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We will consider deformingonstant scalar curvature SasakjescS) manifolds from the
perspective of5IT stability, using the approach &. K. Donaldsorand others.

» Tristan C. Collins, Gabor Székelyhidi 20#i2fined K-semistability for Sasakian
manifolds and proved
cscS= K-semistable

» As with Kéhler manifolds one has the conjecture

Existence of cscS metrie= K-polystable

» At least=- should be provable.
» We prove that if( M, n, ®¢) is cscS andp is a contact complex structure closedg, then

(M, n, ®) K-polystable=- 3 csc3M, n, ') with same trans. complex structure
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Sasakian manifolds

Definition 1.1

A Riemannian manifoldM, g) is Sasakiarif the metric con§C(M), g), C(M) := R4 x M
andg = dr? 4 r2g, is Kahler, i.e.g admits a compatible almost complex structure J so that
(C(M), g,J) is a Kahler structure.

This is a metric contact structure with an additional inédgjity condition. One has
» a contact structure
n = d°logr = Jdlogr
with Reeb vector field = Jrdy, a Killing field, and
» a strictly pseudoconvex CR structui@, ), D = kern.

» | induces a transversely holomorphic structureZan the Reeb foliation, with Kéhler
formw’ = Zdn.
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Sasakian manifolds

(Cm

A transversely holomorphic structum a foliation.7 is given by{(Ua, ¢a)}ac.4 Where
{Ua }ac.a coversM

> {Ua}aea coversM,

> thepq : Uy — C™ 1 has fibers the leaves OF¢ locally onUq,

» there are holomorphic isomorphisip g : wg(Ua NUg) = wa(Ua N Ug) such that
Yo =0apowg ONUy NUg.

It is well known that the con¥ := C(M) U {o} of a Sasakian manifold is affine algebraic
variety with an algebraic action of son¥ = (C*)" and can be embedded

Y < N,

with T" acting diagonally.
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Fix a contact manifoldM, 7, &).

Definition 2.1
A (1, 1)-tensor field® : TM — TM on a contact manifoldM, n, £) is called analmost
contact-complex structurié

D=0, % = —id+£ Q1.
An almost contact-complex structure is callégcontactif in addition, L ® = 0.

Definition 2.2
An almost contact-complex structufeon a contact manifoldM, ), £) is compatible withy if

dn(®X, ®Y) = dn(X,Y), and dy(X, ®X) > 0for X € ker(n), X # 0.

If ® is compatible with;, (M, n, ®) defines a Riemannian metric

9o (X, Y) = dn(X, ®Y) + n(X)n(Y),

and(n, &, ,ge) is called acontact metric structuren M.
This metric structure is called K-contact metric structure i€ ® = 0.
Furthermore, it is aSasakian structuré in addition

Ne (X, Y) := [X, Y] + ([®X, Y] + [X, ®Y]) — [OX,®Y] =0 forall X,Y € T'(TM).
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The spacéC of K-contact metric structures is an infinite dimensionahk&i manifold.
The subspace of Sasakian, transversely integrable, wteséf™ C K is an analytic subvariety.

Defineg to be the group oétrict contactomorphisrof (M, 7, £). G acts onkC, forg € G

(9, ®) — g, 1 Dg..

The Lie algebra of is

Lie(G) = ({X € I'(TM) : Lxn =0}, [, .]))( (CeeM), {-,-})

—  Hx =n(X) ’

Theorem 2.3 (W. He 2011, S. K. Donaldson 1997)

The action oG on K is Hamiltonian with equivariant moment map: £ — G*

P:C° (M) = I'(Te, ), P(f) = LxPo

Q: Tp,K — C°(M), Q(A) = ds' (A)

Then
(Q(A),H) 2 = Q(A,P(H)), AcTg,K, He C®(M).
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s' is the scalar curvature of the connection/n@’0 induced by the Chern connection.
Butwhen® € K, sT(®) — ) = (®) — s, the normalized scalar curvature @ .

Although, a complexificatio;C does not exist, the Lie algebra
Lie(G) ® C = C°(M, C) acts onk.

If & € KI" andf € C3°(M), then/—1f acts onw' by
Loxw' = —/—196f.

