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Introduction

Let (M, g) be spin with spin bundleΣ.

◮ We will consider variations of theKilling Spinor equation

∇Xψ = cX · ψ, ψ ∈ Γ(Σ), c ∈ R \ {0}, (1)

◮ In particular, we will consider variations onSasaki-Einsteinand3-Sasaki manifolds,
where (1) has a 2 andm+ 1 (dimM = 4m− 1) space of solutions respectively.

◮ In this case the Reeb vector fieldξ generates a transversally holomorphic, and Kähler,
foliation Fξ . The holomorphic structure onFξ has a versal deformation space, with
tangent space

H1
∂̄b
(A0,•), whereA0,k = Γ(Λ0,k

b ⊗ T1,0
b )

and

0 → A0,0 ∂̄b→ A0,1 ∂̄b→ · · ·
is thebasicDolbeault complex with values in the transverse holomorphic tangent bundle
T1,0

b to Fξ .
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Introduction

This talk will consider the following results:

◮ An harmonic representativeβ of [β] ∈ H1
∂̄b
(A0,•) lifts to an infinitesimal Einstein

deformation hβ of (M, g).

◮ If (M, g) is Sasaki-Einstein, thenhβ preserves the 2 Killing spinorsσ0, σ1 to 1st order, i.e.
(1) is preserved under the infinitesimal deformation of metrics,hβ .

◮ If (M, g) is 3-Sasaki, dimM = 4m− 1, then of them+ 1 Killing spinorsσ0, . . . , σm the
2 determined by the Sasaki structureξ, σ0, σm are preserved byhβ , while σ1, . . . , σm−1
never are.

◮ If (M, g) is Sasaki-Einstein, then clearly not allhβ integrate to Sasaki-Einstein
deformations.

But by considering the deformation theory oftransversally extremal metricanalogous to the
Kähler case (due toY. Rollin, S. Simanca, C. Tipler 2010) we get:

Theorem 1.1
If T ⊆ Aut(M, g, ξ) is a maximal torus, then a neighborhood of zeroU ⊂ H1

∂̄b
(A0,•)T

parametrizes a family of Sasaki-Einstein metrics gt on M with g0 = g.
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◮ If (M, g) is 3-Sasaki, then there is a diffeomorphismς : M → M which an
anti-holomorphic automorphism onFξ . ThusH1

∂̄b
(A0,•) has a real structure.

Theorem 1.2
A neighborhood of zeroV ⊂ ReH1

∂̄b
(A0,•) parametrizes a family of Sasaki-Einstein metrics gt

with g0 = g.

Theorem 1.2 has the following consequences:

◮ It is well known that 3-Sasaki structures are rigid (H. Pedersen and Y. S. Poon 1999).
Thus there is a neighborhoodN of 0 ∈ V so thatgt, t ∈ N \ {0} does not admit a
3-Sasaki structure.

◮ In other words if dimM = 4m− 1, theng = g0 admitsm+ 1 Killing spinors while
gt, t ∈ N \ {0} has 2.

◮ We give examples where this happens. We apply Theorems 1.1 and 1.2 to toric 3-Sasaki
7-manifolds. Toric means it admits aT2 group of automorphisms.
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Introduction

Theorem 1.3
Let (M, g) be a toric 3-Sasaki 7-manifold. ThendimC H1

∂̄b
(A0,•) = b2(M)− 1 and there is a

neighborhoodU ⊂ H1
∂̄b
(A0,•) = Cb2−1 of 0 parametrizing Sasaki-Einstein metrics such that

gt, t ∈ U \ {0}, are not 3-Sasaki.

◮ Therefore, a toric 3-Sasaki 7-manifold(M, g) with b2(M) > 1 has Einstein deformations
to metricsgt which are Sasaki-Einstein but not 3-Sasaki.

◮ They give examples of manifolds with a metric with 3 Killing spinors with deformations to
metrics admitting only 2. So there is no analogue of the following theorem ofM. Wangfor
Killing spinors.

