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» In differential geometry Sasakian manifolds have providehy new examples of
compact Einstein manifolds.
C. P. Boyer, K. Galicki, J. Kollar, A. Futakand others.

» In physics Sasaki-Einstein manifolds are an importantadigmt in the string theory

duality AdS/CFT
J. Gauntlett, D. Martelli, J. Sparks, S.T. Yand others.
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This will follow from important results on th&-energy familiar in the study of K&hler
manifolds. We will consider

» A proof of the convexity of the K-energy along weak geodegfitsdlowing ideas of R.
Berman and B. Berndtson, 2014),

» Uniqueness of cscS metrics (and Sasaki-extremal metocs) fix transversal
holomorphic structure,

» Existence of cscS metries- K-energy bounded below.

The last property gives an obstruction to the existence n$temt scalar curvature Sasakian
metrics.
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The transversal Kahler metrics #(¢, J) are
{wl =w' +dd% | ¢ € C (M) and(w' 4 dd°¢)™ A5 > 0}.
We will consider the space of potentials

Hied) = {6 € C°(M) | (w! + ddfo)™ A > 0}
¢ € M (¢ 3) defines a new Sasakian structirg,, &, @4, 9y):
1
ng =n+2d°%, Py =P —dop®E, gy = 505 0 (1@ @g) + 19 ® 1

The complex structure on the co@éM), and transversal complex structut&,, J) are
unchanged.
> H,3) has a natural Riemannian metric and connectiorMabuchi1986)

> The geodesic equationds = 3|d(|3, -



Canonical metrics

Given a Sasakian manifolM, n, £, @, g) is there a best Sasakian structuré—d(%’j)?



Canonical metrics

Given a Sasakian manifolM, n, £, @, g) is there a best Sasakian structuré—d(%’j)?

Sasaki-EinsteinSatisfy the Einstein equation Rie= Ag (A = 2m).
Sasakian structure must satisty” € c;(F¢,J), a> 0.



Canonical metrics

Given a Sasakian manifolM, n, £, @, g) is there a best Sasakian structuré—d(%’j)?

Sasaki-EinsteinSatisfy the Einstein equation Rie= Ag (A = 2m).
Sasakian structure must satisty” € c;(F¢,J), a> 0.
cscS More generally we require
ammey (Fe DA (W)™ Ay
(@A 2m)

§ = consl(: Ju



Canonical metrics

Given a Sasakian manifolM, n, £, @, g) is there a best Sasakian structuré—d(%’j)?

Sasaki-EinsteinSatisfy the Einstein equation Rie= Ag (A = 2m).
Sasakian structure must satisty” € c;(F¢,J), a> 0.
cscS More generally we require
ammey (Fe A (@)™ 1A
Ju(@Hm™An
Sasaki-extremalkcscS metrics do not always exist. TRetaki invariantis a well-known
obstruction.

§ = consl(: Ju - Zm)



Canonical metrics

Given a Sasakian manifolM, n, £, @, g) is there a best Sasakian structuré—d(%’j)?

Sasaki-EinsteinSatisfy the Einstein equation Rie= Ag (A = 2m).
Sasakian structure must satisty” € c;(F¢,J), a> 0.

cscS More generally we require

_ _ Judme(Fe DAWH™ A )
S = consl(_ T @A 2m
Sasaki-extremalkcscS metrics do not always exist. TRetaki invariantis a well-known
obstruction.

Sasaki-extremahetrics are critical points of th€alabi functional
4
Hey — R
¢ = fM %4, dud’

Critical points are those structures with the gradiergggfreal transversely
holomorphic.
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> K. Cho, A. Futaki, H Ono 200Proved uniqueness of toric cscS structures. The geodesic
equation is jusG = 0, in terms of symplectic potenti&.

» Y. Nitta and K. Sekiya 200®roved uniqueness of Sasaki-Einstein structures, extgndi
arguments of S. Bando and T. Mabuchi.

| have generalized these uniqueness results to prove ur@gs®f cscS structures and more
generally Sasaki-extremal structures.
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Given a Sasakian manifol the K-energyis a functional ot (¢ 3y

7TC1 (S wlm-1
M(o) = //¢t(8(¢t )(“’L)m/\ndt, 5_ 2nmey (Fe) U [wT]

fwr]m

X. X. Chen 2000rewrote this formula to extendA to weakCh1 structures

M) = 2780) —€%(0) + [ 1og(=2

Jwi An
E() : /¢w J/\wJ/\n,

m—1
ERC(g) Z / ¢w2;'_J_1 Awl A Ric, AR,
j=0
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(Cm

Figure : Transversally complex foliation

Thetransversely holomorphic structuan a foliation.Z is given by{(Ua, ¢a)}ac.a Where
{Ua }ac.a coversM

> {Uq}ac.a coversM,

> thepa : Ua — Vo C C™has fibers the leaves of; locally onU,,

» holomorphic isomorphisrg, s : ¢g(Ua NUg) = pa(Ua N Ug) such that
Ya =0apowg ONUy NUg.

