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Introduction

This talk considers deformations of Sasakian manifolds with Einstein or constant scalar
curvature metrics.

There are two parts:

◮ We will consider variations of theKilling Spinor equation

∇Xψ = cX · ψ, ψ ∈ Γ(Σ), c ∈ R \ {0}, (1)

on aSasaki-Einsteinmanifold.

◮ We will consider deformingconstant scalar curvatureSasaki manifolds from the
perspective ofGIT stability, using the approach ofS. K. Donaldsonand others.
(joint work with Carl Tippler)

◮ Tristan C. Collins, Gábor Székelyhidi 2012defined K-semistability for Sasaki manifolds and
proved

cscS⇒ K-semistable.

◮ As with Kähler manifolds one has the conjecture

Existence of cscS metric⇔ K-polystable.



Introduction

This talk considers deformations of Sasakian manifolds with Einstein or constant scalar
curvature metrics.

There are two parts:

◮ We will consider variations of theKilling Spinor equation

∇Xψ = cX · ψ, ψ ∈ Γ(Σ), c ∈ R \ {0}, (1)

on aSasaki-Einsteinmanifold.

◮ We will consider deformingconstant scalar curvatureSasaki manifolds from the
perspective ofGIT stability, using the approach ofS. K. Donaldsonand others.
(joint work with Carl Tippler)

◮ Tristan C. Collins, Gábor Székelyhidi 2012defined K-semistability for Sasaki manifolds and
proved

cscS⇒ K-semistable.

◮ As with Kähler manifolds one has the conjecture

Existence of cscS metric⇔ K-polystable.



Introduction

This talk considers deformations of Sasakian manifolds with Einstein or constant scalar
curvature metrics.

There are two parts:

◮ We will consider variations of theKilling Spinor equation

∇Xψ = cX · ψ, ψ ∈ Γ(Σ), c ∈ R \ {0}, (1)

on aSasaki-Einsteinmanifold.

◮ We will consider deformingconstant scalar curvatureSasaki manifolds from the
perspective ofGIT stability, using the approach ofS. K. Donaldsonand others.
(joint work with Carl Tippler)

◮ Tristan C. Collins, Gábor Székelyhidi 2012defined K-semistability for Sasaki manifolds and
proved

cscS⇒ K-semistable.

◮ As with Kähler manifolds one has the conjecture

Existence of cscS metric⇔ K-polystable.



Introduction

This talk considers deformations of Sasakian manifolds with Einstein or constant scalar
curvature metrics.

There are two parts:

◮ We will consider variations of theKilling Spinor equation

∇Xψ = cX · ψ, ψ ∈ Γ(Σ), c ∈ R \ {0}, (1)

on aSasaki-Einsteinmanifold.

◮ We will consider deformingconstant scalar curvatureSasaki manifolds from the
perspective ofGIT stability, using the approach ofS. K. Donaldsonand others.
(joint work with Carl Tippler)

◮ Tristan C. Collins, Gábor Székelyhidi 2012defined K-semistability for Sasaki manifolds and
proved

cscS⇒ K-semistable.

◮ As with Kähler manifolds one has the conjecture

Existence of cscS metric⇔ K-polystable.



Introduction

This talk considers deformations of Sasakian manifolds with Einstein or constant scalar
curvature metrics.

There are two parts:

◮ We will consider variations of theKilling Spinor equation

∇Xψ = cX · ψ, ψ ∈ Γ(Σ), c ∈ R \ {0}, (1)

on aSasaki-Einsteinmanifold.

◮ We will consider deformingconstant scalar curvatureSasaki manifolds from the
perspective ofGIT stability, using the approach ofS. K. Donaldsonand others.
(joint work with Carl Tippler)

◮ Tristan C. Collins, Gábor Székelyhidi 2012defined K-semistability for Sasaki manifolds and
proved

cscS⇒ K-semistable.

◮ As with Kähler manifolds one has the conjecture

Existence of cscS metric⇔ K-polystable.



Sasaki manifolds

Definition 1.1
A Riemannian manifold(M, g) is Sasakiif the metric cone(C(M), ḡ), C(M) := R+ × M and
ḡ = dr2 + r2g, is Kähler, i.e.̄g admits a compatible almost complex structure J so that
(C(M), ḡ, J) is a Kähler structure. Equivalently,Hol(C(M), ḡ) ⊆ U(m).