Equation (1) withc = 0 is just the equation for a parallel spinor.

Theorem 1.4 (M. Y. Wang, 1991)
Let (M, g) is a compact simply connected spin manifold with irreducible holonomy admitting a
nonzero parallel spinor. Then there is a neighborhoodW of g in the Einstein moduli space such
that each̄g ∈ W admits the same number of independent parallel spinors.
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Killing spinors

Let (M, g) a Riemannian manifold with a spin structure and spin bundleΣ.

Definition 2.1
A Killing spinor is a nonzero sectionψ ∈ Γ(Σ) which satisfies

∇Xψ = cX · ψ,

where c is a constant and X· ψ is Clifford multiplication.

Note thatc can be rescaled by rescalingg, so we denote byN+ (resp.N−) theC-dimension of
the space of Killing spinors withc> 0 (resp.c< 0).

Existence of a Killing spinorψ ∈ Γ(Σ) has the following consequences (T. Friedrich 1980):

◮ (M, g) is an Einstein manifold with Ricg = 4(n − 1)c2g.

◮ Soc is either 0, in which caseψ is parallel;c is imaginary, in which caseM is
noncompact; orc is real, in which caseM is compact and irreducible.

◮ We will consider only the casec ∈ R \ {0}, and for conveniencec = ± 1
2 .

◮ ψ is an eigenspinor of lowest eigenvalueλ for the Dirac operatorD : Γ(Σ) → Γ(Σ) in
the following sense.

If (M, g) is compact with scalar curvatures≥ s0 > 0, thenλ2 ≥ 1
4

n
n−1s0. And we have

equality if and only if the eigenspinor is a Killing spinor.
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classification

Simply connected manifolds admitting a non-zero Killing spinor were classified byC. Bär,
1992:

dimM N+ N− Hol(C(M)) geometry

n 2⌊
n
2⌋ 2⌊

n
2⌋ Id n-sphere

4m− 1 2 0 SU(2m) Sasaki-Einstein
4m+ 1 1 1 SU(2m+ 1) Sasaki-Einstein
4m− 1 m+1 0 Sp(m) 3-Sasaki

6 1 1 G2 nearly Kähler
7 1 0 Spin(7) weak G2

◮ The connection̂∇Xψ = ∇Xψ − cX · ψ, c = ± 1
2 , onΣ(M), naturally identifies with with

that induced by the Levi-Civita connection onΣ(C(M)) (or Σ±(C(M)) when dimM is
odd).

◮ Thus the classification is according to the holonomy of the cone(C(M), ḡ) where

C(M) = R+ × M, ḡ = dr2 + r2g.
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Sasaki manifolds

Definition 2.2
A Riemannian manifold(M, g) is Sasakiif the metric cone(C(M), ḡ), C(M) := R+ × M and
ḡ = dr2 + r2g, is Kähler, i.e.̄g admits a compatible almost complex structure J so that
(C(M), ḡ, J) is a Kähler structure. Equivalently,Hol(C(M), ḡ) ⊆ U(m).

Thus is a particular metric contact structure. We have

◮ a contact structureη with Reeb vector fieldξ = Jr∂r , a Killing field, and

◮ a strictly pseudoconvex CR structure(D, I), D = kerη.

◮ I induces a transversely holomorphic structure onFξ , with Kähler formωT = 1
2dη.

◮ The tensorφ = ∇ξ, with φ|D = I andφ(ξ) = 0 defines the CR structure.

We say that the Sasaki structure is

◮ quasi-regularif the orbits ofξ are closed (orbit space is an orbifold),

◮ irregular if not all the orbits ofξ close.

In the second case we must work on the transversal space ofFξ , since the leaf space in not
even Hausdorff. But one can work locally on the Kähler leaf space(Fξ , gT, I , ωT).
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ḡ = dr2 + r2g, is Kähler, i.e.̄g admits a compatible almost complex structure J so that
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Sasaki-Einstein manifolds

Suppose(M, g) is Sasaki dimM = n = 2m− 1. We are interested inSasaki-Einsteinstructures

Ricg = (n − 1)g, (2)

The Sasaki condition forces the Einstein constant to ben− 1.

