Lie Groups, Problem set 1, solutions

Craig van Coevering

November, 2014

Problem 1

Let $X, Y \in \mathfrak{X}(M)$ and Φ_t the local flow of X. Then we have

$$\mathcal{L}_X Y = -\frac{d}{dt} (\Phi_t)_* Y|_{t=0}.$$

Let $f \in C^{\infty}(U)$ where U is a neighborhood of $p \in M$. Then

$$(\mathcal{L}_X Y)_p f = -\frac{d}{dt} (\Phi_{t*} Y)_p f|_{t=0}$$

$$= -\frac{d}{dt} (\Phi_{t*} Y_{\Phi_t^{-1}(p)}) f|_{t=0}$$

$$= -\frac{d}{dt} (Y_{\Phi_t^{-1}(p)} (f \circ \Phi_t)) f|_{t=0}$$

$$= X_p Y(f) - Y_p X(f)$$

Problem 2

Suppose $G \subset \operatorname{GL}(m,\mathbb{R})$ be a closed Lie subgroup. Let $\mathfrak{X}(G)_{L-I}$ denote the left-invariant vector fields on M, which is isomorphic to the tangent space at the identity.

Let $X, Y \in \mathfrak{X}(G)_{L-I}$. Suppose $X_e = A$ and $Y_e = B$ where $A, B \in \mathfrak{gl}(m, \mathbb{R})$. Claim : $[X, Y]_e = AB - BA$.

Let x_{ij} : $GL(m, \mathbb{R}) \to \mathbb{R}$ be the (i, j)-th entry coordinate function. At any point of G a subset of these functions restrict to local coordinate functions on G. At $g \in G$ we have $X_g = L_{g*}X_e$. So

$$X_g(x_{ij}) = X_g(x_{ij} \circ L_g) = x_{ij}(gA),$$

and similarly $Y_g(x_{ij}) = x_{ij}(gB)$. So

$$[X,Y]_e(x_{ij}) = (X_eY - Y_eX)(x_{ij})$$

= $X_e(x_{ij}(gB)) - Y_e(x_{ij}(gA))$
= $x_{ij}(AB - BA)$

Thus

$$[X,Y]_e = AB - BA.$$

The case with $G \subset \operatorname{GL}(m, \mathbb{C})$ is nearly identical with coordinates $\operatorname{Re} z_{ij}$ and $\operatorname{Im} z_{ij}$. Or when G is a complex subgroup z_{ij} restrict to holomorphic coordinates.

Problem 3

a) We differentiate $g(s,t) = f(\Psi_{-s} \circ \Phi_{-t} \circ \Psi_s \circ \Phi_t(p))$ with respect to t

$$\frac{\partial g}{\partial t} = -\left(\Psi_{-s*}X_{\Phi_{-t}}\circ\Psi_{s}\circ\Phi_{t}(p)\right)(f) + \left(\Psi_{-s}\circ\Phi_{-t}\circ\Phi_{s}\right)_{*}X_{\Phi_{t}(p)}(f).$$

At t = 0

$$\frac{\partial g}{\partial t}(s,0) = -\left(\Psi_{-s*}X_{\Psi_s(p)}\right)(f) + X_p(f)$$
$$= -\left(\Psi_{-s*}X\right)_p(f) + X_p(f)$$

 So

$$\frac{\partial^2 g}{\partial s \partial t}(0,0) = \left(\mathcal{L}_{-Y}X\right)_p(f) = [X,Y]_p(f).$$

By the two variable mean value theorem (See Rudin, Principles of Math. Analysis) we have

$$g(h,k) - g(h,0) - g(k,0) - g(0,0) = \frac{\partial^2 g}{\partial s \partial t}(\hat{h},\hat{k})hk,$$

for $0 < \hat{h} < h$, $0 < \hat{k} < k$. In our case this gives

$$f(\Psi_{-h} \circ \Phi_{-k} \circ \Psi_{h} \circ \Phi_{k}(p)) - f(p) = \frac{\partial^{2}g}{\partial s \partial t}(\hat{h}, \hat{k})hk.$$

Substitute $h = k = \sqrt{t}$ to get

$$\lim_{t\to 0^+} \frac{f(\Psi_{-\sqrt{t}}\circ\Phi_{-\sqrt{t}}\circ\Psi_{\sqrt{t}}\circ\Phi_{\sqrt{t}}(p)) - f(p)}{t} = \frac{\partial^2 g}{\partial s \partial t}(0,0) = [X,Y]_p(f).$$

b) Note that g(s,0) = g(0,t) = f(p). So

$$\frac{dq}{ds}(0) = \frac{\partial g}{\partial s}(0,0) + \frac{\partial g}{\partial t}(0,0) = 0.$$

And it is easy to see that

$$\frac{d^2q}{ds^2}(0) = 2\frac{\partial^2g}{\partial s\partial t}(0,0) = 2[X,Y]_p(f).$$

