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» We will consider variations of th&illing Spinor equation
Vxyp =cX- 1, weF(E)v CER\{O}v (1)

on aSasaki-Einsteimanifold.

» We will consider deformingonstant scalar curvatuasaki manifolds from the

perspective of5IT stability, using the approach &. K. Donaldsorand others.
(joint work with Carl Tipple)

> Tristan C. Collins, Gabor Székelyhidi 208i2fined K-semistability for Sasaki manifolds and
proved
cscS=- K-semistable
> As with K&hler manifolds one has the conjecture

Existence of cscS metrie=> K-polystable
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Sasaki manifolds

Definition 1.1

A Riemannian manifoldM, g) is Sasakif the metric condC(M), g), C(M) := Ry x M and
g = dr? + r2g, is K&hler, i.e.g admits a compatible almost complex structure J so that
(C(M), g,J) is a Kahler structure. Equivalentlydol(C(M), g) C U(m).

Thus is a metric contact structure with an additional iraedity condition. One has
» a contact structure
n = d°logr = Jdlogr
with Reeb vector field = Jrdy, a Killing field, and
» a strictly pseudoconvex CR structui@, ), D = kern.

» | induces a transversely holomorphic structureZan the Reeb foliation, with Kéhler
formw’ = Zdn.



Transversely holomorphic foliation

(Cm

A transversely holomorphic structum a foliation.7 is given by{(Ua, ¢a)}ac.4 Where
{Ua }ae.a coversM

> {Ua}aea coversM,
» theypq : Uo — CM~1 has fibers the leaves o, locally onU.,
» there are holomorphic isomorphisgn s : wg(Ua NUg) = wa(Ua N Ug) such that

Ya =0agows ONUy NUg.
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is a hyperkahler structure. Equivalentiiol(C(M)) C Sp(m).
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» Z, thetwistor spaceis the orbifold leaf space”¢, with a complex contact structure
0 € QY(L).

» M is aquaternionic-Ké&hlerorbifold.

» ThelLeBrun-Salamon conjectuproposes that1 is smooth only if it is symmetric, only
proved in dim= 4 and 8.
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Simply connected manifolds admitting a non-zero Killingnep were classified b. Bar,

1992
[ dmM [ NT [ N- [ Hol(C(M)) [ geometry |
n 221 | 2lz] Id n-sphere
Im-1 2 0 Su(2m) Sasaki-Einstein
dm+1 1 1 SU(2m+ 1) | Sasaki-Einstein
dm—1 | m+l 0 Sp(m) 3-Sasaki
6 1 1 Gy nearly Kahler
7 1 0 Spin(7) weak G

We consider aleformation of the Killing spinor equation
Let ot be Killing spinors for metricg satifying

V)g(tdt = cX-tot.

Note thatc = j:% when(M, g) is Sasakian.

@
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Leth = Zgtli—o andér = Jotli—o and defing3 : TM — TM g-symmetric by
h(X,Y) = g(8(X), Y).
Proposition 2.1 (M. Wang 1991)

If trg 3 =68 = 0, then(3, &) satisfies (2) to first order if and only if
Vo = cX&,
DY (@90) = new (@0,

Here W (8.9) with w(5.9)(X) = B(X)o is a spinor values 1-form and eigenvalue of the twisted
Dirac operator:
D: F(E ® TMc) — F(Z X TMc).

If these conditions are satisfied £, &), then

(V*V + 2L)h = 0 where(Lh)j = R¥'hg.
Soh € I'(S? T*M) is aninfinitesimal Einstein deformation
Definition 2.2 (M. Wang 1991)

Aninfinitesimal deformation of the Killing spinery is a pair (8, o) satisfying:

(i) o is aKilling spinor with constant c,
(i) trgB8=68=0,
(iiy DY(B-o0) = new (800,
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Infinitesimal deformations on Sasakian manifold

For a Sasaki manifoldM, g) the transversal holomorphic structure @ has a versal
deformation space, with tangent space

H(A®), whereAX = T(A2* @ T2O)
and ~ )
0B 4%
is thebasicDolbeault complex with values in the transverse holomarpéigent bundlé’é'(J to
Fe.
If Ricg > —2 (equivalent to RiE > 0), thenH?(.A®) = {0}.