◮ This is equivalent to(C(M), ḡ) being Ricci-flat as

Ric̄g = Ricg −(n− 1)g. (3)

◮ Also, the Ricci curvatures of̄g andgT satisfy (n = 2m− 1)

Ric̄g = RicgT −2m gT, (4)

◮ From (3) and (4)

Ricg(X,Y) = RicT
gT −2gT, for basic vector fieldsX,Y ∈ Γ(D), (5)

◮ so the Sasaki-Einstein condition is equivalent to the transversal space being
Kähler-Einstein

RicgT = 2mgT. (6)
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transversally holomorphic foliation

Fξ

ϕα

Cm

Uα

A transversely holomorphic structureon a foliationFξ is given by{(Uα, ϕα)}α∈A where
{Uα}α∈A coversM

◮ {Uα}α∈A coversM,

◮ theϕα : Uα → Cm−1 has fibers the leaves ofFξ locally onUα,

◮ there are holomorphic isomorphismgαβ : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) such that

ϕα = gαβ ◦ ϕβ on Uα ∩ Uβ .



deformations of the foliation

There is aversal deformation spaceV of transversely holomorphic structures onFξ fixing it as
a smooth foliation (A. El Kacimi Alaoui, M. Nicolau ’89; Girbau 1993).

V is the germ ofθ−1(0) whereθ is an analytic map

H1
∂̄b
(A0,•)

θ→ H2
∂̄b
(A0,•).

We have:

◮

H2
∂̄b
(A0,•) = Hm−3

∂̄b
(Γ(Λ1,•

b ⊗ Λm−1,0
b )) = 0,

by Kodaira-Nakano vanishing, sinceΛm−1,0
b < 0 and(m− 3) + 1 = m− 2< m− 1.

◮ ThusV is smooth. And after shrinkingV we may assume (A. El Kacimi Alaoui, B. Gimira
1997) that for t ∈ V F t

ξ
admits a transversal Kähler structure(It , gT

t , ω
T
t ).

◮ The Kähler structure can be chosen so that it lifts to a Sasakistructure(gt , ξ, ηt) with
transversal holomorphic structureIt and 1

2dηt = ωT
t . From (6), up to homothety, we will

have m

π
[ωT

t ] = cb
1(F

t
ξ),

but it will not necessarily be Sasaki-Einstein.
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3-Sasaki manifolds

Recall that a hyperkähler structure on a 4m-dimensional manifold consists of a metricg which
is Kähler with respect to three complex structuresJ1, J2, J3 satisfying the quaternionic relations
J1J2 = −J2J1 = J3 etc.

Definition 2.3
A Riemannian manifold(M, g) is 3-Sasakiif the metric cone(C(M), ḡ) is hyperkähler, i.e.̄g
admits a compatible almost complex structures Jα, α = 1, 2, 3 such that(C(M), ḡ, J1, J2, J3)
is a hyperkähler structure. Equivalently,Hol(C(M)) ⊆ Sp(m).

A consequence of the definition is that(M, g) is equipped with three Sasaki structures
(ξi , ηi , φi), i = 1, 2, 3. The Reeb vector fieldsξk, k = 1, 2, 3 are orthogonal and satisfy
[ξi , ξj ] = 2εijkξk, whereεijk is anti-symmetric in the indicesi, j, k ∈ {1, 2, 3} andε123 = 1.
The tensorsφi , i = 1, 2, 3 satisfy the identities

φi(ξj) = −εijkξk (7)

φi ◦ φj = −δij Id−ǫijkφk + ηj ⊗ ξi (8)



3-Sasaki manifolds

Recall that a hyperkähler structure on a 4m-dimensional manifold consists of a metricg which
is Kähler with respect to three complex structuresJ1, J2, J3 satisfying the quaternionic relations
J1J2 = −J2J1 = J3 etc.