Thus is a metric contact structure with an additional integrability condition. One has

◮ a contact structure
η = dc log r = Jd log r

with Reeb vector fieldξ = Jr∂r , a Killing field, and

◮ a strictly pseudoconvex CR structure(D, I), D = kerη.

◮ I induces a transversely holomorphic structure onFξ , the Reeb foliation, with Kähler
form ωT = 1

2dη.
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(C(M), ḡ, J) is a Kähler structure. Equivalently,Hol(C(M), ḡ) ⊆ U(m).
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Transversely holomorphic foliation

Fξ

ϕα

Cm

Uα

A transversely holomorphic structureon a foliationFξ is given by{(Uα, ϕα)}α∈A where
{Uα}α∈A coversM

◮ {Uα}α∈A coversM,

◮ theϕα : Uα → Cm−1 has fibers the leaves ofFξ locally onUα,

◮ there are holomorphic isomorphismgαβ : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) such that

ϕα = gαβ ◦ ϕβ on Uα ∩ Uβ .



3-Sasaki manifolds
Definition 1.2
A Riemannian manifold(M, g) is 3-Sasakiif the metric cone(C(M), ḡ) is hyperkähler, i.e.̄g
admits a compatible almost complex structures Jα, α = 1, 2, 3 such that(C(M), ḡ, J1, J2, J3)
is a hyperkähler structure. Equivalently,Hol(C(M)) ⊆ Sp(m).

(M, g) is equipped with three Sasaki structures(ξi , ηi , φi), i = 1, 2, 3. The Reeb vector fields
ξk, k = 1, 2, 3 satisfy[ξi , ξj ] = −2εijkξk, and thus generatesp(1).
A 3-Sasaki manifoldM comes with a family of related geometries. The maps are labeled with
their generic fibers.

M

M Z

C(M)

✲
�

�✠
❅
❅❘

❅
❅❘

�
�✠

R+ C
∗

S1

Sp(1)
SO(3)

CP1

◮ Z, thetwistor space, is the orbifold leaf spaceFξ1 with a complex contact structure
θ ∈ Ω1(L).

◮ M is aquaternionic-Kählerorbifold.
◮ TheLeBrun-Salamon conjectureproposes thatM is smooth only if it is symmetric, only

proved in dim= 4 and 8.
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admits a compatible almost complex structures Jα, α = 1, 2, 3 such that(C(M), ḡ, J1, J2, J3)
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Killing spinors

Simply connected manifolds admitting a non-zero Killing spinor were classified byC. Bär,
1992:

dimM N+ N− Hol(C(M)) geometry

n 2⌊
n
2⌋ 2⌊

n
2⌋ Id n-sphere

4m− 1 2 0 SU(2m) Sasaki-Einstein
4m+ 1 1 1 SU(2m+ 1) Sasaki-Einstein
4m− 1 m+1 0 Sp(m) 3-Sasaki

6 1 1 G2 nearly Kähler
7 1 0 Spin(7) weak G2

We consider adeformation of the Killing spinor equation.
Let σt be Killing spinors for metricsgt satifying

∇gt
Xσt = cX ·t σt. (2)

Note thatc = ± 1
2 when(M, g) is Sasakian.
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Infinitesimal deformations
We first consider first order deformations of (2).

Let h = d
dtgt|t=0 andσ̇t =

d
dtσt |t=0 and defineβ : TM → TM g-symmetric by

h(X,Y) = g(β(X), Y).

Proposition 2.1 (M. Wang 1991)
If trg β = δβ = 0, then(β, σ̇) satisfies (2) to first order if and only if

∇Xσ̇ = cXσ̇,

DΨ(α̇,σ0) = ncΨ(α̇,σ0).

HereΨ(β,σ) with Ψ(β,σ)(X) = β(X)σ is a spinor values 1-form and eigenvalue of the twisted
Dirac operator:

D : Γ(Σ⊗ TMC) → Γ(Σ⊗ TMC).

If these conditions are satisfied by(β, σ̇), then
(

∇∗∇+ 2L
)

h = 0 where(Lh)ij = Rk l
i j hkl.