ThusG® induces a holomorphic foliation o™ whose leaves are transversal Kahler
classes.
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K-semistability

The coneY = C(M) U {0} over a Sasakian manifoldM, g, n, £, @) is an affine variety.
The Reeb field generates a tords C Aut(Y). And we have a grading by weights

HO(Y,Ov) = >~ HO(Y,0v)a (1)
aeEWT

Definition 2.4
AT-equivariant test configuratiofor Y is a set of T-homogeneous elemdfis..., fy} that
generate H(Y, Ov) in sufficiently high degrees together with a set of intedavs, ..., W }.

Geometrically{f1, ..., fc} generate an embedding
Y — (Ck,

and consider th€*-action onCX with weights{w, ..., w}. Then the flat limitY of the
C*-orbit over 0 defines a flat family of schemes o@erin addition to theT-action Yy has the
inducedC*-action.
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Making use of the Hilbert series ¢1) T. Collins and G. Székelyhidiefined Donaldson-Futaki
invariant of a test configuration.

Definition 2.5
A polarized affine varietyY, &) is K-semistabléf, for every torus T¢ € Lie(T), and every
T-equivariant test configuration with central fibeg, Yhe Donaldson-Futaki invariant satisfies

FUt(Y(J: 57 'L)) >0

with v a generator of the induce@* action on the central fiber.

It is K-polystableif the equality holds if and only if the T-equivariant teshéiguration is a
product configuration.

The following extends the results 8f K. Donaldson 200%r Kahler manifolds and. Ross
and R. Thomas 200®r quasi-regular Sasakian manifolds.

Theorem 2.6 (T. Collins and G. Székelyhidi 2012)

If (Y = C(M) U {0}, £) admits a constant scalar curvature Sasakian cone metrigiyvatently
(M, ¢,J) admits a cscS metric, thelY, &) is K-semistable.
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Complex deformations
We considerC up to the action o and the relevant complexes.

There is a deformation theory of the foliatigi#, Jo), wherelJy is the transversal complex
structure toby € K™, Let AX := T'(AY* @ v(#)10) then

0 A Py at Py g2 @
ThenH(A) is the space of first order deformations.

Supposebg € K and let
P :C°(M) — T'(Te,K)

be the operator representing the infinitesimal actiog oh /C, soP(f) = Lx, ®o for
f € Cp°(M). We extend it by complex linearity to

P :C5°(M,C) — I'(Tg, K).
We have the transversally elliptic subcomplgxf (2):
0 CM,C) 25 To k2 BC A2 = - )

HY(B) is the space of first order deformationsdaf compatible with(, ¢).
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Proposition 2.7
There is a natural homomorphismt8) — H1(A) which is injective if I—E’l(M) =0andis
surjective if I-E’Z(M) =0.

LetG C G be the stabilizer ooy, G = Aut(M, ga, 1, §, o) With g = Lie(G).

The following technique of reducing to finite dimensions waseloped by G. Székelyhidi and
T. Bronnle.

Proposition 2.8
There exists a G-equivariant malpfrom a neighborhood U @ in H1(B) to a neighborhood
of ®q in K such that theg¢ orbit of every integrableb close to® intersects the image & . If
x and ¥ lie in the same & orbit in U then¥(x) and ¥ (x') are in the same&® orbit in /C.
Moreover, we can assume that

po¥ =(s' —How

takes value iny.
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Finite dimensions

stable orbit

. unstable orbit
Figure :C* acting onC?

Suppose€M, ga,, 1, &, Po) is cscS.

The perturbed slic& : HY(B) D U — K is no longer holomorphic, but the moment map
restricts

po=poW:U— g
and is close enough to the moment map of the flat Kéhler steiti) wo, Jo) one can still
apply theKempf-Ness theorerto show:

v € U polystablefor G¢ = 3vp € GT - v : up(vo) = 0.

Theorem 2.9

Let(M,n, &, ®) be a cscS manifold an@M, n, £, @) a nearby Sasakian manifold with
transverse complex structudé. Then if(M, n, £, ®') is K-polystable, then there is a cscS
structure in the spacé&(¢,J).
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This is a Kéhler example, or regular Sasaki-Einstein, bgités a good illustration of the above.