Proposition 2.3
Leta € H(A®) be Harmonicdpa = &« = 0. Then

h*(X,Y) = g(aX,Y),
is an infinitesimal Einstein deformation of g, that is

trh® = 6h* = 0
(V*V +2L)h* = 0.



Infinitesimal deformations on Sasakian manifold

Proposition 2.4

Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2 definiiliing spinors
o, j=0,LIfB € HlAé (AD*), then ¥ is an infinitesimal Einstein deformation of g, and
b

(h?, 0) is an infinitesimal deformation of the Killing spinasg forj = 0, 1.



Infinitesimal deformations on Sasakian manifold

Proposition 2.4

Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2 definiiliing spinors
oj, j=0,L1fg € HlAé (A%*), then I¥ is an infinitesimal Einstein deformation of g, and
b

(h?, 0) is an infinitesimal deformation of the Killing spinasg forj = 0, 1.

» (h5,0) is integrable to actual deformatias Ric” = (n + 1)g" can be solved for the
deformation of(.%¢, J).



Infinitesimal deformations on Sasakian manifold

Proposition 2.4

Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2 definiiliing spinors

oj, j=0,L1fg € HlAé (A%*), then I¥ is an infinitesimal Einstein deformation of g, and
b

(h?, 0) is an infinitesimal deformation of the Killing spinasg forj = 0, 1.

» (h5,0) is integrable to actual deformatias Ric” = (n + 1)g" can be solved for the
deformation of(.%¢, J).

» Recall the category of polarized Kahler manifold§ L ) is contained in category of
Sasaki manifolds.



Infinitesimal deformations on Sasakian manifold

Proposition 2.4

Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2 definiiliing spinors

oj, j=0,L1fg € HlAé (A%*), then I¥ is an infinitesimal Einstein deformation of g, and
b

(h?, 0) is an infinitesimal deformation of the Killing spinasg forj = 0, 1.

» (h5,0) is integrable to actual deformatias Ric” = (n + 1)g" can be solved for the
deformation of(.%¢, J).

» Recall the category of polarized Kahler manifold§ L ) is contained in category of
Sasaki manifolds.

» Sufficient conditions for small deformations @, L) to admit a K-E metric are known
(G. Székelyhidi 201)) necessary conditions are almost known.



Infinitesimal deformations on Sasakian manifold

Proposition 2.4

Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2 definiiliing spinors

oj, j=0,L1fg € HlAé (A%*), then I¥ is an infinitesimal Einstein deformation of g, and
b

(h?, 0) is an infinitesimal deformation of the Killing spinasg forj = 0, 1.

» (h5,0) is integrable to actual deformatias Ric” = (n + 1)g" can be solved for the
deformation of(.%¢, J).

» Recall the category of polarized Kahler manifold§ L ) is contained in category of
Sasaki manifolds.

» Sufficient conditions for small deformations @, L) to admit a K-E metric are known
(G. Székelyhidi 201)) necessary conditions are almost known.

» Similar techniques apply to Sasakian metrics.
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Proposition 2.5

Let(M,g), dimM = 4m— 1, be a 3-Sasaki manifold with Killing spinoes, j =0, ..., m. If

B e ?—llAé (A*) is non-zero, theith?, 0) is an infinitesimal deformation of the Killing spinors
b

ojforj=0,m, butneverfori=1,...,m—1
The real structure on the twistor space induces a real strict

¢t HY(A®) — HY(A®).

Theorem 2.6
The subspace of infinitesimal Einstein deformatiofishg for 8 € Re?—ilAé (A%*) integrates
b

to afamily g, t € N C RY, d = dim¢ Héb(Ao") of Einstein deformations of g preserving
only og andom.