Soh ∈ Γ
(

S2 T∗M
)

is aninfinitesimal Einstein deformation.

Definition 2.2 (M. Wang 1991)
An infinitesimal deformation of the Killing spinorσ0 is a pair (β, σ) satisfying:

(i) σ is a Killing spinor with constant c,
(ii) trg β = δβ = 0,
(iii) DΨ(β,σ0) = ncΨ(β,σ0).
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Infinitesimal deformations on Sasakian manifold

For a Sasaki manifold(M, g) the transversal holomorphic structure onFξ has a versal
deformation space, with tangent space

H1(A•), whereAk = Γ(Λ0,k
b ⊗ T1,0

b )

and

0 → A0 ∂̄b→ A1 ∂̄b→ · · ·
is thebasicDolbeault complex with values in the transverse holomorphic tangent bundleT1,0

b to
Fξ .
If Ricg > −2 (equivalent to RicT > 0), thenH2(A•) = {0}.

Proposition 2.3
Letα ∈ H1(A•) be Harmonic,∂̄bα = ∂̄∗bα = 0. Then

hα(X,Y) = g(αX,Y),

is an infinitesimal Einstein deformation of g, that is

tr hα = δhα = 0
(

∇∗∇+ 2L
)

hα = 0.
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Infinitesimal deformations on Sasakian manifold

Proposition 2.4
Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2 defining Killing spinors
σj , j = 0, 1. If β ∈ H1

∆
∂̄b
(A0,•), then hβ is an infinitesimal Einstein deformation of g, and

(hβ , 0) is an infinitesimal deformation of the Killing spinorsσj for j = 0, 1.

◮ (hβ , 0) is integrable to actual deformation⇔ RicT = (n+ 1)gT can be solved for the
deformation of(Fξ, J̄).

◮ Recall the category of polarized Kähler manifolds(X,L) is contained in category of
Sasaki manifolds.

◮ Sufficient conditions for small deformations of(X,L) to admit a K-E metric are known
(G. Székelyhidi 2010), necessary conditions are almost known.

◮ Similar techniques apply to Sasakian metrics.
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Deformations of 3-Sasaki manifolds
Proposition 2.5
Let (M, g), dimM = 4m− 1, be a 3-Sasaki manifold with Killing spinorsσj , j = 0, . . . ,m. If
β ∈ H1

∆
∂̄b
(A•) is non-zero, then(hβ , 0) is an infinitesimal deformation of the Killing spinors

σj for j = 0,m, but never for j= 1, . . . ,m− 1.

The real structure on the twistor space induces a real structure

ς : H1(A•) → H1(A•).

Theorem 2.6
The subspace of infinitesimal Einstein deformations hβ of g forβ ∈ ReH1

∆
∂̄b
(A0,•) integrates

to a family gt, t ∈ N ⊂ Rd, d = dimC H1
∂̄b
(A0,•) of Einstein deformations of g preserving

onlyσ0 andσm.

This has an analytic proof, but it also follows from GIT arguments.

Theorem 2.7 (M. Y. Wang, 1991)
Let (M, g) is a compact simply connected spin manifold with irreducible holonomy admitting a
nonzero parallel spinor. Then there is a neighborhoodW of g in the Einstein moduli space such
that each̄g ∈ W admits the same number of independent parallel spinors.

We will see by example that (2.7) isfalsefor Killing spinors. The dimension of the space of
Killing spinors is only upper semicontinuous under Einstein deformations.
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Space of Sasaki structures

Fix a contact structure(M, η, ξ).

Definition 3.1
A (1, 1)-tensor fieldΦ : TM → TM on a contact manifold(M, η, ξ) is called analmost
contact-complex structureif

Φξ = 0, Φ2 = −id + ξ ⊗ η.

An almost contact-complex structure is calledK-contactif in addition,LξΦ = 0.

Definition 3.2
An almost contact-complex structureΦ on a contact manifold(M, η, ξ) is compatible withη if

dη(ΦX,ΦY) = dη(X,Y), and dη(X,ΦX) > 0 for X ∈ ker(η), X 6= 0.