Definition 2.3
A Riemannian manifold(M, g) is 3-Sasakiif the metric cone(C(M), ḡ) is hyperkähler, i.e.̄g
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3-Sasaki manifolds

The Reeb vector fieldsξk, k = 1, 2, 3 generate an action of Sp(1) or SO(3).
A 3-Sasaki manifoldM comes with a family of related geometries. The maps are labeled with
their generic fibers.

M

M Z

C(M)

-

�
�	

@
@R

@
@R

�
�	

R+ C
∗

S1

Sp(1)
SO(3)

CP1

◮ Z, thetwistor space, is the orbifold leaf spaceFξ1 with a complex contact structure
θ ∈ Ω1(L).

◮ M is aquaternionic-Kählerorbifold.

◮ TheLeBrun-Salamon conjectureproposes thatM is smooth only if it is symmetric.



3-Sasaki manifolds

The Reeb vector fieldsξk, k = 1, 2, 3 generate an action of Sp(1) or SO(3).
A 3-Sasaki manifoldM comes with a family of related geometries. The maps are labeled with
their generic fibers.

M

M Z

C(M)

-

�
�	

@
@R

@
@R

�
�	

R+ C
∗

S1

Sp(1)
SO(3)

CP1

◮ Z, thetwistor space, is the orbifold leaf spaceFξ1 with a complex contact structure
θ ∈ Ω1(L).

◮ M is aquaternionic-Kählerorbifold.

◮ TheLeBrun-Salamon conjectureproposes thatM is smooth only if it is symmetric.



3-Sasaki manifolds

The Reeb vector fieldsξk, k = 1, 2, 3 generate an action of Sp(1) or SO(3).
A 3-Sasaki manifoldM comes with a family of related geometries. The maps are labeled with
their generic fibers.

M

M Z

C(M)

-

�
�	

@
@R

@
@R

�
�	

R+ C
∗

S1

Sp(1)
SO(3)

CP1

◮ Z, thetwistor space, is the orbifold leaf spaceFξ1 with a complex contact structure
θ ∈ Ω1(L).

◮ M is aquaternionic-Kählerorbifold.

◮ TheLeBrun-Salamon conjectureproposes thatM is smooth only if it is symmetric.



3-Sasaki manifolds

The Reeb vector fieldsξk, k = 1, 2, 3 generate an action of Sp(1) or SO(3).
A 3-Sasaki manifoldM comes with a family of related geometries. The maps are labeled with
their generic fibers.

M

M Z

C(M)

-

�
�	

@
@R

@
@R

�
�	

R+ C
∗

S1

Sp(1)
SO(3)

CP1

◮ Z, thetwistor space, is the orbifold leaf spaceFξ1 with a complex contact structure
θ ∈ Ω1(L).

◮ M is aquaternionic-Kählerorbifold.

◮ TheLeBrun-Salamon conjectureproposes thatM is smooth only if it is symmetric.



3-Sasaki manifolds

The Reeb vector fieldsξk, k = 1, 2, 3 generate an action of Sp(1) or SO(3).
A 3-Sasaki manifoldM comes with a family of related geometries. The maps are labeled with
their generic fibers.

M

M Z

C(M)

-

�
�	

@
@R

@
@R

�
�	

R+ C
∗

S1

Sp(1)
SO(3)

CP1

◮ Z, thetwistor space, is the orbifold leaf spaceFξ1 with a complex contact structure
θ ∈ Ω1(L).

◮ M is aquaternionic-Kählerorbifold.

◮ TheLeBrun-Salamon conjectureproposes thatM is smooth only if it is symmetric.



