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Introduction

This talk considers K-polystability and deformations of constant scalar curvature Sasakian
metrics. Most of this talk is joint work with Carl Tippler.

We will consider deformingconstant scalar curvature Sasakian(cscS) manifolds from the
perspective ofGIT stability, using the approach ofS. K. Donaldsonand others.

◮ Tristan C. Collins, Gábor Székelyhidi 2012defined K-semistability for Sasakian
manifolds and proved

cscS⇒ K-semistable.

◮ As with Kähler manifolds one has the conjecture

Existence of cscS metric⇔ K-polystable.

◮ At least⇒ should be provable.

◮ We prove that if(M, η,Φ0) is cscS andΦ is a contact complex structure close toΦ0, then

(M, η,Φ) K-polystable⇒ ∃ cscS(M, η,Φ′) with same trans. complex structure.
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Sasakian manifolds

Definition 1.1
A Riemannian manifold(M, g) is Sasakianif the metric cone(C(M), ḡ), C(M) := R+ × M
andḡ = dr2 + r2g, is Kähler, i.e.̄g admits a compatible almost complex structure J so that
(C(M), ḡ, J) is a Kähler structure.

This is a metric contact structure with an additional integrability condition. One has

◮ a contact structure
η = dc log r = Jd log r

with Reeb vector fieldξ = Jr∂r , a Killing field, and

◮ a strictly pseudoconvex CR structure(D, I), D = kerη.

◮ I induces a transversely holomorphic structure onFξ , the Reeb foliation, with Kähler
form ωT = 1

2dη.
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Sasakian manifolds

Fξ

ϕα

Cm

Uα

A transversely holomorphic structureon a foliationFξ is given by{(Uα, ϕα)}α∈A where
{Uα}α∈A coversM

◮ {Uα}α∈A coversM,
◮ theϕα : Uα → Cm−1 has fibers the leaves ofFξ locally onUα,
◮ there are holomorphic isomorphismgαβ : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) such that

ϕα = gαβ ◦ ϕβ on Uα ∩ Uβ .

It is well known that the coneY := C(M) ∪ {o} of a Sasakian manifold is anaffine algebraic
varietywith an algebraic action of someTr = (C∗)r and can be embedded

Y →֒ C
N,

with Tr acting diagonally.
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Space of Sasakian structures

Fix a contact manifold(M, η, ξ).

Definition 2.1
A (1, 1)-tensor fieldΦ : TM → TM on a contact manifold(M, η, ξ) is called analmost
contact-complex structureif

Φξ = 0, Φ2 = −id + ξ ⊗ η.

An almost contact-complex structure is calledK-contactif in addition,LξΦ = 0.

Definition 2.2
An almost contact-complex structureΦ on a contact manifold(M, η, ξ) is compatible withη if

dη(ΦX,ΦY) = dη(X,Y), and dη(X,ΦX) > 0 for X ∈ ker(η), X 6= 0.

If Φ is compatible withη, (M, η,Φ) defines a Riemannian metric

gΦ(X,Y) =
1

2
dη(X,ΦY) + η(X)η(Y),

and(η, ξ,Φ, gΦ) is called acontact metric structureon M.
This metric structure is called aK-contact metric structure ifLξΦ = 0.
Furthermore, it is aSasakian structureif in addition

NΦ(X,Y) := [X,Y] + Φ([ΦX,Y] + [X,ΦY])− [ΦX,ΦY] = 0 for all X,Y ∈ Γ(TM).
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Moment map
The spaceK of K-contact metric structures is an infinite dimensional Kähler manifold.
The subspace of Sasakian, transversely integrable, structuresKint ⊂ K is an analytic subvariety.

DefineG to be the group ofstrict contactomorphismof (M, η, ξ). G acts onK, for g ∈ G

(g,Φ) 7→ g−1
∗ Φg∗.

The Lie algebra ofG is

Lie(G) =
(

{X ∈ Γ(TM) : LXη = 0}, [·, ·]
) ∼=

(

C∞
b (M), {·, ·}

)

X 7→ HX = η(X)
.

Theorem 2.3 (W. He 2011, S. K. Donaldson 1997)
The action ofG onK is Hamiltonian with equivariant moment mapµ : K → G∗

µ(Φ) = sT(Φ) − sT
0 .

P : C∞
b (M) → Γ(TΦ0K), P(f ) = LXf Φ0

Q : TΦ0K → C∞
b (M), Q(A) = dsT(A)

Then
〈Q(A),H〉L2 = Ω(A,P(H)), A ∈ TΦ0K, H ∈ C∞

b (M).
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◮ sT is the scalar curvature of the connection onΛm,0
b induced by the Chern connection.

◮ But whenΦ ∈ Kint, sT(Φ)− sT
0 = s(Φ)− s0, the normalized scalar curvature ofgΦ.

◮ Although, a complexificationGC does not exist, the Lie algebra
Lie(G)⊗ C ∼= C∞

b (M,C) acts onK.

◮ If Φ ∈ Kint andf ∈ C∞
b (M), then

√
−1f acts onωT by

LΦXf ω
T = −

√
−1∂∂̄f .

