Deformation of the Killing spinor equation on Sasaki-Einstein and 3-Sasaki manifolds

Craig van Coevering craigvan@ustc.edu.cn

University of Science and Technology of China, Hefei

Ningbo University July 10, 2012

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Let (M, g) be spin with spin bundle Σ .

We will consider variations of the Killing Spinor equation

$$\nabla_X \psi = cX \cdot \psi, \quad \psi \in \Gamma(\Sigma), \ c \in \mathbb{R} \setminus \{0\}, \tag{1}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- ▶ In particular, we will consider variations on Sasaki-Einstein and 3-Sasaki manifolds, where (1) has a 2 and m + 1 (dim M = 4m 1) space of solutions respectively.
- ▶ In this case the Reeb vector field ξ generates a transversally holomorphic, and Kähler, foliation \mathscr{P}_{ξ} . The holomorphic structure on \mathscr{P}_{ξ} has a versal deformation space, with tangent space

$$H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet}), \quad \text{where } \mathcal{A}^{0,k} = \Gamma(\Lambda^{0,k}_b \otimes T^{1,0}_b)$$

and

$$0 \to \mathcal{A}^{0,0} \stackrel{\bar{\partial}_b}{\to} \mathcal{A}^{0,1} \stackrel{\bar{\partial}_b}{\to} \cdots$$

is the *basic* Dolbeault complex with values in the transverse holomorphic tangent bundle $T_b^{1,0}$ to \mathscr{F}_{ξ} .

Let (M, g) be spin with spin bundle Σ .

We will consider variations of the Killing Spinor equation

$$\nabla_X \psi = cX \cdot \psi, \quad \psi \in \Gamma(\Sigma), \ c \in \mathbb{R} \setminus \{0\}, \tag{1}$$

- ▶ In particular, we will consider variations on Sasaki-Einstein and 3-Sasaki manifolds, where (1) has a 2 and m + 1 (dim M = 4m 1) space of solutions respectively.
- ▶ In this case the Reeb vector field ξ generates a transversally holomorphic, and Kähler, foliation \mathscr{P}_{ξ} . The holomorphic structure on \mathscr{P}_{ξ} has a versal deformation space, with tangent space

$$H^{1}_{\overline{\partial}_{b}}(\mathcal{A}^{0,\bullet}), \text{ where } \mathcal{A}^{0,k} = \Gamma(\Lambda^{0,k}_{b} \otimes T^{1,0}_{b})$$

and

$$0 \to \mathcal{A}^{0,0} \stackrel{\bar{\partial}_b}{\to} \mathcal{A}^{0,1} \stackrel{\bar{\partial}_b}{\to} \cdots$$

is the *basic* Dolbeault complex with values in the transverse holomorphic tangent bundle $T_b^{1,0}$ to \mathscr{F}_{ξ} .

Let (M, g) be spin with spin bundle Σ .

We will consider variations of the Killing Spinor equation

$$\nabla_X \psi = cX \cdot \psi, \quad \psi \in \Gamma(\Sigma), \ c \in \mathbb{R} \setminus \{0\}, \tag{1}$$

- ▶ In particular, we will consider variations on Sasaki-Einstein and 3-Sasaki manifolds, where (1) has a 2 and m + 1 (dim M = 4m 1) space of solutions respectively.
- ▶ In this case the Reeb vector field ξ generates a transversally holomorphic, and Kähler, foliation \mathscr{F}_{ξ} . The holomorphic structure on \mathscr{F}_{ξ} has a versal deformation space, with tangent space

$$H^1_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}), \quad \text{where } \mathcal{A}^{0,k} = \Gamma(\Lambda^{0,k}_b \otimes T^{1,0}_b)$$

and

$$0 \to \mathcal{A}^{0,0} \xrightarrow{\bar{\partial}_b} \mathcal{A}^{0,1} \xrightarrow{\bar{\partial}_b} \cdots$$

is the *basic* Dolbeault complex with values in the transverse holomorphic tangent bundle $T_b^{1,0}$ to \mathscr{F}_{ξ} .

This talk will consider the following results:

- ▶ An harmonic representative β of $[\beta] \in H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$ lifts to an *infinitesimal Einstein deformation* h^{β} of (M, g).
- ▶ If (M, g) is Sasaki-Einstein, then h^{β} preserves the 2 Killing spinors σ_0, σ_1 to 1st order, i.e. (1) is preserved under the infinitesimal deformation of metrics, h^{β} .
- ▶ If (M, g) is 3-Sasaki, dim M = 4m 1, then of the m + 1 Killing spinors $\sigma_0, \ldots, \sigma_m$ the 2 determined by the Sasaki structure ξ, σ_0, σ_m are preserved by h^β , while $\sigma_1, \ldots, \sigma_{m-1}$ never are.
- ▶ If (M, g) is Sasaki-Einstein, then clearly not all h^{β} integrate to Sasaki-Einstein deformations.

But by considering the deformation theory of transversally extremal metric analogous to the Kähler case (due to Y. Rollin, S. Simanca, C. Tipler 2010) we get:

Theorem 1.1

This talk will consider the following results:

- An harmonic representative β of [β] ∈ H¹_{∂_b}(A^{0,•}) lifts to an *infinitesimal Einstein deformation* h^β of (M, g).
- ▶ If (M, g) is Sasaki-Einstein, then h^{β} preserves the 2 Killing spinors σ_0, σ_1 to 1st order, i.e. (1) is preserved under the infinitesimal deformation of metrics, h^{β} .
- ▶ If (M, g) is 3-Sasaki, dim M = 4m 1, then of the m + 1 Killing spinors $\sigma_0, \ldots, \sigma_m$ the 2 determined by the Sasaki structure ξ, σ_0, σ_m are preserved by h^β , while $\sigma_1, \ldots, \sigma_{m-1}$ never are.
- ▶ If (M, g) is Sasaki-Einstein, then clearly not all h^{β} integrate to Sasaki-Einstein deformations.

But by considering the deformation theory of transversally extremal metric analogous to the Kähler case (due to Y. Rollin, S. Simanca, C. Tipler 2010) we get:

Theorem 1.1

This talk will consider the following results:

- An harmonic representative β of [β] ∈ H¹_{∂_b}(A^{0,•}) lifts to an *infinitesimal Einstein deformation* h^β of (M, g).
- ▶ If (M, g) is Sasaki-Einstein, then h^{β} preserves the 2 Killing spinors σ_0, σ_1 to 1st order, i.e. (1) is preserved under the infinitesimal deformation of metrics, h^{β} .
- ▶ If (M, g) is 3-Sasaki, dim M = 4m 1, then of the m + 1 Killing spinors $\sigma_0, \ldots, \sigma_m$ the 2 determined by the Sasaki structure ξ, σ_0, σ_m are preserved by h^β , while $\sigma_1, \ldots, \sigma_{m-1}$ never are.
- ▶ If (M, g) is Sasaki-Einstein, then clearly not all h^{β} integrate to Sasaki-Einstein deformations.

But by considering the deformation theory of transversally extremal metric analogous to the Kähler case (due to Y. Rollin, S. Simanca, C. Tipler 2010) we get:

Theorem 1.1

This talk will consider the following results:

- An harmonic representative β of [β] ∈ H¹_{∂_b}(A^{0,•}) lifts to an *infinitesimal Einstein deformation* h^β of (M, g).
- ▶ If (M, g) is Sasaki-Einstein, then h^{β} preserves the 2 Killing spinors σ_0, σ_1 to 1st order, i.e. (1) is preserved under the infinitesimal deformation of metrics, h^{β} .
- ▶ If (M, g) is 3-Sasaki, dim M = 4m 1, then of the m + 1 Killing spinors $\sigma_0, \ldots, \sigma_m$ the 2 determined by the Sasaki structure ξ, σ_0, σ_m are preserved by h^β , while $\sigma_1, \ldots, \sigma_{m-1}$ never are.
- ▶ If (M, g) is Sasaki-Einstein, then clearly not all h^{β} integrate to Sasaki-Einstein deformations.

But by considering the deformation theory of transversally extremal metric analogous to the Kähler case (due to Y. Rollin, S. Simanca, C. Tipler 2010) we get:

Theorem 1.1

This talk will consider the following results:

- An harmonic representative β of [β] ∈ H¹_{∂_b}(A^{0,•}) lifts to an *infinitesimal Einstein deformation* h^β of (M, g).
- ▶ If (M, g) is Sasaki-Einstein, then h^{β} preserves the 2 Killing spinors σ_0, σ_1 to 1st order, i.e. (1) is preserved under the infinitesimal deformation of metrics, h^{β} .
- ▶ If (M, g) is 3-Sasaki, dim M = 4m 1, then of the m + 1 Killing spinors $\sigma_0, \ldots, \sigma_m$ the 2 determined by the Sasaki structure ξ, σ_0, σ_m are preserved by h^β , while $\sigma_1, \ldots, \sigma_{m-1}$ never are.
- If (M, g) is Sasaki-Einstein, then clearly not all h^β integrate to Sasaki-Einstein deformations.