If Φ is compatible withη, (M, η,Φ) defines a Riemannian metric

gΦ(X,Y) =
1

2
dη(X,ΦY) + η(X)η(Y),

and(η, ξ,Φ, gΦ) is called acontact metric structureon M.
This metric structure is called aK-contact metric structure ifLξΦ = 0.
Furthermore, it is aSasaki structureif in addition

NΦ(X,Y) := [X,Y] + Φ([ΦX,Y] + [X,ΦY])− [ΦX,ΦY] = 0 for all X,Y ∈ Γ(TM).
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Moment map
The spaceK of K-contact metric structures is an infinite dimensional Kähler manifold.
The subspace of Sasaki, transversely integrable, structuresKint ⊂ K is an analytic subvariety.

DefineG to be the group ofstrict contactomorphismof (M, η, ξ). G acts onK, for g ∈ G
(g,Φ) 7→ g−1

∗ Φg∗.

The Lie algebra ofG is

Lie(G) =
(

{X ∈ Γ(TM) : LXη = 0}, [·, ·]
) ∼=

(

C∞
b (M), {·, ·}

)

X 7→ HX = η(X)
.

Theorem 3.3 (W. He 2011, S. K. Donaldson 1997)
The action ofG onK is Hamiltonian with equivariant moment map m: K → G∗

m(Φ) = sT(Φ)− sT
0 .

◮ WhenΦ ∈ Kint sT(Φ)− sT
0 = s(Φ) − s0, the normalized scalar curvature ofgΦ.

◮ Although, a complexificationGC does not exist, the Lie algebra
Lie(G)⊗ C ∼= C∞

b (M,C) acts onK.
◮ If Φ ∈ Kint,

√
−1f ∈ C∞

b (M,C) acts onωT by

LΦXf ω
T = −

√
−1∂∂̄f .

ThusGC induces a holomorphic foliation onKint whose leaves are transversal Kähler
classes.



Moment map
The spaceK of K-contact metric structures is an infinite dimensional Kähler manifold.
The subspace of Sasaki, transversely integrable, structuresKint ⊂ K is an analytic subvariety.

DefineG to be the group ofstrict contactomorphismof (M, η, ξ). G acts onK, for g ∈ G
(g,Φ) 7→ g−1

∗ Φg∗.

The Lie algebra ofG is

Lie(G) =
(

{X ∈ Γ(TM) : LXη = 0}, [·, ·]
) ∼=

(

C∞
b (M), {·, ·}

)

X 7→ HX = η(X)
.

Theorem 3.3 (W. He 2011, S. K. Donaldson 1997)
The action ofG onK is Hamiltonian with equivariant moment map m: K → G∗

m(Φ) = sT(Φ)− sT
0 .

◮ WhenΦ ∈ Kint sT(Φ)− sT
0 = s(Φ) − s0, the normalized scalar curvature ofgΦ.

◮ Although, a complexificationGC does not exist, the Lie algebra
Lie(G)⊗ C ∼= C∞

b (M,C) acts onK.
◮ If Φ ∈ Kint,

√
−1f ∈ C∞

b (M,C) acts onωT by

LΦXf ω
T = −

√
−1∂∂̄f .

ThusGC induces a holomorphic foliation onKint whose leaves are transversal Kähler
classes.



Moment map
The spaceK of K-contact metric structures is an infinite dimensional Kähler manifold.
The subspace of Sasaki, transversely integrable, structuresKint ⊂ K is an analytic subvariety.

DefineG to be the group ofstrict contactomorphismof (M, η, ξ). G acts onK, for g ∈ G
(g,Φ) 7→ g−1

∗ Φg∗.

The Lie algebra ofG is

Lie(G) =
(

{X ∈ Γ(TM) : LXη = 0}, [·, ·]
) ∼=

(

C∞
b (M), {·, ·}

)

X 7→ HX = η(X)
.

Theorem 3.3 (W. He 2011, S. K. Donaldson 1997)
The action ofG onK is Hamiltonian with equivariant moment map m: K → G∗

m(Φ) = sT(Φ)− sT
0 .

◮ WhenΦ ∈ Kint sT(Φ)− sT
0 = s(Φ) − s0, the normalized scalar curvature ofgΦ.

◮ Although, a complexificationGC does not exist, the Lie algebra
Lie(G)⊗ C ∼= C∞

b (M,C) acts onK.
◮ If Φ ∈ Kint,

√
−1f ∈ C∞

b (M,C) acts onωT by

LΦXf ω
T = −

√
−1∂∂̄f .