This has an analytic proof, but it also follows from GIT argemts.

Theorem 2.7 (M. Y. Wang, 1991)

Let (M, g) is a compact simply connected spin manifold with irredwectiblonomy admitting a
nonzero parallel spinor. Then there is a neighborhaadof g in the Einstein moduli space such
that eachg € VW admits the same number of independent parallel spinors.

We will see by example that (2.7) falsefor Killing spinors. The dimension of the space of
Killing spinors is only upper semicontinuous under Einstéeformations.
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Space of Sasaki structures

Fix a contact structuréM, n, &).

Definition 3.1
A (1, 1)-tensor field® : TM — TM on a contact manifoldM, n, £) is called analmost
contact-complex structurié

D=0, % = —id+£ Q1.
An almost contact-complex structure is callégcontactif in addition, L ® = 0.

Definition 3.2
An almost contact-complex structufeon a contact manifoldM, ), £) is compatible withy if

dn(®X, Y) = dn(X,Y), and dy(X, @X) > 0for X € ker(n), X # 0.

If ® is compatible with;, (M, n, ®) defines a Riemannian metric

6o (X, Y) = dn(X, ®Y) + n(X)n(Y),

and(n, &, ,ge) is called acontact metric structuren M.
This metric structure is called K-contact metric structure i€ ® = 0.
Furthermore, it is aSasaki structurdf in addition

Ne (X, Y) := [X, Y] + ([®X, Y] + [X, ®Y]) — [OX,®Y] =0 forall X,Y € T'(TM).
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Moment map
The spacéC of K-contact metric structures is an infinite dimensionahk&i manifold.
The subspace of Sasaki, transversely integrable, stasiiift C K is an analytic subvariety.

Defineg to be the group oétrict contactomorphisrof (M, 7, £). G acts onkC, forg € G
(9. ®) — g, Q..

The Lie algebra of is

Lie(G) = ({X e T(TM) : Lxn =0}, [, .]))( (CeM), {--})

— Hx = n(X)
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The spacéC of K-contact metric structures is an infinite dimensionahk&i manifold.
The subspace of Sasaki, transversely integrable, stasiiift C K is an analytic subvariety.

Defineg to be the group oétrict contactomorphisrof (M, 7, £). G acts onkC, forg € G
(9. ®) — g, Q..

The Lie algebra of is

Lie(G) = ({X e T(TM) : Lxn =0}, [, .]))( (CeM), {--})

—~  Hx =n(X)

Theorem 3.3 (W. He 2011, S. K. Donaldson 1997)
The action ofG on K is Hamiltonian with equivariant moment map:niC — G*

m(®) =s"(®) — .

> When® € K" sT(®) — § = s(@) — so, the normalized scalar curvature g4.

» Although, a complexificatio;C does not exist, the Lie algebra
Lie(G) ® C = C°(M, C) acts onk.

> If ® € KM, /=1f € C3°(M, C) acts orw' by
Laoxw' = —v/—195f.

ThusGC€ induces a holomorphic foliation o™ whose leaves are transversal Kahler
classes.
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K-semistability

The coneY = C(M) U {0} over a Sasaki manifoldM, g, n, £, @) is an affine variety.
The Reeb field generates a tords C Aut(Y). And we have a grading by weights

HO(Y,Ov) = >~ HO(Y,0v)a A3)
aeEWT

Definition 3.4
AT-equivariant test configuratiofor Y is a set of T-homogeneous elemdfis..., fy} that
generate H(Y, Ov) in sufficiently high degrees together with a set of intedavs, ..., W }.