But by considering the deformation theory of transversally extremal metric analogous to the Kähler case (due to Y. Rollin, S. Simanca, C. Tipler 2010) we get:

Theorem 1.1

This talk will consider the following results:

- An harmonic representative β of [β] ∈ H¹_{∂_b}(A^{0,•}) lifts to an *infinitesimal Einstein deformation* h^β of (M, g).
- ▶ If (M, g) is Sasaki-Einstein, then h^{β} preserves the 2 Killing spinors σ_0, σ_1 to 1st order, i.e. (1) is preserved under the infinitesimal deformation of metrics, h^{β} .
- ▶ If (M, g) is 3-Sasaki, dim M = 4m 1, then of the m + 1 Killing spinors $\sigma_0, \ldots, \sigma_m$ the 2 determined by the Sasaki structure ξ, σ_0, σ_m are preserved by h^β , while $\sigma_1, \ldots, \sigma_{m-1}$ never are.
- ▶ If (M, g) is Sasaki-Einstein, then clearly not all h^{β} integrate to Sasaki-Einstein deformations.

But by considering the deformation theory of transversally extremal metric analogous to the Kähler case (due to Y. Rollin, S. Simanca, C. Tipler 2010) we get:

Theorem 1.1

If (M, g) is 3-Sasaki, then there is a diffeomorphism ς : M → M which an anti-holomorphic automorphism on 𝔅_ξ. Thus H¹_{∂_k}(𝔄^{0,•}) has a real structure.

Theorem 1.2

A neighborhood of zero $\mathcal{V} \subset \operatorname{Re} H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$ parametrizes a family of Sasaki-Einstein metrics g_t with $g_0 = g$.

Theorem 1.2 has the following consequences:

- ▶ It is well known that 3-Sasaki structures are rigid (H. Pedersen and Y. S. Poon 1999). Thus there is a neighborhood \mathcal{N} of $0 \in \mathcal{V}$ so that g_t , $t \in \mathcal{N} \setminus \{0\}$ does not admit a 3-Sasaki structure.
- ▶ In other words if dim M = 4m 1, then $g = g_0$ admits m + 1 Killing spinors while g_t , $t \in \mathcal{N} \setminus \{0\}$ has 2.
- We give examples where this happens. We apply Theorems 1.1 and 1.2 to toric 3-Sasaki 7-manifolds. Toric means it admits a T^2 group of automorphisms.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

▶ If (M, g) is 3-Sasaki, then there is a diffeomorphism $\varsigma : M \to M$ which an anti-holomorphic automorphism on \mathscr{F}_{ξ} . Thus $H^{1}_{\partial u}(\mathcal{A}^{0,\bullet})$ has a real structure.

Theorem 1.2

A neighborhood of zero $\mathcal{V} \subset \operatorname{Re} H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$ parametrizes a family of Sasaki-Einstein metrics g_t with $g_0 = g$.

Theorem 1.2 has the following consequences:

- ▶ It is well known that 3-Sasaki structures are rigid (H. Pedersen and Y. S. Poon 1999). Thus there is a neighborhood \mathcal{N} of $0 \in \mathcal{V}$ so that g_t , $t \in \mathcal{N} \setminus \{0\}$ does not admit a 3-Sasaki structure.
- ▶ In other words if dim M = 4m 1, then $g = g_0$ admits m + 1 Killing spinors while g_t , $t \in \mathcal{N} \setminus \{0\}$ has 2.
- ▶ We give examples where this happens. We apply Theorems 1.1 and 1.2 to toric 3-Sasaki 7-manifolds. Toric means it admits a *T*² group of automorphisms.

▶ If (M, g) is 3-Sasaki, then there is a diffeomorphism $\varsigma : M \to M$ which an anti-holomorphic automorphism on \mathscr{F}_{ξ} . Thus $H^{1}_{\partial_{t}}(\mathcal{A}^{0,\bullet})$ has a real structure.

Theorem 1.2

A neighborhood of zero $\mathcal{V} \subset \operatorname{Re} H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$ parametrizes a family of Sasaki-Einstein metrics g_t with $g_0 = g$.

Theorem 1.2 has the following consequences:

- ▶ It is well known that 3-Sasaki structures are rigid (H. Pedersen and Y. S. Poon 1999). Thus there is a neighborhood \mathcal{N} of $0 \in \mathcal{V}$ so that g_t , $t \in \mathcal{N} \setminus \{0\}$ does not admit a 3-Sasaki structure.
- ▶ In other words if dim M = 4m 1, then $g = g_0$ admits m + 1 Killing spinors while g_t , $t \in \mathcal{N} \setminus \{0\}$ has 2.
- We give examples where this happens. We apply Theorems 1.1 and 1.2 to toric 3-Sasaki 7-manifolds. Toric means it admits a T^2 group of automorphisms.

Theorem 1.3 Let (M, g) be a toric 3-Sasaki 7-manifold. Then $\dim_{\mathbb{C}} H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet}) = b_2(M) - 1$ and there is a neighborhood $\mathcal{U} \subset H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet}) = \mathbb{C}^{b_2-1}$ of 0 parametrizing Sasaki-Einstein metrics such that $g_t, t \in \mathcal{U} \setminus \{0\}$, are not 3-Sasaki.

- ▶ Therefore, a toric 3-Sasaki 7-manifold (M, g) with $b_2(M) > 1$ has Einstein deformations to metrics g_t which are Sasaki-Einstein but not 3-Sasaki.
- They give examples of manifolds with a metric with 3 Killing spinors with deformations to metrics admitting only 2. So there is no analogue of the following theorem of M. Wang for Killing spinors.

Equation (1) with c = 0 is just the equation for a parallel spinor.

Theorem 1.4 (M. Y. Wang, 1991)

Let (M, g) is a compact simply connected spin manifold with irreducible holonomy admitting a nonzero parallel spinor. Then there is a neighborhood W of g in the Einstein moduli space such that each $\overline{g} \in W$ admits the same number of independent parallel spinors.

Theorem 1.3

Let (M, g) be a toric 3-Sasaki 7-manifold. Then dim_C $H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet}) = b_2(M) - 1$ and there is a neighborhood $\mathcal{U} \subset H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet}) = \mathbb{C}^{b_2-1}$ of 0 parametrizing Sasaki-Einstein metrics such that $g_t, t \in \mathcal{U} \setminus \{0\}$, are not 3-Sasaki.

- ▶ Therefore, a toric 3-Sasaki 7-manifold (M, g) with $b_2(M) > 1$ has Einstein deformations to metrics g_t which are Sasaki-Einstein but not 3-Sasaki.
- They give examples of manifolds with a metric with 3 Killing spinors with deformations to metrics admitting only 2. So there is no analogue of the following theorem of M. Wang for Killing spinors.

Equation (1) with c = 0 is just the equation for a parallel spinor.

Theorem 1.4 (M. Y. Wang, 1991)

Let (M, g) is a compact simply connected spin manifold with irreducible holonomy admitting a nonzero parallel spinor. Then there is a neighborhood W of g in the Einstein moduli space such that each $\overline{g} \in W$ admits the same number of independent parallel spinors.

Theorem 1.3

Let (M, g) be a toric 3-Sasaki 7-manifold. Then dim_C $H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet}) = b_2(M) - 1$ and there is a neighborhood $\mathcal{U} \subset H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet}) = \mathbb{C}^{b_2-1}$ of 0 parametrizing Sasaki-Einstein metrics such that $g_t, t \in \mathcal{U} \setminus \{0\}$, are not 3-Sasaki.

- ▶ Therefore, a toric 3-Sasaki 7-manifold (M, g) with $b_2(M) > 1$ has Einstein deformations to metrics g_t which are Sasaki-Einstein but not 3-Sasaki.
- They give examples of manifolds with a metric with 3 Killing spinors with deformations to metrics admitting only 2. So there is no analogue of the following theorem of M. Wang for Killing spinors.

Equation (1) with c = 0 is just the equation for a parallel spinor.

Theorem 1.4 (M. Y. Wang, 1991)

Let (M, g) is a compact simply connected spin manifold with irreducible holonomy admitting a nonzero parallel spinor. Then there is a neighborhood W of g in the Einstein moduli space such that each $\overline{g} \in W$ admits the same number of independent parallel spinors.