ThusGC induces a holomorphic foliation onKint whose leaves are transversal Kähler
classes.



Moment map
The spaceK of K-contact metric structures is an infinite dimensional Kähler manifold.
The subspace of Sasaki, transversely integrable, structuresKint ⊂ K is an analytic subvariety.

DefineG to be the group ofstrict contactomorphismof (M, η, ξ). G acts onK, for g ∈ G
(g,Φ) 7→ g−1

∗ Φg∗.

The Lie algebra ofG is

Lie(G) =
(

{X ∈ Γ(TM) : LXη = 0}, [·, ·]
) ∼=

(

C∞
b (M), {·, ·}

)

X 7→ HX = η(X)
.

Theorem 3.3 (W. He 2011, S. K. Donaldson 1997)
The action ofG onK is Hamiltonian with equivariant moment map m: K → G∗

m(Φ) = sT(Φ)− sT
0 .

◮ WhenΦ ∈ Kint sT(Φ)− sT
0 = s(Φ) − s0, the normalized scalar curvature ofgΦ.

◮ Although, a complexificationGC does not exist, the Lie algebra
Lie(G)⊗ C ∼= C∞

b (M,C) acts onK.
◮ If Φ ∈ Kint,

√
−1f ∈ C∞

b (M,C) acts onωT by

LΦXf ω
T = −

√
−1∂∂̄f .

ThusGC induces a holomorphic foliation onKint whose leaves are transversal Kähler
classes.



Moment map
The spaceK of K-contact metric structures is an infinite dimensional Kähler manifold.
The subspace of Sasaki, transversely integrable, structuresKint ⊂ K is an analytic subvariety.

DefineG to be the group ofstrict contactomorphismof (M, η, ξ). G acts onK, for g ∈ G
(g,Φ) 7→ g−1

∗ Φg∗.

The Lie algebra ofG is

Lie(G) =
(

{X ∈ Γ(TM) : LXη = 0}, [·, ·]
) ∼=

(

C∞
b (M), {·, ·}

)

X 7→ HX = η(X)
.

Theorem 3.3 (W. He 2011, S. K. Donaldson 1997)
The action ofG onK is Hamiltonian with equivariant moment map m: K → G∗

m(Φ) = sT(Φ)− sT
0 .

◮ WhenΦ ∈ Kint sT(Φ)− sT
0 = s(Φ) − s0, the normalized scalar curvature ofgΦ.

◮ Although, a complexificationGC does not exist, the Lie algebra
Lie(G)⊗ C ∼= C∞

b (M,C) acts onK.
◮ If Φ ∈ Kint,

√
−1f ∈ C∞

b (M,C) acts onωT by

LΦXf ω
T = −

√
−1∂∂̄f .

ThusGC induces a holomorphic foliation onKint whose leaves are transversal Kähler
classes.



Moment map
The spaceK of K-contact metric structures is an infinite dimensional Kähler manifold.
The subspace of Sasaki, transversely integrable, structuresKint ⊂ K is an analytic subvariety.

DefineG to be the group ofstrict contactomorphismof (M, η, ξ). G acts onK, for g ∈ G
(g,Φ) 7→ g−1

∗ Φg∗.

The Lie algebra ofG is

Lie(G) =
(

{X ∈ Γ(TM) : LXη = 0}, [·, ·]
) ∼=

(

C∞
b (M), {·, ·}

)

X 7→ HX = η(X)
.

Theorem 3.3 (W. He 2011, S. K. Donaldson 1997)
The action ofG onK is Hamiltonian with equivariant moment map m: K → G∗

m(Φ) = sT(Φ)− sT
0 .

◮ WhenΦ ∈ Kint sT(Φ)− sT
0 = s(Φ) − s0, the normalized scalar curvature ofgΦ.

◮ Although, a complexificationGC does not exist, the Lie algebra
Lie(G)⊗ C ∼= C∞

b (M,C) acts onK.
◮ If Φ ∈ Kint,

√
−1f ∈ C∞

b (M,C) acts onωT by

LΦXf ω
T = −

√
−1∂∂̄f .

ThusGC induces a holomorphic foliation onKint whose leaves are transversal Kähler
classes.