Killing spinor deformations

We will need the machinery due toJ.P. Bourguignon and P. Gauduchon 1991for describing
spinors under metric variations.
Let P be the bundle of oriented orthonormal frames on(M, g). A spin structure is a double
coverP̃. Given a symmetric, w.r.t.g, automorphismα : TM → TM we have a new metric

gα(X,Y) = g(α−1X, α−1Y).

If Pα is the bundle ofgα-orthonormal oriented frames,α : P → Pα is SO(n)-equivariant, and
gives an isomorphism

Σ = P̃×Spin(n) ∆n
α̃→ Σα = P̃α ×Spin(n) ∆n.

Letα(t) be a smooth path of symmetric automorphisms withα(0) = IdTM, andσ̂t Killing
spinors forgα,

∇α(t)
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Killing spinor deformations

A deformation of the Killing spinorσ0 is a path(α(t), σt) satisfying

Lc(α(t), σt)(X) := ∇̄α(t)
X σt − cα(t)−1(X) · σt = 0. (10)

We will make use of

◮ Twisted Dirac operator:

D : Γ(Σ⊗ TMC) → Γ(Σ⊗ TMC)

◮ And the spinor valued 1-formΨ(β,σ) with Ψ(β,σ)(X) = β(X)σ, for β : TM → TM.

Differentiating (10) at(IdTM, σ0):

Proposition 3.1 (M. Wang 1991)

dLc(α̇, σ̇)(X) = ∇σ̇X − cXσ̇ + cα̇(X)σ0 − 1

2

∑

i

ei(∇i α̇)(X)σ0 +
1

2
g(δα̇,X)σ0.

If trg(α̇) = δα̇ = 0, then dLc(α̇, σ̇) = 0 if and only if∇Xσ̇ = cXσ̇ and
DΨ(α̇,σ0) = ncΨ(α̇,σ0).
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Killing spinor deformations

Forβ : TM → TM g-symmetric, defineh(X,Y) = −2g(β(X), Y)

Proposition 3.2 (M. Wang 1991)
If trg β = δβ = 0 andDΨ(β,σ0) = ncΨ(β,σ0), then

(

∇∗∇+ 2L
)

h = 0 where
(Lh)ij = Rk l

i j hkl.

Soh ∈ Γ
(

S2 T∗M
)

is aninfinitesimal Einstein deformation.

Definition 3.3 (M. Wang 1991)
An infinitesimal deformation of the Killing spinorσ0 is a pair (β, σ) satisfying:

(i) σ is a Killing spinor with constant c,
(ii) trg β = δβ = 0,
(iii) DΨ(β,σ0) = ncΨ(β,σ0).
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Infinitesimal Einstein deformations of Kähler-Einstein metrics

We will make use of some results ofN. Koiso 1983on the Einstein deformations of a
Kähler-Einstein metric.

Recall the transverse metricgT onFξ is Kähler-Einstein,

RicgT = 2mgT.

An harmonicrepresentativeβ ∈ H1
∂̄b
(A0,•) satisfies

∂̄bβ = 0, and∂̄∗b β = 0. (11)

Sincecb
1(Fξ) > 0, there are no non-zero harmonic sections ofΛ0,2

b so

hβT (X,Y) = −2g(β(X),Y) is symmetric and of type(0, 2).

Remark 4.1. By abuse of notationhβT will also denote the real component of the previous

object. SohβT is a real anti-Hermitian symmetric tensor.
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Infinitesimal Einstein deformations of Kähler-Einstein metrics

Proposition 4.2 (N. Koiso 1983)
The spaceET is infinitesimal Einstein deformations of gT , i.e.

ET := {h ∈ Γ
(

S2 T∗
b M

)

| trgT h = δgT h = 0,
(

(∇T)∗∇T + 2LT)h = 0},

splits into Hermitian and anti-Hermitian components

ET = ET
H ⊕ ET

A .