Let (M, g) a Riemannian manifold with a spin structure and spin bundle Σ . Definition 2.1 A Killing spinor is a nonzero section $\psi \in \Gamma(\Sigma)$ which satisfies

 $\nabla_X \psi = c X \cdot \psi,$

where c is a constant and $X \cdot \psi$ is Clifford multiplication.

Note that c can be rescaled by rescaling g, so we denote by \mathcal{N}_+ (resp. \mathcal{N}_-) the \mathbb{C} -dimension of the space of Killing spinors with c > 0 (resp. c < 0).

Existence of a Killing spinor $\psi \in \Gamma(\Sigma)$ has the following consequences (T. Friedrich 1980):

- (M, g) is an Einstein manifold with $\operatorname{Ric}_g = 4(n-1)c^2g$.
- So c is either 0, in which case ψ is parallel; c is imaginary, in which case M is noncompact; or c is real, in which case M is compact and irreducible.
- We will consider only the case $c \in \mathbb{R} \setminus \{0\}$, and for convenience $c = \pm \frac{1}{2}$.
- ψ is an eigenspinor of lowest eigenvalue λ for the Dirac operator $D: \Gamma(\Sigma) \to \Gamma(\Sigma)$ in the following sense.

If (M, g) is compact with scalar curvature $s \ge s_0 > 0$, then $\lambda^2 \ge \frac{1}{4} \frac{n}{n-1} s_0$. And we have equality if and only if the eigenspinor is a Killing spinor.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Let (M, g) a Riemannian manifold with a spin structure and spin bundle Σ . Definition 2.1 A Killing spinor is a nonzero section $\psi \in \Gamma(\Sigma)$ which satisfies

 $\nabla_X \psi = c X \cdot \psi,$

where c is a constant and $X \cdot \psi$ is Clifford multiplication.

Note that *c* can be rescaled by rescaling *g*, so we denote by \mathcal{N}_+ (resp. \mathcal{N}_-) the \mathbb{C} -dimension of the space of Killing spinors with c > 0 (resp. c < 0).

Existence of a Killing spinor $\psi \in \Gamma(\Sigma)$ has the following consequences (T. Friedrich 1980):

- (M, g) is an Einstein manifold with $\operatorname{Ric}_g = 4(n-1)c^2g$.
- So c is either 0, in which case ψ is parallel; c is imaginary, in which case M is noncompact; or c is real, in which case M is compact and irreducible.
- We will consider only the case $c \in \mathbb{R} \setminus \{0\}$, and for convenience $c = \pm \frac{1}{2}$.
- ψ is an eigenspinor of lowest eigenvalue λ for the Dirac operator $D: \Gamma(\Sigma) \to \Gamma(\Sigma)$ in the following sense.

If (M, g) is compact with scalar curvature $s \ge s_0 > 0$, then $\lambda^2 \ge \frac{1}{4} \frac{n}{n-1} s_0$. And we have equality if and only if the eigenspinor is a Killing spinor.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Let (M, g) a Riemannian manifold with a spin structure and spin bundle Σ . Definition 2.1 A Killing spinor is a nonzero section $\psi \in \Gamma(\Sigma)$ which satisfies

 $\nabla_X \psi = c X \cdot \psi,$

where c is a constant and $X \cdot \psi$ is Clifford multiplication.

Note that *c* can be rescaled by rescaling *g*, so we denote by \mathcal{N}_+ (resp. \mathcal{N}_-) the \mathbb{C} -dimension of the space of Killing spinors with c > 0 (resp. c < 0).

Existence of a Killing spinor $\psi \in \Gamma(\Sigma)$ has the following consequences (T. Friedrich 1980):

• (M,g) is an Einstein manifold with $\operatorname{Ric}_g = 4(n-1)c^2g$.

So c is either 0, in which case ψ is parallel; c is imaginary, in which case M is noncompact; or c is real, in which case M is compact and irreducible.

- We will consider only the case $c \in \mathbb{R} \setminus \{0\}$, and for convenience $c = \pm \frac{1}{2}$.
- ψ is an eigenspinor of lowest eigenvalue λ for the Dirac operator $D: \Gamma(\Sigma) \to \Gamma(\Sigma)$ in the following sense.

If (M, g) is compact with scalar curvature $s \ge s_0 > 0$, then $\lambda^2 \ge \frac{1}{4} \frac{n}{n-1} s_0$. And we have equality if and only if the eigenspinor is a Killing spinor.

Let (M, g) a Riemannian manifold with a spin structure and spin bundle Σ . Definition 2.1 A Killing spinor is a nonzero section $\psi \in \Gamma(\Sigma)$ which satisfies

 $\nabla_X \psi = c X \cdot \psi,$

where c is a constant and $X \cdot \psi$ is Clifford multiplication.

Note that *c* can be rescaled by rescaling *g*, so we denote by \mathcal{N}_+ (resp. \mathcal{N}_-) the \mathbb{C} -dimension of the space of Killing spinors with c > 0 (resp. c < 0).

Existence of a Killing spinor $\psi \in \Gamma(\Sigma)$ has the following consequences (T. Friedrich 1980):

• (M, g) is an Einstein manifold with $\operatorname{Ric}_g = 4(n-1)c^2g$.

So c is either 0, in which case ψ is parallel; c is imaginary, in which case M is noncompact; or c is real, in which case M is compact and irreducible.

- We will consider only the case $c \in \mathbb{R} \setminus \{0\}$, and for convenience $c = \pm \frac{1}{2}$.
- ψ is an eigenspinor of lowest eigenvalue λ for the Dirac operator $D: \Gamma(\Sigma) \to \Gamma(\Sigma)$ in the following sense.

If (M, g) is compact with scalar curvature $s \ge s_0 > 0$, then $\lambda^2 \ge \frac{1}{4} \frac{n}{n-1} s_0$. And we have equality if and only if the eigenspinor is a Killing spinor.

Let (M, g) a Riemannian manifold with a spin structure and spin bundle Σ . Definition 2.1 A Killing spinor is a nonzero section $\psi \in \Gamma(\Sigma)$ which satisfies

 $\nabla_X \psi = c X \cdot \psi,$

where c is a constant and $X \cdot \psi$ is Clifford multiplication.

Note that *c* can be rescaled by rescaling *g*, so we denote by \mathcal{N}_+ (resp. \mathcal{N}_-) the \mathbb{C} -dimension of the space of Killing spinors with c > 0 (resp. c < 0).

Existence of a Killing spinor $\psi \in \Gamma(\Sigma)$ has the following consequences (T. Friedrich 1980):

- (M, g) is an Einstein manifold with $\operatorname{Ric}_g = 4(n-1)c^2g$.
- So c is either 0, in which case ψ is parallel; c is imaginary, in which case M is noncompact; or c is real, in which case M is compact and irreducible.
- We will consider only the case $c \in \mathbb{R} \setminus \{0\}$, and for convenience $c = \pm \frac{1}{2}$.
- ψ is an eigenspinor of lowest eigenvalue λ for the Dirac operator $D : \Gamma(\Sigma) \to \Gamma(\Sigma)$ in the following sense.

If (M, g) is compact with scalar curvature $s \ge s_0 > 0$, then $\lambda^2 \ge \frac{1}{4} \frac{n}{n-1} s_0$. And we have equality if and only if the eigenspinor is a Killing spinor.

Let (M, g) a Riemannian manifold with a spin structure and spin bundle Σ . Definition 2.1 A Killing spinor is a nonzero section $\psi \in \Gamma(\Sigma)$ which satisfies

 $\nabla_X \psi = c X \cdot \psi,$

where c is a constant and $X \cdot \psi$ is Clifford multiplication.

Note that *c* can be rescaled by rescaling *g*, so we denote by \mathcal{N}_+ (resp. \mathcal{N}_-) the \mathbb{C} -dimension of the space of Killing spinors with c > 0 (resp. c < 0).

Existence of a Killing spinor $\psi \in \Gamma(\Sigma)$ has the following consequences (T. Friedrich 1980):

- (M, g) is an Einstein manifold with $\operatorname{Ric}_g = 4(n-1)c^2g$.
- So c is either 0, in which case ψ is parallel; c is imaginary, in which case M is noncompact; or c is real, in which case M is compact and irreducible.
- We will consider only the case $c \in \mathbb{R} \setminus \{0\}$, and for convenience $c = \pm \frac{1}{2}$.
- ψ is an eigenspinor of lowest eigenvalue λ for the Dirac operator $D : \Gamma(\Sigma) \to \Gamma(\Sigma)$ in the following sense.

If (M, g) is compact with scalar curvature $s \ge s_0 > 0$, then $\lambda^2 \ge \frac{1}{4} \frac{n}{n-1} s_0$. And we have equality if and only if the eigenspinor is a Killing spinor.

