the nature-inspired algorithm EO, is a
competitive algorithm and needs more attention.

The previous studies of simulated annealing and the ge-
netic algorithm indicate that in most cases local search tech-
niques are most useful at the end stages of the search. How-
ever, in the current paper, the local search technique
(LBFGS) is inserted in the process of a global search. It just
because the LJ cluster of minimal energy always consists of
some regular substructure, such as icosahedron, Marksdeca-
hedron, face-centered-cubic (fcc) truncated octahedron, and
so on. Using local searches several times during the process
of a global search may be helpful to generate these regular
modules. In Fig. 4, we report the performance using the
LBFGS algorithm once only in the end stage. Clearly, it per-
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forms much more poorly than the present CEO algorithm.
Furthermore, to demonstrate the efficiency of CEO, much

more experiments on various hard continuous optimization

problems should be achieved, which are future works.
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