An anti-Hermitian h∈ Γ
(

S2 T∗
b M

)

is an element ofET
A if and only if

∇T
αhβγ −∇T

βhαγ = 0 (12)

(∇T)αhαβ = 0 (13)

Therefore, we have an isomorphism:H1
∆∂̄b

(A0,•) ∼= ET
A .
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Infinitesimal Killing spinor deformations on Sasaki-Einstein manifolds

The next result follows from computations using the O’Nielltensor. Recall that the local
projection onto the leaf space ofFξ is a Riemannian submersion.

Lemma 4.3
Let (M, g) be a Sasaki-Einstein manifold. Suppose hT ∈ Γ

(

S2 T∗
b M

)

is an anti-Hermitian
infinitesimal Einstein deformation of gT . Then h= π∗hT is an infinitesimal Einstein
deformation of g.

Proposition 4.4
Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2 defining Killing spinors

σj , j = 0, 1. If β ∈ H1
∆∂̄b

(A0,•) and hβT the corresponding basic anti-Hermitian symmetric

tensor, then hβ := π∗hβT is an infinitesimal Einstein deformation of g, and(hβ , 0) is an
infinitesimal deformation of the Killing spinorsσj for j = 0, 1.
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Infinitesimal Killing spinor deformations on Sasaki-Einstein manifolds

Some remarks on the proof:

◮ Since trg(hβ) = δghβ = 0, Proposition 3.1 is satisfied if

∑

i

ei
(

∇ih
)

(X)σi = 2ch(X)σi , for all X ∈ TM, i = 1, 2. (14)

◮ Using the O’Neill tensor one puts (14) in form

2m−2
∑

i=1

ei
(

∇T
i h

)

(X)σj − φh(X)ξσj = 2ch(X)σi . (15)

◮ Then in an Hermitian frame use the identities (12) (13) to show the first term is zero.

◮ The remaining terms are equal by the definition of Clifford multiplication.
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Infinitesimal Killing spinor deformations on 3-Sasaki manifolds

Proposition 4.5
Let (M, g), dimM = 4m− 1, be a 3-Sasaki manifold with Killing spinorsσj , j = 0, . . . ,m. If

β ∈ H1
∆∂̄b

(A0,•) is non-zero and hβT the corresponding basic anti-Hermitian symmetric

tensor, then hβ := π∗hβT is an infinitesimal Einstein deformation of g, and(hβ , 0) is an
infinitesimal deformation of the Killing spinorsσj for j = 0,m, but never for j= 1, . . . ,m− 1.

◮ Take a local quaternionic frame

(e1, e2, . . . , e4m) = (f1, J1f1, J2f1, J3f1, f2, . . . , fm, J1fm, J2fm, J3fm),

wheree1, . . . , e4m−4 are orthogonal toξi , i = 1, 2, 3 andfm = ξ2, J1fm = ξ3, J2fm = ∂r ,
andJ3fm = −ξ1.

◮ Then we have an Hermitian, w.r.t.J1, frame
εα = 1√

2
(e2α−1 −

√
−1e2α), α = 1, . . . , 2m.

◮ The spinor bundle of(M, g) is Σ = ΛevT1,0C(M)|M = Λev Span
C
{εα|α = 1, . . . , 2m}.
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◮ Take a local quaternionic frame

(e1, e2, . . . , e4m) = (f1, J1f1, J2f1, J3f1, f2, . . . , fm, J1fm, J2fm, J3fm),

wheree1, . . . , e4m−4 are orthogonal toξi , i = 1, 2, 3 andfm = ξ2, J1fm = ξ3, J2fm = ∂r ,
andJ3fm = −ξ1.

◮ Then we have an Hermitian, w.r.t.J1, frame
εα = 1√

2
(e2α−1 −

√
−1e2α), α = 1, . . . , 2m.
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Infinitesimal Killing spinor deformations on 3-Sasaki manifolds

◮ We have the “symplectic form”

̟ =
m
∑

α=1

ε2α−1 ∧ ε2α. (16)

◮ And the Killing spinors on(M, g) areσk = 1
k!̟

k, k = 0, . . . ,m.