Let (M, g) a Riemannian manifold with a spin structure and spin bundle Σ . Definition 2.1 A Killing spinor is a nonzero section $\psi \in \Gamma(\Sigma)$ which satisfies

 $\nabla_X \psi = c X \cdot \psi,$

where c is a constant and $X \cdot \psi$ is Clifford multiplication.

Note that *c* can be rescaled by rescaling *g*, so we denote by \mathcal{N}_+ (resp. \mathcal{N}_-) the \mathbb{C} -dimension of the space of Killing spinors with c > 0 (resp. c < 0).

Existence of a Killing spinor $\psi \in \Gamma(\Sigma)$ has the following consequences (T. Friedrich 1980):

- (M, g) is an Einstein manifold with $\operatorname{Ric}_g = 4(n-1)c^2g$.
- So c is either 0, in which case ψ is parallel; c is imaginary, in which case M is noncompact; or c is real, in which case M is compact and irreducible.
- We will consider only the case $c \in \mathbb{R} \setminus \{0\}$, and for convenience $c = \pm \frac{1}{2}$.
- ψ is an eigenspinor of lowest eigenvalue λ for the Dirac operator D : Γ(Σ) → Γ(Σ) in the following sense.

If (M, g) is compact with scalar curvature $s \ge s_0 > 0$, then $\lambda^2 \ge \frac{1}{4} \frac{n}{n-1} s_0$. And we have equality if and only if the eigenspinor is a Killing spinor.

classification

Simply connected manifolds admitting a non-zero Killing spinor were classified by C. Bär, 1992:

dim M			$\operatorname{Hol}(C(M))$	
n	$2^{\lfloor \frac{n}{2} \rfloor}$	$2^{\lfloor \frac{n}{2} \rfloor}$	Id	n-sphere
4m - 1				Sasaki-Einstein
4m + 1		1		
4m - 1	m+1			
6		1	G ₂	nearly Kähler
7				weak G ₂

- The connection $\hat{\nabla}_X \psi = \nabla_X \psi cX \cdot \psi$, $c = \pm \frac{1}{2}$, on $\Sigma(M)$, naturally identifies with with that induced by the Levi-Civita connection on $\Sigma(C(M))$ (or $\Sigma_{\pm}(C(M))$ when dim *M* is odd).
- ▶ Thus the classification is according to the holonomy of the cone $(C(M), \overline{g})$ where

$$C(M) = \mathbb{R}_+ \times M, \quad \bar{g} = dr^2 + r^2 g.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

classification

Simply connected manifolds admitting a non-zero Killing spinor were classified by C. Bär, 1992:

dim M	N^+	N^{-}	$\operatorname{Hol}(C(M))$	geometry
n	$2^{\lfloor \frac{n}{2} \rfloor}$	$2^{\lfloor \frac{n}{2} \rfloor}$	Id	n-sphere
4m - 1	2	0	SU(2m)	Sasaki-Einstein
4m + 1	1	1	SU(2m + 1)	Sasaki-Einstein
4m - 1	m+1	0	$\operatorname{Sp}(m)$	3-Sasaki
6	1	1	G ₂	nearly Kähler
7	1	0	Spin(7)	weak G ₂

- The connection $\hat{\nabla}_X \psi = \nabla_X \psi cX \cdot \psi$, $c = \pm \frac{1}{2}$, on $\Sigma(M)$, naturally identifies with with that induced by the Levi-Civita connection on $\Sigma(C(M))$ (or $\Sigma_{\pm}(C(M))$ when dim *M* is odd).
- ▶ Thus the classification is according to the holonomy of the cone $(C(M), \overline{g})$ where

$$C(M) = \mathbb{R}_+ \times M, \quad \bar{g} = dr^2 + r^2 g.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

classification

Simply connected manifolds admitting a non-zero Killing spinor were classified by C. Bär, 1992:

dim M	N^+	N^{-}	$\operatorname{Hol}(C(M))$	geometry
n	$2^{\lfloor \frac{n}{2} \rfloor}$	$2^{\lfloor \frac{n}{2} \rfloor}$	Id	n-sphere
4m - 1	2	0	SU(2m)	Sasaki-Einstein
4m + 1	1	1	SU(2m + 1)	Sasaki-Einstein
4m - 1	m+1	0	$\operatorname{Sp}(m)$	3-Sasaki
6	1	1	G ₂	nearly Kähler
7	1	0	Spin(7)	weak G ₂

- ► The connection $\hat{\nabla}_X \psi = \nabla_X \psi cX \cdot \psi$, $c = \pm \frac{1}{2}$, on $\Sigma(M)$, naturally identifies with with that induced by the Levi-Civita connection on $\Sigma(C(M))$ (or $\Sigma_{\pm}(C(M))$ when dim *M* is odd).
- ▶ Thus the classification is according to the holonomy of the cone $(C(M), \bar{g})$ where

$$C(M) = \mathbb{R}_+ \times M, \quad \bar{g} = dr^2 + r^2 g.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition 2.2

A Riemannian manifold (M, g) is Sasaki if the metric cone $(C(M), \overline{g}), C(M) := \mathbb{R}_+ \times M$ and $\overline{g} = dr^2 + r^2 g$, is Kähler, i.e. \overline{g} admits a compatible almost complex structure J so that $(C(M), \overline{g}, J)$ is a Kähler structure. Equivalently, $\operatorname{Hol}(C(M), \overline{g}) \subseteq U(m)$.

Thus is a particular metric contact structure. We have

- a contact structure η with Reeb vector field $\xi = Jr\partial_r$, a Killing field, and
- a strictly pseudoconvex CR structure (D, I), $D = \ker \eta$.
- ▶ *I* induces a transversely holomorphic structure on \mathscr{F}_{ξ} , with Kähler form $\omega^T = \frac{1}{2}d\eta$.
- The tensor $\phi = \nabla \xi$, with $\phi|_D = I$ and $\phi(\xi) = 0$ defines the CR structure.

We say that the Sasaki structure is

- quasi-regular if the orbits of ξ are closed (orbit space is an orbifold),
- *irregular* if not all the orbits of ξ close.

In the second case we must work on the transversal space of \mathscr{F}_{ξ} , since the leaf space in not even Hausdorff. But one can work locally on the Kähler leaf space $(\mathscr{F}_{\xi}, g^T, I, \omega^T)$.

Definition 2.2

A Riemannian manifold (M, g) is Sasaki if the metric cone $(C(M), \overline{g}), C(M) := \mathbb{R}_+ \times M$ and $\overline{g} = dr^2 + r^2 g$, is Kähler, i.e. \overline{g} admits a compatible almost complex structure J so that $(C(M), \overline{g}, J)$ is a Kähler structure. Equivalently, $\operatorname{Hol}(C(M), \overline{g}) \subseteq U(m)$.

Thus is a particular metric contact structure. We have

• a contact structure η with Reeb vector field $\xi = Jr\partial_r$, a Killing field, and

• a strictly pseudoconvex CR structure (D, I), $D = \ker \eta$.

- ▶ *I* induces a transversely holomorphic structure on \mathscr{F}_{ξ} , with Kähler form $\omega^T = \frac{1}{2}d\eta$.
- The tensor $\phi = \nabla \xi$, with $\phi|_D = I$ and $\phi(\xi) = 0$ defines the CR structure.

We say that the Sasaki structure is

- quasi-regular if the orbits of ξ are closed (orbit space is an orbifold),
- *irregular* if not all the orbits of ξ close.

In the second case we must work on the transversal space of \mathscr{F}_{ξ} , since the leaf space in not even Hausdorff. But one can work locally on the Kähler leaf space $(\mathscr{F}_{\xi}, g^T, I, \omega^T)$.

Definition 2.2

A Riemannian manifold (M, g) is Sasaki if the metric cone $(C(M), \overline{g}), C(M) := \mathbb{R}_+ \times M$ and $\overline{g} = dr^2 + r^2 g$, is Kähler, i.e. \overline{g} admits a compatible almost complex structure J so that $(C(M), \overline{g}, J)$ is a Kähler structure. Equivalently, $\operatorname{Hol}(C(M), \overline{g}) \subseteq U(m)$.

Thus is a particular metric contact structure. We have

- ▶ a contact structure η with Reeb vector field $\xi = Jr\partial_r$, a Killing field, and
- a strictly pseudoconvex CR structure (D, I), $D = \ker \eta$.
- ► *I* induces a transversely holomorphic structure on \mathscr{F}_{ξ} , with Kähler form $\omega^T = \frac{1}{2}d\eta$.
- The tensor $\phi = \nabla \xi$, with $\phi|_D = I$ and $\phi(\xi) = 0$ defines the CR structure.

We say that the Sasaki structure is

- quasi-regular if the orbits of ξ are closed (orbit space is an orbifold),
- *irregular* if not all the orbits of ξ close.