ThusGC induces a holomorphic foliation onKint whose leaves are transversal Kähler
classes.
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K-semistability

The coneY = C(M) ∪ {0} over a Sasakian manifold(M, g, η, ξ,Φ) is an affine variety.

The Reeb fieldξ generates a torusT ⊂ Aut(Y). And we have a grading by weights

H0(Y,OY) =
∑

α∈WT

H0(Y,OY)α (1)

Definition 2.4
A T-equivariant test configurationfor Y is a set of T-homogeneous elements{f1, ..., fk} that
generate H0(Y,OY) in sufficiently high degrees together with a set of integers{w1, ...,wk}.

Geometrically,{f1, ..., fk} generate an embedding

Y →֒ C
k,

and consider theC∗-action onCk with weights{w1, ...,wk}. Then the flat limitY0 of the
C∗-orbit over 0 defines a flat family of schemes overC. In addition to theT-actionY0 has the
inducedC∗-action.
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and consider theC∗-action onCk with weights{w1, ...,wk}. Then the flat limitY0 of the
C∗-orbit over 0 defines a flat family of schemes overC. In addition to theT-actionY0 has the
inducedC∗-action.
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K-semistablility

Making use of the Hilbert series of(1) T. Collins and G. Székelyhididefined Donaldson-Futaki
invariant of a test configuration.

Definition 2.5
A polarized affine variety(Y, ξ) is K-semistableif, for every torus T,ξ ∈ Lie(T), and every
T-equivariant test configuration with central fiber Y0, the Donaldson-Futaki invariant satisfies

Fut(Y0, ξ, υ) ≥ 0

with υ a generator of the inducedC∗ action on the central fiber.
It is K-polystableif the equality holds if and only if the T-equivariant test configuration is a
product configuration.

The following extends the results ofS. K. Donaldson 2005for Kähler manifolds andJ. Ross
and R. Thomas 2008for quasi-regular Sasakian manifolds.

Theorem 2.6 (T. Collins and G. Székelyhidi 2012)
If (Y = C(M) ∪ {0}, ξ) admits a constant scalar curvature Sasakian cone metric, equivalently
(M, ξ, J̄) admits a cscS metric, then(Y, ξ) is K-semistable.
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Complex deformations

We considerK up to the action ofGC and the relevant complexes.

There is a deformation theory of the foliation(Fξ , J̄0), whereJ̄0 is the transversal complex

structure toΦ0 ∈ Kint. LetAk := Γ(Λ0,k
b ⊗ ν(F )1,0) then

0 → A0 ∂̄b−→ A1 ∂̄b−→ A2 → · · · . (2)

ThenH1(A) is the space of first order deformations.

SupposeΦ0 ∈ Kint and let
P : C∞

b (M) → Γ(TΦ0K)

be the operator representing the infinitesimal action ofG onK, soP(f ) = LXf Φ0 for
f ∈ C∞

b (M). We extend it by complex linearity to

P : C∞
b (M,C) → Γ(TΦ0K).

We have the transversally elliptic subcomplexB of (2):

0 → C∞
b (M,C)

P−→ TΦ0K
∂̄b−→ B ⊂ A2 → · · · . (3)

H1(B) is the space of first order deformations ofΦ0 compatible with(η, ξ).
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Finite dimensional slice

Proposition 2.7
There is a natural homomorphism H1(B) → H1(A) which is injective if H0,1

b (M) = 0 and is

surjective if H0,2
b (M) = 0.

Let G ⊂ G be the stabilizer ofΦ0, G = Aut(M, gΦ0 , η, ξ,Φ0) with g = Lie(G).

The following technique of reducing to finite dimensions wasdeveloped by G. Székelyhidi and
T. Brönnle.

Proposition 2.8
There exists a G-equivariant mapΨ from a neighborhood U of0 in H1(B) to a neighborhood
ofΦ0 in K such that theGc orbit of every integrableΦ close toΦ0 intersects the image ofΨ. If
x and x′ lie in the same GC orbit in U thenΨ(x) andΨ(x′) are in the sameGc orbit in K.
Moreover, we can assume that

µ ◦Ψ = (sT − sT
0 ) ◦Ψ

takes value ing.
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Finite dimensions

unstable orbit

stable orbit

Figure :C∗ acting onC2

Suppose(M, gΦ0 , η, ξ,Φ0) is cscS.

The perturbed sliceΨ : H1(B) ⊃ U → K is no longer holomorphic, but the moment map
restricts

µ0 = µ ◦Ψ : U → g∗,

and is close enough to the moment map of the flat Kähler structure (U, ω0, J0) one can still
apply theKempf-Ness theoremto show:

v ∈ U polystablefor GC ⇒ ∃v0 ∈ GC · v : µ0(v0) = 0.

Theorem 2.9
Let (M, η, ξ,Φ) be a cscS manifold and(M, η, ξ,Φ′) a nearby Sasakian manifold with
transverse complex structurēJ′. Then if(M, η, ξ,Φ′) is K-polystable, then there is a cscS
structure in the spaceS(ξ, J̄′).
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Mukai-Umemura manifold

This is a Kähler example, or regular Sasaki-Einstein, but itgives a good illustration of the above.