◮ If θ ∈ Ω1,0
b (L) is the complex contact form, then one can show that

ψβ̄ = hγ
β̄
θγ ∈ Ω0,1

b (L) is harmonic and thus zero, sinceH1
∂̄b
(Γ(Λ0,•(L))) = 0.

◮ Thush(X) ⊥ Span{ξ1, ξ2, ξ3}.

The rest is involves computing as in the last proposition.
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Integrable deformations: Sasaki-Einstein

We consider cases in which the above infinitesimal Killing spinor deformations integrate.

◮ The infinitesimal Killing spinor deformationshβ for β ∈ H1
∆∂̄b

(A0,•) of a

Sasaki-Einstein metric(M, g) do not necessarily integrate.

◮ Note that this problem includes that of deforming Kähler-Einstein metrics.
WhenM is regular the leaf spaceZ is a Kähler-Einstein manifold.

◮ We saw thatFξ has a smooth Kuranishi spaceV ⊂ H1
∂̄b
(A0,•). But F t

ξ
, t ∈ V \ {0}

may not admit a transversal Kähler-Einstein metric.

Let T ⊂ Aut(M, g, ξ, φ) be a maximal torus of the automorphism group of the Sasaki structure.

Theorem 5.1 (van Coevering, arXiv:1204.1630 )
If β ∈ H1

∆∂̄b
(A0,•)T , then hβ integrates to a deformation of Sasaki-Einstein structures

(gt , It, ξt).
More generally, lett be the Lie algebra of T. Then there is a neighborhood ofN of
(0, ξ) ∈ V × t, so that for(t, ζ) ∈ N there is a Sasaki-Extremal metric(gt,ζ , It, ζ).
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Integrable deformations: Sasaki-Einstein

A Sasaki-Extremalmetric is a critical point of the Calabi functional.

S(ξ, I) := {Sasaki structures with Reeb fieldξ and trans. holmorphic str.I}
M(ξ, I) := {metrics associated to structures inS(ξ, I)}

TheCalabi functionalC is
M(ξ, I)

C−→ R

g 7→
∫

M s2
g dµg

(17)

◮ Theorem 5.1 is a special case of results on deforming Sasaki-Extremal metrics.

◮ Proof uses implicit function theorem on thereduced scalar curvature.

◮ If the deformation does not preserve a maximal torus, then addition assumption is needed:

Non-degeneracy of the relative Futaki invariant.

◮ Y. Rollin, S. Simanca, and C. Tipler, 2011gave similar result in the Kähler case .
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Integrable deformations: 3-Sasaki

It is well known that 3-Sasaki structures are rigid (H. Pedersen and Y. S. Poon 1999).

Theorem 5.2
Let (M, g), dimM = 4m− 1, be a 3-Sasaki manifold with Killing spinorsσj , j = 0, . . . ,m.
Then any Einstein deformation(M, gt) of g with compatible 3-Sasaki structures, i.e. preserving
the existence of theσj , j = 0, . . . ,m, is trivial. That is, there exists a family ft of
diffeomorphisms of M with f∗t gt = g.

The leaf space ofFξ is a complex orbifoldZ, thetwistor space. So there is an
anti-holomorphic involutionς : Z → Z. So

◮ H1
∂̄b
(A0,•) = H1(Z,ΘZ), whereΘZ is the orbifold sheaf of holomorphic vector fields.

◮ We have a real structureς : H1
∂̄b
(A0,•) → H1

∂̄b
(A0,•)

Theorem 5.3
Let (M, g), dimM = 4m− 1, be a 3-Sasaki manifold, and denote byσj , j = 0, . . . ,m the
Killing spinors associated to the 3-Sasaki structure. Thenthe infinitesimal Einstein
deformations hβ of g forβ ∈ ReH1

∆∂̄b
(A0,•) integrate to a family

gt, t ∈ N ⊂ Rd, d = dimC H1
∂̄b
(A0,•) of Einstein deformations of g preserving onlyσ0 and

σm.
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Integrable deformations: 3-Sasaki

Corollary 5.4
Let (M, g), dimM = 4m− 1, be a 3-Sasaki manifold with d= dimC H1

∂̄b
(A0,•). Then g has a

real d-dimensional family of non-trivial deformations,{gt |t ∈ V ⊂ Rd}, where gt, t 6= 0, has a
compatible Sasaki-Einstein structure but no 3-Sasaki structure.