Moment map
The spaceK of K-contact metric structures is an infinite dimensional Kähler manifold.
The subspace of Sasaki, transversely integrable, structuresKint ⊂ K is an analytic subvariety.

DefineG to be the group ofstrict contactomorphismof (M, η, ξ). G acts onK, for g ∈ G
(g,Φ) 7→ g−1

∗ Φg∗.

The Lie algebra ofG is

Lie(G) =
(

{X ∈ Γ(TM) : LXη = 0}, [·, ·]
) ∼=

(

C∞
b (M), {·, ·}

)

X 7→ HX = η(X)
.

Theorem 3.3 (W. He 2011, S. K. Donaldson 1997)
The action ofG onK is Hamiltonian with equivariant moment map m: K → G∗

m(Φ) = sT(Φ)− sT
0 .

◮ WhenΦ ∈ Kint sT(Φ)− sT
0 = s(Φ) − s0, the normalized scalar curvature ofgΦ.

◮ Although, a complexificationGC does not exist, the Lie algebra
Lie(G)⊗ C ∼= C∞

b (M,C) acts onK.
◮ If Φ ∈ Kint,

√
−1f ∈ C∞

b (M,C) acts onωT by

LΦXf ω
T = −

√
−1∂∂̄f .

ThusGC induces a holomorphic foliation onKint whose leaves are transversal Kähler
classes.



Moment map
The spaceK of K-contact metric structures is an infinite dimensional Kähler manifold.
The subspace of Sasaki, transversely integrable, structuresKint ⊂ K is an analytic subvariety.

DefineG to be the group ofstrict contactomorphismof (M, η, ξ). G acts onK, for g ∈ G
(g,Φ) 7→ g−1

∗ Φg∗.

The Lie algebra ofG is

Lie(G) =
(

{X ∈ Γ(TM) : LXη = 0}, [·, ·]
) ∼=

(

C∞
b (M), {·, ·}

)

X 7→ HX = η(X)
.

Theorem 3.3 (W. He 2011, S. K. Donaldson 1997)
The action ofG onK is Hamiltonian with equivariant moment map m: K → G∗

m(Φ) = sT(Φ)− sT
0 .

◮ WhenΦ ∈ Kint sT(Φ)− sT
0 = s(Φ) − s0, the normalized scalar curvature ofgΦ.

◮ Although, a complexificationGC does not exist, the Lie algebra
Lie(G)⊗ C ∼= C∞

b (M,C) acts onK.
◮ If Φ ∈ Kint,

√
−1f ∈ C∞

b (M,C) acts onωT by

LΦXf ω
T = −

√
−1∂∂̄f .

ThusGC induces a holomorphic foliation onKint whose leaves are transversal Kähler
classes.



K-semistability

The coneY = C(M) ∪ {0} over a Sasaki manifold(M, g, η, ξ,Φ) is an affine variety.

The Reeb fieldξ generates a torusT ⊂ Aut(Y). And we have a grading by weights

H0(Y,OY) =
∑

α∈WT

H0(Y,OY)α (3)

Definition 3.4
A T-equivariant test configurationfor Y is a set of T-homogeneous elements{f1, ..., fk} that
generate H0(Y,OY) in sufficiently high degrees together with a set of integers{w1, ...,wk}.

Geometrically,{f1, ..., fk} generate an embedding

Y →֒ C
k,

and consider theC∗-action onCk with weights{w1, ...,wk}. Then the flat limitY0 of the
C∗-orbit over 0 defines a flat family of schemes overC. In addition to theT-actionY0 has the
inducedC∗-action.
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Geometrically,{f1, ..., fk} generate an embedding

Y →֒ C
k,

and consider theC∗-action onCk with weights{w1, ...,wk}. Then the flat limitY0 of the
C∗-orbit over 0 defines a flat family of schemes overC. In addition to theT-actionY0 has the
inducedC∗-action.
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K-semistablility

Making use of the Hilbert series of(3) T. Collins and G. Székelyhididefined Donaldson-Futaki
invariant of a test configuration.

Definition 3.5
A polarized affine variety(Y, ξ) is K-semistableif, for every torus T,ξ ∈ Lie(T), and every
T-equivariant test configuration with central fiber Y0, the Donaldson-Futaki invariant satisfies

Fut(Y0, ξ, υ) ≥ 0

with υ a generator of the inducedC∗ action on the central fiber.
It is K-polystableif the equality holds if and only if the T-equivariant test configuration is a
product configuration.

