
Some New Results in Sasakian Geometry

Craig van Coevering
craigvan@ustc.edu.cn

University of Science and Technology of China, Hefei

CIMAT
September 2015



Introduction

◮ This talk will consider new results on Sasakian manifolds.

◮ We will give a uniqueness result oncanonicalSasakian metrics:
constant scalar curvature Sasakian (cscS) metrics, and more generally Sasaki-extremal
metrics.

A Sasakian manifoldis a special type of metric contact manifold, which can be considered as an
odd dimensional version of a Kähler manifold.

In the past 20 years there has been much research from two sources:

◮ In differential geometry Sasakian manifolds have providedmany new examples of
compact Einstein manifolds.
C. P. Boyer, K. Galicki, J. Kollár, A. Futaki, and others.

◮ In physics Sasaki-Einstein manifolds are an important ingredient in the string theory
duality AdS/CFT
J. Gauntlett, D. Martelli, J. Sparks, S.T. Yau, and others.
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Introduction

This will follow from important results on theK-energy, familiar in the study of Kähler
manifolds. We will consider

◮ A proof of the convexity of the K-energy along weak geodesics, (following ideas of R.
Berman and B. Berndtson, 2014),

◮ Uniqueness of cscS metrics (and Sasaki-extremal metrics) for a fix transversal
holomorphic structure,

◮ Existence of cscS metric⇒ K-energy bounded below.

The last property gives an obstruction to the existence of constant scalar curvature Sasakian
metrics.
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Introduction

Definition 1.1
A Riemannian manifold(M, g) is Sasakianif the metric cone(C(M), ḡ), C(M) := R+ × M
andḡ = dr2 + r2g, is Kähler, i.e.̄g admits a compatible almost complex structure J so that
(C(M), ḡ, J) is a Kähler structure.

This is a metric contact structure(M, η, ξ,Φ, g) with an additional integrability condition. One
has

◮ a contact structure

η = dc log r2 =
1

2
Jd log r2

with Reeb vector fieldξ = Jr∂r , a Killing field, and

◮ a strictly pseudoconvex CR structure(D, I), D = kerη.

◮ I induces a transversely holomorphic structure onFξ , the Reeb foliation, with Kähler
form ωT = 1

2dη.

◮ (C(M), J) is an affine varietyY polarized byξ. So(Y, ξ) is the analogue of a polarized
Kähler manifold.

◮ S(ξ, J̄) is the space of Sasakian metrics with transversal complex structureJ̄.
Analogue of the space of Kähler metrics in a polarization.
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Introduction

The transversal Kähler metrics inS(ξ, J̄) are

{ωT
φ = ωT + ddcφ | φ ∈ C∞

b (M) and(ωT + ddcφ)m ∧ η > 0}.

We will consider the space of potentials

H(ξ,̄J) = {φ ∈ C∞
b (M) | (ωT + ddcφ)m ∧ η > 0}

φ ∈ H(ξ,̄J) defines a new Sasakian structure(ηφ, ξ,Φφ, gφ):

ηφ = η + 2dcφ, Φφ = Φ− dφ⊗ ξ, gφ =
1

2
dηφ ◦ (1⊗ Φφ) + ηφ ⊗ ηφ

The complex structure on the coneC(M), and transversal complex structure(Fξ , J̄) are
unchanged.

◮ H(ξ,̄J) has a natural Riemannian metric and connection (T. Mabuchi1986)

◮ The geodesic equation is̈φt =
1
2 |dφ̇t|2gφt

.
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Canonical metrics

Given a Sasakian manifold(M, η, ξ,Φ, g) is there a best Sasakian structure inH(ξ,̄J)?

Sasaki-EinsteinSatisfy the Einstein equation Ricg = λg (λ = 2m).
Sasakian structure must satisfyaωT ∈ c1(Fξ , J̄), a> 0.

cscS More generally we require

sg = const
(

=
∫

M 4mπc1(Fξ ,̄J)∧(ωT)m−1
∧η

∫
M(ωT)m∧η

− 2m
)

Sasaki-extremalcscS metrics do not always exist. TheFutaki invariantis a well-known
obstruction.

Sasaki-extremalmetrics are critical points of theCalabi functional:

H(ξ,̄J)
C

−→ R

φ 7→
∫

M s2
gφ

dµφ

Critical points are those structures with the gradient ofsgφ real transversely
holomorphic.
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Background on results

Uniqueness of cscS structures:

◮ K. Cho, A. Futaki, H Ono 2007Proved uniqueness of toric cscS structures. The geodesic
equation is jusẗG = 0, in terms of symplectic potentialG.