Idea of proof of theorem.

◮ We have transversal Kähler metricsωT
t , t ∈ V with ωT

t ∈ π
2mcb

1(F
t
ξ
).

◮ May assume thatς∗gt = gt andς∗ωT
t = −ωT

t .

◮ We want to solve Ricci(ωT
t + ddc

t ϕt)− 4mπ(ωT
t + ddc

t ϕt) = 0.

◮ Differentiating at(t, ϕ) = (0, 0) givesφ̇ 7→
(

−∆∂̄ + 4m
)

ϕ̇, which has kernel and
cokernel the (normalized) holomorphy potentialsHg of holomorphic vector fields onZ.

◮ One can show that forf ∈ Hg, ς∗f = −f .

◮ Restrict the equation toCk,α(Z)sym = {f ∈ Ck,α(Z)|ς∗f = f}. Then apply the implicit
function theorem.
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Toric 3-Sasaki manifolds

A 3-Sasaki manifold(M, g), dimM = 4m− 1, is toric if there is aTm ⊆ Aut(M, g, ξ1, ξ2, ξ3).

◮ Toric 3-Sasaki manifolds have been constructed from 3-Sasaki quotients by torus actions
on S4n−1, with the 3-Sasaki structure given by right multiplicationby Sp(1).

◮ A result ofR. Bielawski, 1999, is that this gives all of them.

◮ A subtorusTk ⊂ Tn is determined by a weight matrixΩk,n ∈ Mat(k, n,Z). There are
conditions onΩ (due toC. Boyer, K. Galicki, B. Mann, E. Rees, 1998) that imply the
moment mapµ : S4n−1 → (tk)∗ ⊗ R3 is a submersion, and further that the quotient

MΩk,n = S4n−1//Tk = µ−1(0)/Tk

is smooth.

◮ Whenn = k+ 2 the above authors showed there are infinitely many weight matrices in
Mat(k, n,Z) for k ≥ 1 giving infinitely many 7-manifoldsMΩk,n for eachb2 = k ≥ 1.
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Toric 3-Sasaki 7-manifolds

We assume now that dimM = 7.

If b2(M) ≥ 1, then the maximal torus ofSasakiautomorphisms,T3 ⊂ Aut(M, ξ1), is
3-dimensional.

Lemma 6.1 (van Coevering, arXiv:math.DG/0607721)
If Z is the twistor space of a toric 3-Sasaki 7-manifold M, then H1(Z,ΘZ) = H1(Z,ΘZ)T2

,

dimC H1(Z,ΘZ) = b2(M) − 1 = k− 1.

AndZ has a local b2(M)− 1-dimensional space of deformations.

Theorem 6.2
Let (M, g) be a toric 3-Sasaki 7-manifold. Then g is in an effective complex
b2(M) − 1-dimensional family{gt}t∈U , U ⊂ Cb2(M)−1 with g0 = g, of Sasaki-Einstein
metrics where gt is not 3-Sasaki for t6= 0.

One applies Theorem 5.1;H1(Z,ΘZ)T2
= H1

∂̄b
(A0,•)T3

, whereT2 is a maximal torus.
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Toric 3-Sasaki 7-manifolds

Thus unlike the case of parallel spinors (c = 0) the dimension of the space of Killing spinors is
not locally stable in general. See figure 1 for the isometry groups of the metrics.

Cb2−1

Rb2−1

T3

T3 × Z2

T2 × Sp(1)

Figure:Space of Sasaki-Einstein metrics
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