In the second case we must work on the transversal space of \mathscr{F}_{ξ} , since the leaf space in not even Hausdorff. But one can work locally on the Kähler leaf space $(\mathscr{F}_{\xi}, g^T, I, \omega^T)$.

Definition 2.2

A Riemannian manifold (M, g) is Sasaki if the metric cone $(C(M), \overline{g}), C(M) := \mathbb{R}_+ \times M$ and $\overline{g} = dr^2 + r^2 g$, is Kähler, i.e. \overline{g} admits a compatible almost complex structure J so that $(C(M), \overline{g}, J)$ is a Kähler structure. Equivalently, $\operatorname{Hol}(C(M), \overline{g}) \subseteq U(m)$.

Thus is a particular metric contact structure. We have

- ▶ a contact structure η with Reeb vector field $\xi = Jr\partial_r$, a Killing field, and
- a strictly pseudoconvex CR structure (D, I), $D = \ker \eta$.
- ► I induces a transversely holomorphic structure on \mathscr{F}_{ξ} , with Kähler form $\omega^T = \frac{1}{2}d\eta$.
- The tensor $\phi = \nabla \xi$, with $\phi|_D = I$ and $\phi(\xi) = 0$ defines the CR structure.

We say that the Sasaki structure is

- quasi-regular if the orbits of ξ are closed (orbit space is an orbifold),
- *irregular* if not all the orbits of ξ close.

In the second case we must work on the transversal space of \mathscr{F}_{ξ} , since the leaf space in not even Hausdorff. But one can work locally on the Kähler leaf space $(\mathscr{F}_{\xi}, g^T, I, \omega^T)$.

Definition 2.2

A Riemannian manifold (M, g) is Sasaki if the metric cone $(C(M), \overline{g}), C(M) := \mathbb{R}_+ \times M$ and $\overline{g} = dr^2 + r^2 g$, is Kähler, i.e. \overline{g} admits a compatible almost complex structure J so that $(C(M), \overline{g}, J)$ is a Kähler structure. Equivalently, $\operatorname{Hol}(C(M), \overline{g}) \subseteq U(m)$.

Thus is a particular metric contact structure. We have

- ▶ a contact structure η with Reeb vector field $\xi = Jr\partial_r$, a Killing field, and
- a strictly pseudoconvex CR structure (D, I), $D = \ker \eta$.
- ► I induces a transversely holomorphic structure on \mathscr{F}_{ξ} , with Kähler form $\omega^T = \frac{1}{2}d\eta$.
- The tensor $\phi = \nabla \xi$, with $\phi|_D = I$ and $\phi(\xi) = 0$ defines the CR structure.

We say that the Sasaki structure is

- quasi-regular if the orbits of ξ are closed (orbit space is an orbifold).
- *irregular* if not all the orbits of ξ close.

In the second case we must work on the transversal space of \mathscr{F}_{ξ} , since the leaf space in not even Hausdorff. But one can work locally on the Kähler leaf space $(\mathscr{F}_{\xi}, g^T, I, \omega^T)$.

Definition 2.2

A Riemannian manifold (M, g) is Sasaki if the metric cone $(C(M), \overline{g}), C(M) := \mathbb{R}_+ \times M$ and $\overline{g} = dr^2 + r^2 g$, is Kähler, i.e. \overline{g} admits a compatible almost complex structure J so that $(C(M), \overline{g}, J)$ is a Kähler structure. Equivalently, $\operatorname{Hol}(C(M), \overline{g}) \subseteq U(m)$.

Thus is a particular metric contact structure. We have

- ▶ a contact structure η with Reeb vector field $\xi = Jr\partial_r$, a Killing field, and
- a strictly pseudoconvex CR structure (D, I), $D = \ker \eta$.
- ► I induces a transversely holomorphic structure on \mathscr{F}_{ξ} , with Kähler form $\omega^T = \frac{1}{2}d\eta$.
- The tensor $\phi = \nabla \xi$, with $\phi|_D = I$ and $\phi(\xi) = 0$ defines the CR structure.

We say that the Sasaki structure is

- quasi-regular if the orbits of ξ are closed (orbit space is an orbifold),
- *irregular* if not all the orbits of ξ close.

In the second case we must work on the transversal space of \mathscr{F}_{ξ} , since the leaf space in not even Hausdorff. But one can work locally on the Kähler leaf space $(\mathscr{F}_{\xi}, g^T, I, \omega^T)$.

Definition 2.2

A Riemannian manifold (M, g) is Sasaki if the metric cone $(C(M), \overline{g}), C(M) := \mathbb{R}_+ \times M$ and $\overline{g} = dr^2 + r^2 g$, is Kähler, i.e. \overline{g} admits a compatible almost complex structure J so that $(C(M), \overline{g}, J)$ is a Kähler structure. Equivalently, $\operatorname{Hol}(C(M), \overline{g}) \subseteq U(m)$.

Thus is a particular metric contact structure. We have

- ▶ a contact structure η with Reeb vector field $\xi = Jr\partial_r$, a Killing field, and
- a strictly pseudoconvex CR structure (D, I), $D = \ker \eta$.
- ► I induces a transversely holomorphic structure on \mathscr{F}_{ξ} , with Kähler form $\omega^T = \frac{1}{2}d\eta$.
- The tensor $\phi = \nabla \xi$, with $\phi|_D = I$ and $\phi(\xi) = 0$ defines the CR structure.

We say that the Sasaki structure is

- quasi-regular if the orbits of ξ are closed (orbit space is an orbifold),
- *irregular* if not all the orbits of ξ close.

In the second case we must work on the transversal space of \mathscr{F}_{ξ} , since the leaf space in not even Hausdorff. But one can work locally on the Kähler leaf space $(\mathscr{F}_{\xi}, g^T, I, \omega^T)$.

Sasaki-Einstein manifolds

Suppose (M, g) is Sasaki dim M = n = 2m - 1. We are interested in Sasaki-Einstein structures

$$\operatorname{Ric}_g = (n-1)g,\tag{2}$$

The Sasaki condition forces the Einstein constant to be n - 1.

▶ This is equivalent to $(C(M), \overline{g})$ being Ricci-flat as

$$\operatorname{Ric}_{\overline{g}} = \operatorname{Ric}_g - (n-1)g. \tag{3}$$

Also, the Ricci curvatures of \bar{g} and g^T satisfy (n = 2m - 1)

$$\operatorname{Ric}_{\overline{g}} = \operatorname{Ric}_{g^T} - 2m \, g^T, \tag{4}$$

From (3) and (4)

$$\operatorname{Ric}_{g}(X,Y) = \operatorname{Ric}_{g^{T}}^{T} - 2g^{T}, \quad \text{for basic vector fields } X, Y \in \Gamma(D), \tag{5}$$

 so the Sasaki-Einstein condition is equivalent to the transversal space being Kähler-Einstein

$$\operatorname{Ric}_{g^T} = 2mg^T. \tag{6}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Sasaki-Einstein manifolds

Suppose (M, g) is Sasaki dim M = n = 2m - 1. We are interested in Sasaki-Einstein structures

$$\operatorname{Ric}_g = (n-1)g,\tag{2}$$

The Sasaki condition forces the Einstein constant to be n - 1.

▶ This is equivalent to $(C(M), \bar{g})$ being Ricci-flat as

$$\operatorname{Ric}_{\overline{g}} = \operatorname{Ric}_{g} - (n-1)g. \tag{3}$$

Also, the Ricci curvatures of \bar{g} and g^T satisfy (n = 2m - 1)

$$\operatorname{Ric}_{\overline{g}} = \operatorname{Ric}_{g^T} - 2m \, g^T, \tag{4}$$

From (3) and (4)

$$\operatorname{Ric}_{g}(X,Y) = \operatorname{Ric}_{g^{T}}^{T} - 2g^{T}, \quad \text{for basic vector fields } X, Y \in \Gamma(D),$$
(5)

 so the Sasaki-Einstein condition is equivalent to the transversal space being Kähler-Einstein

$$\operatorname{Ric}_{g^T} = 2mg^T.$$
(6)

Sasaki-Einstein manifolds

Suppose (M, g) is Sasaki dim M = n = 2m - 1. We are interested in Sasaki-Einstein structures

$$\operatorname{Ric}_g = (n-1)g,\tag{2}$$

The Sasaki condition forces the Einstein constant to be n - 1.