◮ Y. Nitta and K. Sekiya 2009Proved uniqueness of Sasaki-Einstein structures, extending
arguments of S. Bando and T. Mabuchi.

I have generalized these uniqueness results to prove uniqueness of cscS structures and more
generally Sasaki-extremal structures.
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K-energy

Given a Sasakian manifoldM theK-energyis a functional onH(ξ,̄J):

M(φ) = −

∫ 1

0

∫

M
φ̇t(S(φt)− S̄)(ωT

φt
)m ∧ η dt, S̄=

2nπc1(Fξ) ∪ [ωT]m−1

[ωT]m

X. X. Chen 2000rewrote this formula to extendM to weakC1,1 structures

M(φ) =
S̄

m+ 1
E(φ)− ERic(φ) +

∫

M
log

(
ωm
φ
∧ η

ωm

)

ωm
φ ∧ η

E(φ) :=
m
∑

j=0

∫

M
φω

m−j
φ

∧ ωj ∧ η,

ERic(φ) :=

m−1
∑

j=0

∫

M
φω

m−j−1
φ

∧ ωj ∧ Ricω ∧η,
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X. X. Chen 2000rewrote this formula to extendM to weakC1,1 structures

M(φ) =
S̄

m+ 1
E(φ)− ERic(φ) +

∫

M
log

(
ωm
φ
∧ η

ωm

)

ωm
φ ∧ η

E(φ) :=
m
∑

j=0

∫

M
φω

m−j
φ

∧ ωj ∧ η,

ERic(φ) :=

m−1
∑

j=0

∫

M
φω

m−j−1
φ

∧ ωj ∧ Ricω ∧η,



Convexity of K-energy
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Figure :Transversally complex foliation

Thetransversely holomorphic structureon a foliationFξ is given by{(Uα, ϕα)}α∈A where
{Uα}α∈A coversM

◮ {Uα}α∈A coversM,

◮ theϕα : Uα → Vα ⊂ Cm has fibers the leaves ofFξ locally onUα,

◮ holomorphic isomorphismgαβ : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) such that

ϕα = gαβ ◦ ϕβ on Uα ∩ Uβ .

◮ There is a Kähler structureωα onϕα(Uα) ⊂ Cm.
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Convexity of K-energy

Analysis is done on the foliation charts.

Let Tα be a closed degree(k, k) current defined onVα so thatg∗
αβ

Tα = Tβ .

PSH(M, ω) := {φ | φ u.s.c. inv. underξ and plurisubharmonic on each chartVα}

Givenφ1, . . . , φm−k ∈ PSH(M, ω), in eachVα we define (E. Bedford and B. Taylor 1976):

ωφ1 ∧ · · · ∧ ωφm−k
∧ Tα

a positive Borel measure onVα, and we take the product measure on each chart which is easily
seen to be invariant of the chart by Fubini’s theorem, defining

ωφ1 ∧ · · · ∧ ωφm−k
∧ T ∧ η

a positive Borel measure onM.
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Convexity of K-energy

The following will be useful

Proposition 2.1
Letφ ∈ PSH(M, ω) ∩ C0(M). Then there exists a sequenceφi ∈ PSH(M, ω) ∩ C∞(M) with
φi ց φ as i→ ∞.

We have weak continuity of the Monge-Ampère measure.

Given decreasing sequencesφi
1 → φ1, . . . , φ

i
m−k → φm−k in PSH(M, ω) we have

ωφi
1
∧ · · · ∧ ωφi

m−k
∧ T ∧ η → ωφ1 ∧ · · · ∧ ωφm−k

∧ T ∧ η

weak convergence of Borel measures.
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Convexity of K-energy

Let D ⊂ C then we have theHomogeneous Monge-Ampère equation

(π∗ω + ddcUτ )
m+1 = 0 for Uτ ∈ PSH(M × D, π∗ω),

P. Guan and X. Zhang 2012solved it forD = {τ ∈ C | 1 ≤ |τ | ≤ e} and
U(·, 1) = φ0,U(·, e) = φ1 ∈ C∞

b (M) on∂D, and showedU is weakC1,1, meaning

π∗ω + ddcUτ ≥ 0 is L∞(M × D).

Then
ω + ddcut ≥ is weakC1,1 geodesic connectingωφ0 , ωφ1 , 0 ≤ t ≤ 1.

t = logτ .