Let V be a 7-dim complex vector space, andU → Gr3(V) the tautological bundle.
Ω ∈ Λ2(V∗) defines a sectionσΩ of Λ2U∗.
Now a 3-planeΠ ∈ Gr3(Λ2V∗) defines a subvarietyXΠ ⊂ Gr3(V) by

XΠ = {z∈ Gr3(V) : σΩ(z) = 0, ∀Ω ∈ Π}.

XΠ is a smooth Fano 3-fold forΠ ∈ Gr3(Λ2V∗) generic.

Let V = S6(C2), symmetric product ofC2 with SL(2,C) action. Then

Λ2V∗ = S10(C2)⊕ S6(C2)⊕ S2(C2),

and the 3-planeΠ0 = S2(C2) ⊂ Λ2V∗ definesX0 = XΠ0 with a PSL(2,C)-action, the
Mukai-Umemura manifold.
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Deformations
The tangent space of Gr3(Λ

2V∗) atΠ0 = S2(C2) is

T Gr3(Λ
2V∗) = S2 ⊗

(

S6 ⊕ S10) = S12 ⊕ S10 ⊕ 2S8 ⊕ S6 ⊕ S4

The action of SL(V) gives a map

sl(V) → T Gr3(Λ
2V∗).

Taking the quotient gives
H1(B) = H1(A) = S8(C2).

We haveGC = PSL(2,C) and there are four orbit types, besides{0}, onS8(C2):

1. The orbits of polynomials having no zero of multiplicity > 3 (closed).

2. The orbits of polynomials with 2 distinct zeros of multiplicity 4 (closed with stabilizer
C∗ ⊂ PSL(2,C)).

3. The orbits of polynomials with a zero of multiplicity 4 and other zeros of multiplicity <4
(not closed, contain type 2 orbits in closure).

4. The orbits of polynomials having a zero of multiplicity >4 (not closed with 0 in closure).

Proposition 3.1
Small deformations of X0 in orbits of types 1 and 2 admit K-E metrics while those in orbits of
type 3 and 4 do not.
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3-Sasakian manifolds

Definition 3.2
A Riemannian manifold(M, g) is 3-Sasakianif the metric cone(C(M), ḡ) is hyperkähler, i.e.̄g
admits a compatible almost complex structures Jα, α = 1, 2, 3 such that(C(M), ḡ, J1, J2, J3)
is a hyperkähler structure.

(M, g) is equipped with three Sasaki structures(ξi , ηi , φi), i = 1, 2, 3. The Reeb vector fields
ξk, k = 1, 2, 3 satisfy[ξi , ξj ] = −2εijkξk, and thus generatesp(1).

Acting by e
π

2 j ∈ Sp(1) defines a real structure onH1(A) = H1(B).

Proposition 3.3
Anydecomposableelement of

H1(A) = ReH1(A) ⊗R C

is polystable, therefore a small such element gives a Sasaki-Einstein deformation.
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Toric 3-Sasakian 7-manifolds

We considertoric 3-Sasakian 7-manifolds (C. Boyer, K. Galicki, B. Mann, E. Rees, 1998):

◮ toric means there is a 2-torusT2 ⊂ Aut(M, g, ξ1, ξ2, ξ3), preserving all 3 Sasakian
structures.

◮ They are 3-Sasakian quotients,S4n−1//Tk by a torusTk ⊂ Sp(n), n− k = 2.
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Toric 3-Sasakian 7-manifolds

See figure 2 for the isometry groups of the metrics.

Cb2−1

Rb2−1

T3

T3 ⋊ Z2

T2 × Sp(1)

Figure :Space of Sasaki-Einstein metrics



Further results

Of course one would like to strengthen the result of T. Collins and G. Székelyhidi to

(M, η, ξ,Φ) cscS ⇒ (Y, ξ) is K-polystable.

I do not have a proof, but one can prove:

Theorem 4.1
Let (M, η, ξ,Φ) be Sasaki-Einstein, then(Y, ξ) is K-polystable.

One defines W. Ding and G. Tian’s energy functionalFωT on

H(η, ξ,Φ) = {φ ∈ C∞(M) : ηφ ∧ (dηφ)
m 6= 0}, ηφ = η + dcφ

and shows that for(M, η, ξ,Φ) be Sasaki-Einstein it isproperonH(η, ξ,Φ) ∩ kerP⊥.

Corollary 4.2
Let (M, η) be a contact manifold. Then the moduli space of compatible Sasaki-Einstein
structuresΦ ∈ Kint modulo the contactomorphism groupG is a complex space.

Corollary 4.3
There exists transversal holomorphic foliations of Sasakitype, with c1(Fξ) = adη, a > 0,
which do not admit Sasaki-Einstein structures.

Consider the explicit Sasaki-Einstein manifold of J. Gauntlett, D. Martelli, J. Sparks, D.
WaldramYp,q(X0),

p
2 < q < p gcd(p, q) = 1, with X0 the Mukai-Umemura 3-fold. Then

deformationsYp,q(XΠ) with Π in orbits of type 3 or 4 provide the counter examples.
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