▶ This is equivalent to $(C(M), \bar{g})$ being Ricci-flat as

$$\operatorname{Ric}_{\overline{g}} = \operatorname{Ric}_{g} - (n-1)g. \tag{3}$$

Also, the Ricci curvatures of \bar{g} and g^T satisfy (n = 2m - 1)

$$\operatorname{Ric}_{\overline{g}} = \operatorname{Ric}_{g^T} - 2m g^T, \tag{4}$$

From (3) and (4)

$$\operatorname{Ric}_{g}(X,Y) = \operatorname{Ric}_{g^{T}}^{T} - 2g^{T}, \quad \text{for basic vector fields } X, Y \in \Gamma(D),$$
(5)

 so the Sasaki-Einstein condition is equivalent to the transversal space being Kähler-Einstein

$$\operatorname{Ric}_{g^T} = 2mg^T.$$
(6)
Sasaki-Einstein manifolds

Suppose (M, g) is Sasaki dim M = n = 2m - 1. We are interested in Sasaki-Einstein structures

$$\operatorname{Ric}_g = (n-1)g,\tag{2}$$

The Sasaki condition forces the Einstein constant to be n - 1.

▶ This is equivalent to $(C(M), \bar{g})$ being Ricci-flat as

$$\operatorname{Ric}_{\bar{g}} = \operatorname{Ric}_{g} - (n-1)g. \tag{3}$$

Also, the Ricci curvatures of \bar{g} and g^T satisfy (n = 2m - 1)

$$\operatorname{Ric}_{\overline{g}} = \operatorname{Ric}_{g^T} - 2m \, g^T, \tag{4}$$

▶ From (3) and (4)

$$\operatorname{Ric}_{g}(X,Y) = \operatorname{Ric}_{g^{T}}^{T} - 2g^{T}, \quad \text{for basic vector fields } X, Y \in \Gamma(D), \tag{5}$$

 so the Sasaki-Einstein condition is equivalent to the transversal space being Kähler-Einstein

$$\operatorname{Ric}_{g^T} = 2mg^T.$$
(6)

Sasaki-Einstein manifolds

Suppose (M, g) is Sasaki dim M = n = 2m - 1. We are interested in Sasaki-Einstein structures

$$\operatorname{Ric}_g = (n-1)g,\tag{2}$$

The Sasaki condition forces the Einstein constant to be n - 1.

▶ This is equivalent to $(C(M), \bar{g})$ being Ricci-flat as

$$\operatorname{Ric}_{\overline{g}} = \operatorname{Ric}_{g} - (n-1)g. \tag{3}$$

Also, the Ricci curvatures of \bar{g} and g^T satisfy (n = 2m - 1)

$$\operatorname{Ric}_{\overline{g}} = \operatorname{Ric}_{g^T} - 2m \, g^T, \tag{4}$$

▶ From (3) and (4)

$$\operatorname{Ric}_{g}(X,Y) = \operatorname{Ric}_{g^{T}}^{T} - 2g^{T}, \quad \text{for basic vector fields } X, Y \in \Gamma(D),$$
(5)

 so the Sasaki-Einstein condition is equivalent to the transversal space being Kähler-Einstein

$$\operatorname{Ric}_{g^T} = 2mg^T.$$
(6)

transversally holomorphic foliation

A transversely holomorphic structure on a foliation \mathscr{F}_{ξ} is given by $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in \mathcal{A}}$ where $\{U_{\alpha}\}_{\alpha \in \mathcal{A}}$ covers M

- $\{U_{\alpha}\}_{\alpha\in\mathcal{A}}$ covers M,
- the $\varphi_{\alpha}: U_{\alpha} \to \mathbb{C}^{m-1}$ has fibers the leaves of \mathscr{F}_{ξ} locally on U_{α} ,
- there are holomorphic isomorphism $g_{\alpha\beta}: \varphi_{\beta}(U_{\alpha} \cap U_{\beta}) \to \varphi_{\alpha}(U_{\alpha} \cap U_{\beta})$ such that

$$\varphi_{\alpha} = g_{\alpha\beta} \circ \varphi_{\beta} \quad \text{on } U_{\alpha} \cap U_{\beta}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ○○○

There is a versal deformation space \mathcal{V} of transversely holomorphic structures on \mathscr{F}_{ξ} fixing it as a smooth foliation (A. El Kacimi Alaoui, M. Nicolau '89; Girbau 1993).

 \mathcal{V} is the germ of $\theta^{-1}(0)$ where θ is an analytic map

$$H^1_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}) \xrightarrow{\theta} H^2_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}).$$

We have:

$$H^{2}_{\bar{\partial}_{b}}(\mathcal{A}^{0,\bullet}) = H^{m-3}_{\bar{\partial}_{b}}(\Gamma(\Lambda^{1,\bullet}_{b} \otimes \Lambda^{m-1,0}_{b})) = 0,$$

by Kodaira-Nakano vanishing, since $\Lambda_b^{m-1,0} < 0$ and (m-3) + 1 = m - 2 < m - 1.

- Thus \mathcal{V} is smooth. And after shrinking \mathcal{V} we may assume (A. El Kacimi Alaoui, B. Gimira 1997) that for $t \in \mathcal{V} \mathscr{F}_{\mathcal{E}}^t$ admits a transversal Kähler structure (I_t, g_t^T, ω_t^T) .
- The Kähler structure can be chosen so that it lifts to a Sasaki structure (g_t, ξ, η_t) with transversal holomorphic structure I_t and $\frac{1}{2}d\eta_t = \omega_t^T$. From (6), up to homothety, we will have

$$\frac{m}{\pi}[\omega_t^T] = c_1^b(\mathscr{F}_{\xi}^t),$$

There is a versal deformation space \mathcal{V} of transversely holomorphic structures on \mathscr{F}_{ξ} fixing it as a smooth foliation (A. El Kacimi Alaoui, M. Nicolau '89; Girbau 1993).

 \mathcal{V} is the germ of $\theta^{-1}(0)$ where θ is an analytic map

$$H^1_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}) \xrightarrow{\theta} H^2_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}).$$

We have:

$$H^{2}_{\bar{\partial}_{b}}(\mathcal{A}^{0,\bullet}) = H^{m-3}_{\bar{\partial}_{b}}(\Gamma(\Lambda^{1,\bullet}_{b} \otimes \Lambda^{m-1,0}_{b})) = 0,$$

by Kodaira-Nakano vanishing, since $\Lambda_b^{m-1,0} < 0$ and (m-3) + 1 = m - 2 < m - 1.

- Thus \mathcal{V} is smooth. And after shrinking \mathcal{V} we may assume (A. El Kacimi Alaoui, B. Gimira 1997) that for $t \in \mathcal{V} \mathscr{F}_{\mathcal{E}}^t$ admits a transversal Kähler structure (I_t, g_t^T, ω_t^T) .
- The Kähler structure can be chosen so that it lifts to a Sasaki structure (g_t, ξ, η_t) with transversal holomorphic structure I_t and $\frac{1}{2}d\eta_t = \omega_t^T$. From (6), up to homothety, we will have

$$\frac{m}{\pi}[\omega_t^T] = c_1^b(\mathscr{F}_{\xi}^t),$$

There is a versal deformation space \mathcal{V} of transversely holomorphic structures on \mathscr{F}_{ξ} fixing it as a smooth foliation (A. El Kacimi Alaoui, M. Nicolau '89; Girbau 1993).

 \mathcal{V} is the germ of $\theta^{-1}(0)$ where θ is an analytic map

$$H^1_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}) \xrightarrow{\theta} H^2_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}).$$

We have:

$$H^{2}_{\bar{\partial}_{b}}(\mathcal{A}^{0,\bullet}) = H^{m-3}_{\bar{\partial}_{b}}(\Gamma(\Lambda^{1,\bullet}_{b} \otimes \Lambda^{m-1,0}_{b})) = 0,$$

by Kodaira-Nakano vanishing, since $\Lambda_b^{m-1,0} < 0$ and (m-3) + 1 = m - 2 < m - 1.

- Thus \mathcal{V} is smooth. And after shrinking \mathcal{V} we may assume (A. El Kacimi Alaoui, B. Gimira 1997) that for $t \in \mathcal{V} \mathscr{F}_{\mathcal{E}}^t$ admits a transversal Kähler structure (I_t, g_t^T, ω_t^T) .
- The Kähler structure can be chosen so that it lifts to a Sasaki structure (g_t, ξ, η_t) with transversal holomorphic structure I_t and $\frac{1}{2}d\eta_t = \omega_t^T$. From (6), up to homothety, we will have

$$\frac{m}{\pi}[\omega_t^T] = c_1^b(\mathscr{F}_{\xi}^t),$$

There is a versal deformation space \mathcal{V} of transversely holomorphic structures on \mathscr{F}_{ξ} fixing it as a smooth foliation (A. El Kacimi Alaoui, M. Nicolau '89; Girbau 1993).