Geometrically{f1, ..., fc} generate an embedding
Y — (Ck,

and consider th€*-action onCX with weights{w, ..., w}. Then the flat limitY of the
C*-orbit over 0 defines a flat family of schemes o@erin addition to theT-action Yy has the
inducedC*-action.
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Definition 3.5
A polarized affine varietyY, &) is K-semistabléf, for every torus T¢ € Lie(T), and every
T-equivariant test configuration with central fibeg, Yhe Donaldson-Futaki invariant satisfies

FUt(Y(J: 57 'L)) >0

with v a generator of the induce@* action on the central fiber.

It is K-polystableif the equality holds if and only if the T-equivariant teshéiguration is a
product configuration.

The following extends the results 8f K. Donaldson 200%r Kahler manifolds and. Ross
and R. Thomas 200®r quasi-regular Sasaki manifolds.

Theorem 3.6 (T. Collins and G. Székelyhidi 2012)

If (Y = C(M) U {0}, £) admits a constant scalar curvature Sasaki cone metric vedgritly
(M, &,J) admits a cscS metric, thelY, &) is K-semistable.
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Finite dimensional slice

Supposebg € K™ and let
P :C°(M,C) = I'(Ty, K)

be the infinitesimal action a§€ on K.
We have the transversally elliptic complex:

0 CP(M,C) 25 Ta k2 BC A2 — - 4)

DenoteH}7 the first cohomology of (4). LeB be the stabilizer o,
G = Aut(M, ga,, 7, £, Bo) with Lie(G) = g.

Proposition 3.7
There exists a G-equivariant malpfrom a neighborhood U d in HTl7 to a neighborhood of
dg in K such that thej® orbit of every integrableb close to®g intersects the image af. If x
and X lie in the same & orbit in U then¥(x) and ¥ (x') are in the same° orbit in K.
Moreover, we can assume that

moW¥ =(s' —g))ow

takes value iny.
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Finite dimensions

stable orbit

. unstable orbit
Figure :C* acting onC?

Suppose€M, ga,, 1, &, Po) is cscS.
The Kéhler structure oft restricts toU C H}], and we have a (local) action & on U with
moment map

my=mo¥:U—g*.

The Kéhler structuréU, wo, Jo) is not flat. But one can still apply tHéempf-Ness theorerto
show:

v € U polystablefor G < 3vp € GE v : my(vo) = 0.

Theorem 3.8

Let(M,n, &, ®) be a cscS manifold an@V, n, &, ") a nearby Sasakian manifold with
transverse complex structudé. Then if(M, n, £, ®') is K-polystable, then there cscS structure
in the spaceS (&, J').
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We considetoric 3-Sasaki 7-manifoldsQ. Boyer, K. Galicki, B. Mann, E. Rees, 1998

> toric means there is a 2-tord& C Aut(M, g, £1, &2, £3), preserving all 3 Sasakian
structures.

» They are 3-Sasaki quotien8"—1 /TK by a torusTX C Sp(n), n—k = 2.
» There are infinitely many examples for edck= by(M) > 1.

Lemma 4.1 (van Coevering, N.Y. Journal of Math. 2012)
If 2 is the twistor space of a toric 3-Sasaki 7-manifold M, théi{8, ©z) = H(Z,02)T,

dimcHY(Z,0z) =by(M) —1=k—1.
And Z has a local b(M) — 1-dimensional space of deformations.

Theorem 4.2

Let (M, g) be a toric 3-Sasaki 7-manifold. Then g is in an effective demp

b2(M) — 1-dimensional family{g: }tezs, U C C22M—1 with gy = g, of Sasaki-Einstein
metrics where gis not 3-Sasaki for t£ 0.

This can be proved by both GIT and analytic techniques, gimeeleformation is invariant by
T3 C Aut(M, g, £1), a maximal torus.



Toric 3-Sasaki 7-manifolds

Thus unlike the case of parallel spinocs=£ 0) the dimension of the space of Killing spinors is
not locally stable in general. See figure 2 for the isometougs of the metrics.

cho—1

T3 % Zy

Figure :Space of Sasaki-Einstein metrics
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