LetV be a 7-dim complex vector space, did— Grz(V) the tautological bundle.
Q € A%(Vv*) defines a sectionrg of A2U*.
Now a 3-plandl € Grz(A?V*) defines a subvarietf; C Grz(V) by
Xo = {ZE GI’3(V) : UQ(Z) =0,VQ € H}
Xr7 is a smooth Fano 3-fold fdd € Gr3(A2V*) generic.
LetV = S°(C?), symmetric product of? with SL(2, C) action. Then
A2v* = S1(C?) @ $(C?) g S(C?),

and the 3-planély = $(C?) C A2V* definesXy = Xy, with a PSL(2, C)-action, the
Mukai-Umemura manifold
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Deformations
The tangent space of GA2V*) atIly = S(C?) is

TGeAV) =¢® (Sos?) =s2psfp2fapSas

The action of SIV) gives a map

sI(V) — T Gra(A?V*).

Taking the quotient gives
HY(B) = HY(A) = S (C?).

We haveG® = PSL(2, C) and there are four orbit types, besidé€s, on $(C?):
1. The orbits of polynomials having no zero of multiplicity >8dsed).
2. The orbits of polynomials with 2 distinct zeros of multiptic4 (closed with stabilizer
C* C PSL(2,C)).

3. The orbits of polynomials with a zero of multiplicity 4 ancher zeros of multiplicity <4
(not closed, contain type 2 orbits in closure).

4. The orbits of polynomials having a zero of multiplicity >4ofrclosed with 0 in closure).

Proposition 3.1

Small deformations of gdn orbits of types 1 and 2 admit K-E metrics while those in txrloif
type 3 and 4 do not.
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3-Sasakian manifolds

Definition 3.2

A Riemannian manifol@M, g) is 3-Sasakiarif the metric cong§C(M), 9) is hyperkahler, i.eg
admits a compatible almost complex structurgs & = 1, 2, 3 such that(C(M), 9, J1, J2, J3)
is a hyperkahler structure.

(M, g) is equipped with three Sasaki structu(és i, ¢i), i = 1,2, 3. The Reeb vector fields
&, k= 1,2 3satisfy[g;, §] = —2eW¢, and thus generate (1).

Acting bye?! e Sp(1) defines a real structure dit(A) = H(B).

Proposition 3.3
Anydecomposablelement of

H1(A) = ReH(A) ®r C

is polystable, therefore a small such element gives a S&Saktein deformation.
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We considetoric 3-Sasakian 7-manifold<C( Boyer, K. Galicki, B. Mann, E. Rees, 1998

» toric means there is a 2-tord& C Aut(M, g, £1, &2, £3), preserving all 3 Sasakian
structures.

» They are 3-Sasakian quotien&'—1 /T by a torusT® C Sp(n), n —k = 2.
» There are infinitely many examples for edck= by(M) > 1.
Lemma 3.4 (van Coevering, N.Y. Journal of Math. 2012)
If Z is the twistor space of a toric 3-Sasakian 7-manifold M, then
HY(2,02) = HY(Z,02)",
dimcHY(Z,0z) =by(M) —1=k—1.
And Z has a local b(M) — 1-dimensional space of deformations.
Theorem 3.5
Let (M, g) be a toric 3-Sasakian 7-manifold. Then g is in an effectivaex

b2(M) — 1-dimensional family{g: }tezs, U C C22M—1 with gy = g, of Sasaki-Einstein
metrics where gis not 3-Sasakian for # 0.

Since the deformation is invariant B C Aut(M, g, &1), a maximal torus, these deformations
are trivially polystable.
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See figure 2 for the isometry groups of the metrics.
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Figure :Space of Sasaki-Einstein metrics
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One defines W. Ding and G. Tian’s energy functioRgl on

H(n, &, @) ={p € C¥(M) : ny A (dng)™ #0}, 1y =n+d%
and shows that fofM, 7, £, ®) be Sasaki-Einstein it igroperon H(n, £, ®) N kerP-+.

Corollary 4.2

Let (M, n) be a contact manifold. Then the moduli space of compatibdalédinstein
structures® € K™ modulo the contactomorphism grogipis a complex space.

Corollary 4.3

There exists transversal holomorphic foliations of Sasge, with ¢ (F¢) = adn, a > 0,
which do not admit Sasaki-Einstein structures.

Consider the explicit Sasaki-Einstein manifold of J. GinhtD. Martelli, J. Sparks, D.
WaldramYP-9(Xo), g < q< pgedp, q) = 1, with Xg the Mukai-Umemura 3-fold. Then
deformationsyP:%(Xyy) with IT in orbits of type 3 or 4 provide the counter examples.
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