 \mathcal{V} is the germ of $\theta^{-1}(0)$ where θ is an analytic map

$$H^1_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}) \xrightarrow{\theta} H^2_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}).$$

We have:

$$H^{2}_{\overline{\partial}_{b}}(\mathcal{A}^{0,\bullet}) = H^{m-3}_{\overline{\partial}_{b}}(\Gamma(\Lambda^{1,\bullet}_{b} \otimes \Lambda^{m-1,0}_{b})) = 0,$$

by Kodaira-Nakano vanishing, since $\Lambda_b^{m-1,0} < 0$ and (m-3) + 1 = m - 2 < m - 1.

- ► Thus \mathcal{V} is smooth. And after shrinking \mathcal{V} we may assume (A. El Kacimi Alaoui, B. Gimira 1997) that for $t \in \mathcal{V} \mathscr{F}_{\mathcal{E}}^t$ admits a transversal Kähler structure (I_t, g_t^T, ω_t^T) .
- The Kähler structure can be chosen so that it lifts to a Sasaki structure (g_t, ξ, η_t) with transversal holomorphic structure I_t and $\frac{1}{2}d\eta_t = \omega_t^T$. From (6), up to homothety, we will have

$$\frac{m}{\pi}[\omega_t^T] = c_1^b(\mathscr{F}_{\xi}^t),$$

There is a versal deformation space \mathcal{V} of transversely holomorphic structures on \mathscr{F}_{ξ} fixing it as a smooth foliation (A. El Kacimi Alaoui, M. Nicolau '89; Girbau 1993).

 \mathcal{V} is the germ of $\theta^{-1}(0)$ where θ is an analytic map

$$H^1_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}) \xrightarrow{\theta} H^2_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}).$$

We have:

$$H^{2}_{\bar{\partial}_{b}}(\mathcal{A}^{0,\bullet}) = H^{m-3}_{\bar{\partial}_{b}}(\Gamma(\Lambda^{1,\bullet}_{b} \otimes \Lambda^{m-1,0}_{b})) = 0,$$

by Kodaira-Nakano vanishing, since $\Lambda_b^{m-1,0} < 0$ and (m-3) + 1 = m - 2 < m - 1.

- ► Thus \mathcal{V} is smooth. And after shrinking \mathcal{V} we may assume (A. El Kacimi Alaoui, B. Gimira 1997) that for $t \in \mathcal{V} \mathscr{F}_{\mathcal{F}}^t$ admits a transversal Kähler structure (I_t, g_t^T, ω_t^T) .
- The Kähler structure can be chosen so that it lifts to a Sasaki structure (g_t, ξ, η_t) with transversal holomorphic structure I_t and $\frac{1}{2}d\eta_t = \omega_t^T$. From (6), up to homothety, we will have

$$\frac{m}{\pi}[\omega_t^T] = c_1^b(\mathscr{F}_{\xi}^t),$$

Recall that a hyperkähler structure on a 4*m*-dimensional manifold consists of a metric *g* which is Kähler with respect to three complex structures J_1, J_2, J_3 satisfying the quaternionic relations $J_1J_2 = -J_2J_1 = J_3$ etc.

Definition 2.3

A Riemannian manifold (M, g) is 3-Sasaki if the metric cone $(C(M), \overline{g})$ is hyperkähler, i.e. \overline{g} admits a compatible almost complex structures J_{α} , $\alpha = 1, 2, 3$ such that $(C(M), \overline{g}, J_1, J_2, J_3)$ is a hyperkähler structure. Equivalently, $Hol(C(M)) \subseteq Sp(m)$.

A consequence of the definition is that (M, g) is equipped with three Sasaki structures $(\xi_i, \eta_i, \phi_i), i = 1, 2, 3$. The Reeb vector fields $\xi_k, k = 1, 2, 3$ are orthogonal and satisfy $[\xi_i, \xi_j] = 2\varepsilon^{ijk}\xi_k$, where ε^{ijk} is anti-symmetric in the indices $i, j, k \in \{1, 2, 3\}$ and $\varepsilon^{123} = 1$. The tensors $\phi_i, i = 1, 2, 3$ satisfy the identities

$$\phi_i(\xi_j) = -\varepsilon^{ijk}\xi_k \tag{7}$$

$$\phi_i \circ \phi_j = -\delta_{ij} \operatorname{Id} - \epsilon^{ijk} \phi_k + \eta_j \otimes \xi_i \tag{8}$$

Recall that a hyperkähler structure on a 4*m*-dimensional manifold consists of a metric *g* which is Kähler with respect to three complex structures J_1, J_2, J_3 satisfying the quaternionic relations $J_1J_2 = -J_2J_1 = J_3$ etc.

Definition 2.3

A Riemannian manifold (M, g) is 3-Sasaki if the metric cone $(C(M), \overline{g})$ is hyperkähler, i.e. \overline{g} admits a compatible almost complex structures J_{α} , $\alpha = 1, 2, 3$ such that $(C(M), \overline{g}, J_1, J_2, J_3)$ is a hyperkähler structure. Equivalently, $Hol(C(M)) \subseteq Sp(m)$.

A consequence of the definition is that (M, g) is equipped with three Sasaki structures $(\xi_i, \eta_i, \phi_i), i = 1, 2, 3$. The Reeb vector fields $\xi_k, k = 1, 2, 3$ are orthogonal and satisfy $[\xi_i, \xi_j] = 2\varepsilon^{ijk}\xi_k$, where ε^{ijk} is anti-symmetric in the indices $i, j, k \in \{1, 2, 3\}$ and $\varepsilon^{123} = 1$. The tensors $\phi_i, i = 1, 2, 3$ satisfy the identities

$$\phi_i(\xi_j) = -\varepsilon^{ijk}\xi_k \tag{7}$$

$$\phi_i \circ \phi_j = -\delta_{ij} \operatorname{Id} - \epsilon^{ijk} \phi_k + \eta_j \otimes \xi_i \tag{8}$$

Recall that a hyperkähler structure on a 4*m*-dimensional manifold consists of a metric *g* which is Kähler with respect to three complex structures J_1, J_2, J_3 satisfying the quaternionic relations $J_1J_2 = -J_2J_1 = J_3$ etc.

Definition 2.3

A Riemannian manifold (M, g) is 3-Sasaki if the metric cone $(C(M), \overline{g})$ is hyperkähler, i.e. \overline{g} admits a compatible almost complex structures J_{α} , $\alpha = 1, 2, 3$ such that $(C(M), \overline{g}, J_1, J_2, J_3)$ is a hyperkähler structure. Equivalently, $Hol(C(M)) \subseteq Sp(m)$.

A consequence of the definition is that (M, g) is equipped with three Sasaki structures $(\xi_i, \eta_i, \phi_i), i = 1, 2, 3$. The Reeb vector fields $\xi_k, k = 1, 2, 3$ are orthogonal and satisfy $[\xi_i, \xi_j] = 2\varepsilon^{ijk}\xi_k$, where ε^{ijk} is anti-symmetric in the indices $i, j, k \in \{1, 2, 3\}$ and $\varepsilon^{123} = 1$. The tensors $\phi_i, i = 1, 2, 3$ satisfy the identities

$$\phi_i(\xi_j) = -\varepsilon^{ijk}\xi_k \tag{7}$$

$$\phi_i \circ \phi_j = -\delta_{ij} \operatorname{Id} - \epsilon^{ijk} \phi_k + \eta_j \otimes \xi_i \tag{8}$$

The Reeb vector fields ξ_k , k = 1, 2, 3 generate an action of Sp(1) or SO(3).

A 3-Sasaki manifold *M* comes with a family of related geometries. The maps are labeled with their generic fibers.

- ▶ \mathcal{Z} , the *twistor space*, is the orbifold leaf space \mathscr{P}_{ξ_1} with a complex contact structure $\theta \in \Omega^1(\mathbb{L})$.
- \mathcal{M} is a *quaternionic-Kähler* orbifold.
- The *LeBrun-Salamon conjecture* proposes that \mathcal{M} is smooth only if it is symmetric.

• □ > • (□) + (□) + (□) + (□)

The Reeb vector fields ξ_k , k = 1, 2, 3 generate an action of Sp(1) or SO(3).

A 3-Sasaki manifold M comes with a family of related geometries. The maps are labeled with their generic fibers.

- ► \mathcal{Z} , the *twistor space*, is the orbifold leaf space \mathscr{F}_{ξ_1} with a complex contact structure $\theta \in \Omega^1(\mathbf{L})$.
- \mathcal{M} is a *quaternionic-Kähler* orbifold.
- The *LeBrun-Salamon conjecture* proposes that \mathcal{M} is smooth only if it is symmetric.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Reeb vector fields ξ_k , k = 1, 2, 3 generate an action of Sp(1) or SO(3).

A 3-Sasaki manifold M comes with a family of related geometries. The maps are labeled with their generic fibers.