The following extends the results ofS. K. Donaldson 2005for Kähler manifolds andJ. Ross
and R. Thomas 2008for quasi-regular Sasaki manifolds.

Theorem 3.6 (T. Collins and G. Székelyhidi 2012)
If (Y = C(M) ∪ {0}, ξ) admits a constant scalar curvature Sasaki cone metric, equivalently
(M, ξ, J̄) admits a cscS metric, then(Y, ξ) is K-semistable.
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Finite dimensional slice

SupposeΦ0 ∈ Kint and let
P : C∞

b (M,C) → Γ(TΦ0K)

be the infinitesimal action ofGC onK.
We have the transversally elliptic complex:

0 → C∞
b (M,C)

P−→ TΦ0K
∂̄b−→ B ⊂ A2 → · · · . (4)

DenoteH1
η the first cohomology of (4). LetG be the stabilizer ofΦ0,

G = Aut(M, gΦ0 , η, ξ,Φ0) with Lie(G) = g.

Proposition 3.7
There exists a G-equivariant mapΨ from a neighborhood U of0 in H1

η to a neighborhood of
Φ0 in K such that theGc orbit of every integrableΦ close toΦ0 intersects the image ofΨ. If x
and x′ lie in the same GC orbit in U thenΨ(x) andΨ(x′) are in the sameGc orbit in K.
Moreover, we can assume that

m◦Ψ = (sT − sT
0) ◦Ψ

takes value ing.
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Finite dimensions

unstable orbit

stable orbit

Figure :C∗ acting onC2

Suppose(M, gΦ0 , η, ξ,Φ0) is cscS.
The Kähler structure onK restricts toU ⊂ H1

η , and we have a (local) action ofGC on U with
moment map

m0 = m◦Ψ : U → g
∗.

The Kähler structure(U, ω0, J0) is not flat. But one can still apply theKempf-Ness theoremto
show:

v ∈ U polystablefor GC ⇔ ∃v0 ∈ GC · v : m0(v0) = 0.

Theorem 3.8
Let (M, η, ξ,Φ) be a cscS manifold and(M, η, ξ,Φ′) a nearby Sasakian manifold with
transverse complex structurēJ′. Then if(M, η, ξ,Φ′) is K-polystable, then there cscS structure
in the spaceS(ξ, J̄′).
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Toric 3-Sasaki 7-manifolds

We considertoric 3-Sasaki 7-manifolds (C. Boyer, K. Galicki, B. Mann, E. Rees, 1998):

◮ toric means there is a 2-torusT2 ⊂ Aut(M, g, ξ1, ξ2, ξ3), preserving all 3 Sasakian
structures.

◮ They are 3-Sasaki quotients,S4n−1//Tk by a torusTk ⊂ Sp(n), n− k = 2.

◮ There are infinitely many examples for eachk = b2(M) ≥ 1.

Lemma 4.1 (van Coevering, N.Y. Journal of Math. 2012)
If Z is the twistor space of a toric 3-Sasaki 7-manifold M, then H1(Z,ΘZ) = H1(Z,ΘZ)T2

,

dimC H1(Z,ΘZ) = b2(M) − 1 = k− 1.

AndZ has a local b2(M)− 1-dimensional space of deformations.

Theorem 4.2
Let (M, g) be a toric 3-Sasaki 7-manifold. Then g is in an effective complex
b2(M) − 1-dimensional family{gt}t∈U , U ⊂ Cb2(M)−1 with g0 = g, of Sasaki-Einstein
metrics where gt is not 3-Sasaki for t6= 0.

This can be proved by both GIT and analytic techniques, sincethe deformation is invariant by
T3 ⊂ Aut(M, g, ξ1), a maximal torus.
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Toric 3-Sasaki 7-manifolds

Thus unlike the case of parallel spinors (c = 0) the dimension of the space of Killing spinors is
not locally stable in general. See figure 2 for the isometry groups of the metrics.

Cb2−1

Rb2−1

T3

T3 ⋊ Z2

T2 × Sp(1)

Figure :Space of Sasaki-Einstein metrics
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