Recall that on a Lie group the flow Φ_t of a left-invariant vector field X is given by right multiplication by $\exp(tX)$, i.e. $\Phi_t = R_{\exp(tX)}$. We can write

$$\exp(tX)\exp(tY)\exp(-tX)\exp(-tY) = \exp(Z(t)),$$

with $Z(t): (-\epsilon, \epsilon) \to \mathfrak{g} C^{\infty}$, since $\exp: \mathfrak{g} \to G$ is a local diffeomorphism. Let $f \in C^{\infty}(U)$ with U a neighborhood of the identity $e \in G$. Then

$$q(t) = f(\exp(tX)\exp(tY)\exp(-tX)\exp(-tY)),$$

and by part a) the Taylor series gives

$$q(t) = f(e) + t^{2}[X, Y]_{e}(f) + O(t^{3}).$$
(1)

We want to find the terms $Z_1, Z_2 \in \mathfrak{g}$ of the Taylor series of Z(t)

$$Z(t) = tZ_1 + t^2 Z_2 + O(t^3).$$

We compute the first few terms of the Taylor series of $f(\exp Z(t))$ (see A. Knapp, *Lie Groups Beyond an Intro.*, p. 80)

$$f(\exp Z(t)) = f(e) + t\tilde{Z}_1(f)(e) + t^2(\frac{1}{2}\tilde{Z}_1^2 + \tilde{Z}_2)(f)(e) + O(t^3),$$
(2)

where \tilde{Z}_1 is the left-invariant vector field associated to Z_1 . Since (1) and (2) are equal for all f, we see that $Z_1 = 0$ and $Z_2 = [X, Y]_e$ and

$$Z(t) = t^2 [X, Y]_e + O(t^3).$$

Problem 4

For the first part, observe that if M = A + iB for $A, B \in \mathfrak{gl}(n, \mathbb{R})$ the the real and imaginary components of

$$(A+iB)(u+iw), \text{ for } u, w \in \mathbb{R}^n$$

are the same as components of

$$\begin{bmatrix} A & -B \\ B & A \end{bmatrix} \begin{bmatrix} u \\ w \end{bmatrix}.$$

Note that the image of $R: \mathfrak{gl}(n,\mathbb{C}) \to \mathfrak{gl}(2n,\mathbb{R})$ is precisely the set of matrices which commute with

$$J = \begin{bmatrix} 0 & -I_n \\ I_n & 0 \end{bmatrix}$$

i) This is just a direct computation.

ii)

$$R(M^*) = R(A^T - iB^T) = \begin{bmatrix} A^T & B^T \\ -B^T & A^T \end{bmatrix}$$
$$= R(M)^T$$

iii) Consider $\begin{bmatrix} A & -B \\ B & A \end{bmatrix}$ as a transformation of \mathbb{C}^{2n} . Write the matrix it in the basis $\{e_k - ie_{k+n}, k = 1, \dots, e_k + ie_{k+n}, k = 1, \dots, n\}$ to get

$$\begin{bmatrix} A+iB & 0\\ 0 & A-iB \end{bmatrix}$$

and the result follows.

b) Let M = A + jB for $A, B \in \mathfrak{gl}(n, \mathbb{C})$. One checks that the components of

$$(A+jB)(X+jY), \text{ for } X, Y \in \mathbb{C}^n,$$

are the same as the components of

$$\begin{bmatrix} A & -\overline{B} \\ B & \overline{A} \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}.$$

Note that the image of $R : \mathfrak{gl}(n, \mathbb{H}) \to \mathfrak{gl}(2n, \mathbb{C})$ consists of precisely the set of matrices $N \in \mathfrak{gl}(2n, \mathbb{C})$ so that $JN = \overline{N}J$.

i) This is a direct computation.

ii)

$$C(M^*) = C(A^* - jB^T) = \begin{bmatrix} A^* & B^* \\ -B^T & A^T \end{bmatrix}$$
$$= C(M)^*$$

Problem 5

a) Suppose $N \in Sp(n, \mathbb{R}) \cap O(2n)$. So

$$N^T J N = J$$
 and $N^T = N^{-1}$

which implies that JN = NJ. By 4a) there is a matrix $A + iB \in GL(n, \mathbb{C})$ so that N = R(A + iB). We have

$$I_{2n} = R(A+iB)R((A+iB)^*) = R((A+iB)(A+iB)^*),$$

$$NN^{T} = R(M)R(M^{*}) = R(MM^{*}) = R(I_{n}) = I_{2n}$$

So $N \in O(2n)$. Since JN = NJ, $N^T JN = N^{-1} JN = J$ and $N \in Sp(n, \mathbb{R})$. b) Suppose $N \in Sp(n, \mathbb{C}) \cap U(2n)$. Then

$$N^T J N = J$$
 and $N^* N = I_{2n}$

implies that $JN = \overline{N}J$. So there is a matrix $M = A + jB \in GL(n, \mathbb{H})$ so that N = C(A + jB). Then using 4b) we have

$$C(M^*M) = C(M^*)C(M) = C(M)^*C(M) = N^*N = I_{2n}.$$

So $M^*M = I_n$ and $M \in Sp(n)$.

Conversely, if $M \in Sp(n)$ then the above computation shows that $N = C(M) \in U(2n)$. Since $JN = \overline{N}J$ we have

$$N^T J N = \overline{N}^{-1} J N = \overline{N}^{-1} \overline{N} J = J.$$

So $N \in Sp(n\mathbb{C})$.