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Problem 1

Let X,Y ∈ X(M) and Φt the local flow of X. Then we have

LXY = − d

dt
(Φt)∗Y |t=0.

Let f ∈ C∞(U) where U is a neighborhood of p ∈ M . Then(
LXY

)
p
f = − d

dt

(
Φt∗Y

)
p
f |t=0

= − d

dt

(
Φt∗YΦ−1

t (p)

)
f |t=0

= − d

dt

(
YΦ−1

t (p)(f ◦ Φt)
)
f |t=0

= XpY (f)− YpX(f)

Problem 2

Suppose G ⊂ GL(m,R) be a closed Lie subgroup. Let X(G)L−I denote the left-invariant vector
fields on M , which is isomorphic to the tangent space at the identity.

X(G)L−I
∼−→ TeG

X 7→ Xe

Let X,Y ∈ X(G)L−I . Suppose Xe = A and Ye = B where A,B ∈ gl(m,R).
Claim : [X,Y ]e = AB −BA.

Let xij : GL(m,R) → R be the (i, j)-th entry coordinate function. At any point of G a subset of
these functions restrict to local coordinate functions on G. At g ∈ G we have Xg = Lg∗Xe. So

Xg(xij) = Xg(xij ◦ Lg) = xij(gA),

and similarly Yg(xij) = xij(gB). So

[X,Y ]e(xij) =
(
XeY − YeX

)
(xij)

= Xe

(
xij(gB)

)
− Ye

(
xij(gA)

)
= xij

(
AB −BA

)
Thus

[X,Y ]e = AB −BA.

The case with G ⊂ GL(m,C) is nearly identical with coordinates Re zij and Im zij . Or when G is a
complex subgroup zij restrict to holomorphic coordinates.
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Problem 3

a) We differentiate g(s, t) = f(Ψ−s ◦ Φ−t ◦Ψs ◦ Φt(p)) with respect to t

∂g

∂t
= −

(
Ψ−s∗XΦ−t◦Ψs◦Φt(p)

)
(f) +

(
Ψ−s ◦ Φ−t ◦ Φs

)
∗XΦt(p)(f).

At t = 0

∂g

∂t
(s, 0) = −

(
Ψ−s∗XΨs(p)

)
(f) +Xp(f)

= −
(
Ψ−s∗X

)
p
(f) +Xp(f)

So
∂2g

∂s∂t
(0, 0) =

(
L−Y X

)
p
(f) = [X,Y ]p(f).

By the two variable mean value theorem (See Rudin,Principles of Math. Analysis) we have

g(h, k)− g(h, 0)− g(k, 0)− g(0, 0) =
∂2g

∂s∂t
(ĥ, k̂)hk,

for 0 < ĥ < h, 0 < k̂ < k. In our case this gives

f(Ψ−h ◦ Φ−k ◦Ψh ◦ Φk(p))− f(p) =
∂2g

∂s∂t
(ĥ, k̂)hk.

Substitute h = k =
√
t to get

lim
t→0+

f(Ψ−
√
t ◦ Φ−

√
t ◦Ψ√

t ◦ Φ√
t(p))− f(p)

t
=

∂2g

∂s∂t
(0, 0) = [X,Y ]p(f).

b) Note that g(s, 0) = g(0, t) = f(p). So

dq

ds
(0) =

∂g

∂s
(0, 0) +

∂g

∂t
(0, 0) = 0.

And it is easy to see that
d2q

ds2
(0) = 2

∂2g

∂s∂t
(0, 0) = 2[X,Y ]p(f).

Recall that on a Lie group the flow Φt of a left-invariant vector fieldX is given by right multiplication
by exp(tX), i.e. Φt = Rexp(tX). We can write

exp(tX) exp(tY ) exp(−tX) exp(−tY ) = exp(Z(t)),

with Z(t) : (−ϵ, ϵ) → g C∞, since exp : g → G is a local diffeomorphism. Let f ∈ C∞(U) with U a
neighborhood of the identity e ∈ G. Then

q(t) = f(exp(tX) exp(tY ) exp(−tX) exp(−tY )),

and by part a) the Taylor series gives

q(t) = f(e) + t2[X,Y ]e(f) +O(t3). (1)

We want to find the terms Z1, Z2 ∈ g of the Taylor series of Z(t)

Z(t) = tZ1 + t2Z2 +O(t3).

We compute the first few terms of the Taylor series of f(expZ(t)) (see A. Knapp, Lie Groups Beyond
an Intro., p. 80)

f(expZ(t)) = f(e) + tZ̃1(f)(e) + t2(
1

2
Z̃2
1 + Z̃2)(f)(e) +O(t3), (2)

where Z̃1 is the left-invariant vector field associated to Z1.
Since (1) and (2) are equal for all f , we see that Z1 = 0 and Z2 = [X,Y ]e and

Z(t) = t2[X,Y ]e +O(t3).
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Problem 4

For the first part, observe that if M = A + iB for A,B ∈ gl(n,R) the the real and imaginary
components of

(A+ iB)(u+ iw), for u,w ∈ Rn,

are the same as components of [
A −B
B A

] [
u
w

]
.

Note that the image of R : gl(n,C) → gl(2n,R) is precisely the set of matrices which commute with

J =

[
0 −In
In 0

]
.

i) This is just a direct computation.

ii)

R(M∗) = R(AT − iBT ) =

[
AT BT

−BT AT

]
= R(M)T

iii) Consider

[
A −B
B A

]
as a transformation of C2n. Write the matrix it in the basis {ek− iek+n, k =

1, . . . n, ek + iek+n, k = 1, . . . n} to get [
A+ iB 0

0 A− iB

]
and the result follows.
b) Let M = A+ jB for A,B ∈ gl(n,C). One checks that the components of

(A+ jB)(X + jY ), for X,Y ∈ Cn,

are the same as the components of [
A −B
B A

] [
X
Y

]
.

Note that the image of R : gl(n,H) → gl(2n,C) consists of precisely the set of matrices N ∈ gl(2n,C)
so that JN = NJ .
i) This is a direct computation.
ii)

C(M∗) = C(A∗ − jBT ) =

[
A∗ B∗

−BT AT

]
= C(M)∗

Problem 5

a) Suppose N ∈ Sp(n,R) ∩O(2n). So

NTJN = J and NT = N−1

which implies that JN = NJ .
By 4a) there is a matrix A+ iB ∈ GL(n,C) so that N = R(A+ iB). We have

I2n = R(A+ iB)R((A+ iB)∗) = R((A+ iB)(A+ iB)∗),
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So (A+ iB)(A+ iB)∗ = In, thus A+ iB ∈ U(n).

Conversely, if M = A+ iB ∈ U(n), then N = R(M) =

[
A −N
B A

]
satisfies

NNT = R(M)R(M∗) = R(MM∗) = R(In) = I2n

So N ∈ O(2n). Since JN = NJ , NTJN = N−1JN = J and N ∈ Sp(n,R).
b) Suppose N ∈ Sp(n,C) ∩ U(2n). Then

NTJN = J and N∗N = I2n

implies that JN = NJ . So there is a matrix M = A + jB ∈ GL(n,H) so that N = C(A + jB).
Then using 4b) we have

C(M∗M) = C(M∗)C(M) = C(M)∗C(M) = N∗N = I2n.

So M∗M = In and M ∈ Sp(n).
Conversely, if M ∈ Sp(n) then the above computation shows that N = C(M) ∈ U(2n). Since
JN = NJ we have

NTJN = N−1JN = N−1NJ = J.

So N ∈ Sp(nC).
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