» There is a Kahler structuren, on¢gqa (Us) C C™.
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Wy N Awg ATAND

a positive Borel measure dvi.
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The following will be useful

Proposition 2.1
Letp € PSHM, w) N C°(M). Then there exists a sequengec PSHM, w) N C> (M) with
o \( pasi— oo.

We have weak continuity of the Monge-Ampére measure.
Given decreasing sequencgis— ¢1, ..., ¢\, — ¢m_k in PSHM, w) we have

w¢.1/\~~-/\w¢.an/\T/\17—>w¢1/\-~~/\w¢m_k/\T/\n

weak convergence of Borel measures.
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P. Guan and X. Zhang 20®dlved it forD = {r € C |1 < |7| < e} and
U(-,1) = ¢o,U(:,8) = ¢1 € CZ°(M) on D, and showedJ is weakCL:1, meaning
7w +dd°U, >0 isL(M x D).

Then
w + ddPu > is weakCh! geodesic connecting,, wg,, 0 < t < 1.

t=logr.

Proposition 2.2

If u € PSHM, w) N CO then the first variations of the functionafsand £ are
d€lu = (M+ DwPM An, dERC, = mol1 A Ric, An.

And second variations

d,dE(U,) = / (m*w4dd°U, )™ Ay d dCERCU,) = / (7* w+dd°U, )"Ar* Ricy, A7
M M
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Theorem 2.3
Let u- be a weak &1 geodesic connecting two points#y ¢ 3). ThenM (u-) is subharmonic
with respect tor € D. ThusM (w), 0 <t < 1,t= logr, IS convex.

wy, defines a singular metrig? on the transversal canonical bundﬂgs,
The second variation is the current

drdM(U,) = / T, Ti= dd(U(r*w + dUY™) A n
M

But the main problem is to show th@tdefines a non-negative current bhx D, i.e. a Borel
measure.

This is done as in the Kéhler case with a local Bergman keaicximation as in

R. Berman and B. Berndtsson, arXiv: 1405.0401, 2014
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Some ideas of the proof
Bergman kernefor holomorphic functions on the bl C C™ with weight¢.

m! K
P = 1 mKis® ¢

SA3(X)
Keg(X) = sup ——".
SEHO(B,Kg) Jpsnseke

Bk — (dd°¢)™ in total variation.

Choose local psi® so thatdd®® = 7*w + dd°U, ¢, = ®(-, 7). Define
Tk = dd®T A (ddc@)m An, Wy =logpk.
Thenlimg_,oo Tk =T.

(B. Berndtsson 200&PIurisubharmonic variation of Bergman kernels

dd®logKys, >0 onBxD

So
dd®log Bk > —kdd"®,

and
Tk = dd® log Bk A (ddc<19)m An
> —k(dd°®)™1 A p
>0
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For ¢o, ¢1 € H e 3 We have

M(b1) — M(go) > —d(e1, bo) (Callo)) 2,
Calabi Energy Cal(¢) := / (S(¢) — 9w An.
M

Corollary 2.4

Suppose thatn:, &, w] ), (12, €, w3 ) € S(€,J) are two cscS structures. Then there is a
ac Aut(ﬁ?, J), diffeomorphisms preserving the transversely holomarftiiation, so that
a*w) = wl.

2 1

» The proof extends to prove uniqueness of Sasaki-extremnmtatesﬁ;ﬁsg transversely
holomorphic.

One considers eelative K-energyMy, V := 8;¢SJ extremal vector field ori-l?E 3
potential invariant under a maximal comp&tC Aut(.%¢, J).
» SinceM is not known to be strictly convex the argument involves goraximation with

Ms = M+ Fy, }'M(u):/ udu — £(u),
M

wherey is a smooth volume form.
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Fu(u) = [y, udu — £(u) is strictly convexon geodesics.

Supposepy, ¢2 € H (¢ 3) With bothw] = W + dd°¢y andw] = w' + dd°¢; constant scalar
curvature.

Aut(F¢, J) acts onw] andw] with orbits O; andO».
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> SinceF,, is strictly convex, it is proper o®;, O». So there is a minimunjil, q32 on each
orbit.
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» An implicit function theorem argument shows that there athgyl, i = 1, 2 with
¥l = ¢; which are local minimums aMs for s € [0, ¢).



Proof of uniqueness

> SinceF,, is strictly convex, it is proper o1, O,. So there is a minimunjil, q32 on each
orbit.

» An implicit function theorem argument shows that there athgyl, i = 1, 2 with
ng = ¢j which are local minimums aMs for s € [0, €).

» For smalls connect? to 42 by aCh* geodesic. By the strict convexity d#ts ¢ = 12,
which implies, = ¢, andO; = O».



Thank you
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