Proposition 2.2
If u ∈ PSH(M, ω) ∩ C0 then the first variations of the functionalsE andERic are

dE|u = (m+ 1)ωm
u ∧ η, dERic|u = mωm−1

u ∧ Ricω ∧η.

And second variations

dτdc
τE(Uτ ) =

∫

M
(π∗ω+ddcUτ )

m+1∧η dτdc
τE

Ric(Uτ ) =

∫

M
(π∗ω+ddcUτ )

m∧π∗ Ricω ∧η.
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Convexity of K-energy

Theorem 2.3
Let uτ be a weak C1,1 geodesic connecting two points inH(ξ,̄J). ThenM(uτ ) is subharmonic
with respect toτ ∈ D. ThusM(ut), 0 ≤ t ≤ 1, t = logτ , is convex.

ωm
uτ defines a singular metriceΨ on the transversal canonical bundleKFξ

,
The second variation is the current

dτdc
τM(Uτ ) =

∫

M
T, T := ddc(Ψ(π∗ω + ddcU)m) ∧ η

But the main problem is to show thatT defines a non-negative current onM × D, i.e. a Borel
measure.

This is done as in the Kähler case with a local Bergman kernel approximation as in

R. Berman and B. Berndtsson, arXiv: 1405.0401, 2014.
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Some ideas of the proof
Bergman kernelfor holomorphic functions on the ballB ⊂ Cm with weightφ.

βk =
m!

km
Kkφe−kφ

Kkφ(x) = sup
s∈H0(B,KB)

s∧ s̄(x)
∫

B s∧ s̄e−kφ
.

βk → (ddcφ)m in total variation.

Choose local pshΦ so thatddcΦ = π∗ω + ddcU, φτ = Φ(·, τ). Define

Tk = ddcΨk ∧ (ddcΦ)m ∧ η, Ψk = logβk.

Then limk→∞ Tk = T.

(B. Berndtsson 2006) Plurisubharmonic variation of Bergman kernels

ddc logKkφτ
≥ 0 onB× D

So
ddc logβk ≥ −kddcΦ,

and

Tk = ddc logβk ∧ (ddcΦ)m ∧ η

≥ −k(ddcΦ)m+1 ∧ η

≥ 0
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Consequences of convexity

Forφ0, φ1 ∈ H(ξ,̄J) we have

M(φ1) −M(φ0) ≥ −d(φ1, φ0)
(

Cal(φ0)
) 1

2 ,

Calabi Energy Cal(φ) :=
∫

M
(S(φ) − S̄)2ωm

φ ∧ η.

Corollary 2.4
Suppose that(η1, ξ, ω

T
1 ), (η2, ξ, ω

T
2 ) ∈ S(ξ, J̄) are two cscS structures. Then there is a

a ∈ Aut(Fξ , J̄), diffeomorphisms preserving the transversely holomorphic foliation, so that
a∗ωT

2 = ωT
1 .

◮ The proof extends to prove uniqueness of Sasaki-extremal structures,∂#
gT Sg transversely

holomorphic.
One considers arelative K-energyMV, V := ∂

#
gT Sg extremal vector field onHG

(ξ,̄J)
,

potential invariant under a maximal compactG ⊂ Aut(Fξ , J̄).

◮ SinceM is not known to be strictly convex the argument involves an approximation with

Ms := M+ sFµ, Fµ(u) =
∫

M
u dµ − E(u),

whereµ is a smooth volume form.
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Proof of uniqueness
Fµ(u) =

∫

M u dµ− E(u) is strictly convexon geodesics.

Supposeφ1, φ2 ∈ H(ξ,̄J) with bothωT
1 = ωT + ddcφ1 andωT

2 = ωT + ddcφ2 constant scalar
curvature.

Aut(Fξ , J̄) acts onωT
1 andωT

2 with orbitsO1 andO2.

O1 O2

min
O1

Fµ

min
O2

Fµ

minMs
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Proof of uniqueness

◮ SinceFµ is strictly convex, it is proper onO1,O2. So there is a minimum̂φ1, φ̂2 on each
orbit.

◮ An implicit function theorem argument shows that there are pathsψi
s, i = 1, 2 with

ψi
0 = φ̂i which are local minimums ofMs for s∈ [0, ǫ).

◮ For smallsconnectψ1
s toψ2

s by aC1,1 geodesic. By the strict convexity ofMs ψ
1
s = ψ2

s ,
which impliesφ̂1 = φ̂2 andO1 = O2.
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