- ► \mathcal{Z} , the *twistor space*, is the orbifold leaf space \mathscr{F}_{ξ_1} with a complex contact structure $\theta \in \Omega^1(\mathbf{L})$.
- \mathcal{M} is a *quaternionic-Kähler* orbifold.
- The *LeBrun-Salamon conjecture* proposes that \mathcal{M} is smooth only if it is symmetric.

The Reeb vector fields ξ_k , k = 1, 2, 3 generate an action of Sp(1) or SO(3).

A 3-Sasaki manifold M comes with a family of related geometries. The maps are labeled with their generic fibers.

- \mathcal{Z} , the *twistor space*, is the orbifold leaf space \mathscr{F}_{ξ_1} with a complex contact structure $\theta \in \Omega^1(\mathbf{L})$.
- ▶ *M* is a *quaternionic-Kähler* orbifold.
- The *LeBrun-Salamon conjecture* proposes that \mathcal{M} is smooth only if it is symmetric.

The Reeb vector fields ξ_k , k = 1, 2, 3 generate an action of Sp(1) or SO(3).

A 3-Sasaki manifold M comes with a family of related geometries. The maps are labeled with their generic fibers.

- ► \mathcal{Z} , the *twistor space*, is the orbifold leaf space \mathscr{F}_{ξ_1} with a complex contact structure $\theta \in \Omega^1(\mathbf{L})$.
- ▶ *M* is a *quaternionic-Kähler* orbifold.
- The *LeBrun-Salamon conjecture* proposes that \mathcal{M} is smooth only if it is symmetric.

We will need the machinery due to J.P. Bourguignon and P. Gauduchon 1991 for describing spinors under metric variations.

Let *P* be the bundle of oriented orthonormal frames on (M, g). A spin structure is a double cover \tilde{P} . Given a symmetric, w.r.t. *g*, automorphism $\alpha : TM \to TM$ we have a new metric

$$g^{\alpha}(X,Y) = g(\alpha^{-1}X,\alpha^{-1}Y).$$

If P^{α} is the bundle of g^{α} -orthonormal oriented frames, $\alpha : P \to P^{\alpha}$ is SO(*n*)-equivariant, and gives an isomorphism

$$\Sigma = \tilde{P} \times_{\operatorname{Spin}(n)} \Delta_n \stackrel{\tilde{\alpha}}{\to} \Sigma^{\alpha} = \tilde{P}^{\alpha} \times_{\operatorname{Spin}(n)} \Delta_n.$$

Let $\alpha(t)$ be a smooth path of symmetric automorphisms with $\alpha(0) = Id_{TM}$, and $\hat{\sigma}_t$ Killing spinors for g^{α} ,

$$\nabla_X^{\alpha(t)}\hat{\sigma}_t = cX \cdot_t \hat{\sigma}_t.$$

Set $\sigma_t = \tilde{\alpha}(t)^{-1}(\hat{\sigma}_t)$, then in terms of the original spin bundle

$$\bar{\nabla}_X^{\alpha(t)}\sigma_t = c\alpha(t)^{-1}(X)\cdot\sigma_t,\tag{9}$$

We will need the machinery due to J.P. Bourguignon and P. Gauduchon 1991 for describing spinors under metric variations.

Let *P* be the bundle of oriented orthonormal frames on (M, g). A spin structure is a double cover \tilde{P} . Given a symmetric, w.r.t. *g*, automorphism $\alpha : TM \to TM$ we have a new metric

$$g^{\alpha}(X,Y) = g(\alpha^{-1}X,\alpha^{-1}Y).$$

If P^{α} is the bundle of g^{α} -orthonormal oriented frames, $\alpha : P \to P^{\alpha}$ is SO(*n*)-equivariant, and gives an isomorphism

$$\Sigma = \tilde{P} \times_{\operatorname{Spin}(n)} \Delta_n \stackrel{\tilde{\alpha}}{\to} \Sigma^{\alpha} = \tilde{P}^{\alpha} \times_{\operatorname{Spin}(n)} \Delta_n.$$

Let $\alpha(t)$ be a smooth path of symmetric automorphisms with $\alpha(0) = Id_{TM}$, and $\hat{\sigma}_t$ Killing spinors for g^{α} ,

$$\nabla_X^{\alpha(t)}\hat{\sigma}_t = cX \cdot_t \hat{\sigma}_t.$$

Set $\sigma_t = \tilde{\alpha}(t)^{-1}(\hat{\sigma}_t)$, then in terms of the original spin bundle

$$\bar{\nabla}_X^{\alpha(t)} \sigma_t = c\alpha(t)^{-1}(X) \cdot \sigma_t, \tag{9}$$

We will need the machinery due to J.P. Bourguignon and P. Gauduchon 1991 for describing spinors under metric variations.

Let *P* be the bundle of oriented orthonormal frames on (M, g). A spin structure is a double cover \tilde{P} . Given a symmetric, w.r.t. *g*, automorphism $\alpha : TM \to TM$ we have a new metric

$$g^{\alpha}(X,Y) = g(\alpha^{-1}X,\alpha^{-1}Y).$$

If P^{α} is the bundle of g^{α} -orthonormal oriented frames, $\alpha : P \to P^{\alpha}$ is SO(*n*)-equivariant, and gives an isomorphism

$$\Sigma = \tilde{P} \times_{\operatorname{Spin}(n)} \Delta_n \stackrel{\tilde{\alpha}}{\to} \Sigma^{\alpha} = \tilde{P}^{\alpha} \times_{\operatorname{Spin}(n)} \Delta_n.$$

Let $\alpha(t)$ be a smooth path of symmetric automorphisms with $\alpha(0) = Id_{TM}$, and $\hat{\sigma}_t$ Killing spinors for g^{α} ,

$$\nabla_X^{\alpha(t)}\hat{\sigma}_t = cX \cdot_t \hat{\sigma}_t.$$

Set $\sigma_t = \tilde{\alpha}(t)^{-1}(\hat{\sigma}_t)$, then in terms of the original spin bundle

$$\bar{\nabla}_X^{\alpha(t)}\sigma_t = c\alpha(t)^{-1}(X)\cdot\sigma_t,\tag{9}$$

We will need the machinery due to J.P. Bourguignon and P. Gauduchon 1991 for describing spinors under metric variations.

Let *P* be the bundle of oriented orthonormal frames on (M, g). A spin structure is a double cover \tilde{P} . Given a symmetric, w.r.t. *g*, automorphism $\alpha : TM \to TM$ we have a new metric

$$g^{\alpha}(X,Y) = g(\alpha^{-1}X,\alpha^{-1}Y).$$

If P^{α} is the bundle of g^{α} -orthonormal oriented frames, $\alpha : P \to P^{\alpha}$ is SO(*n*)-equivariant, and gives an isomorphism

$$\Sigma = \tilde{P} \times_{\operatorname{Spin}(n)} \Delta_n \stackrel{\tilde{\alpha}}{\to} \Sigma^{\alpha} = \tilde{P}^{\alpha} \times_{\operatorname{Spin}(n)} \Delta_n.$$

Let $\alpha(t)$ be a smooth path of symmetric automorphisms with $\alpha(0) = Id_{TM}$, and $\hat{\sigma}_t$ Killing spinors for g^{α} ,

$$\nabla_X^{\alpha(t)}\hat{\sigma}_t = cX \cdot_t \hat{\sigma}_t.$$

Set $\sigma_t = \tilde{\alpha}(t)^{-1}(\hat{\sigma}_t)$, then in terms of the original spin bundle

$$\bar{\nabla}_X^{\alpha(t)}\sigma_t = c\alpha(t)^{-1}(X)\cdot\sigma_t,\tag{9}$$

We will need the machinery due to J.P. Bourguignon and P. Gauduchon 1991 for describing spinors under metric variations.

Let *P* be the bundle of oriented orthonormal frames on (M, g). A spin structure is a double cover \tilde{P} . Given a symmetric, w.r.t. *g*, automorphism $\alpha : TM \to TM$ we have a new metric

$$g^{\alpha}(X,Y) = g(\alpha^{-1}X,\alpha^{-1}Y).$$

If P^{α} is the bundle of g^{α} -orthonormal oriented frames, $\alpha : P \to P^{\alpha}$ is SO(*n*)-equivariant, and gives an isomorphism

$$\Sigma = \tilde{P} \times_{\operatorname{Spin}(n)} \Delta_n \stackrel{\tilde{\alpha}}{\to} \Sigma^{\alpha} = \tilde{P}^{\alpha} \times_{\operatorname{Spin}(n)} \Delta_n.$$

Let $\alpha(t)$ be a smooth path of symmetric automorphisms with $\alpha(0) = Id_{TM}$, and $\hat{\sigma}_t$ Killing spinors for g^{α} ,

$$\nabla_X^{\alpha(t)}\hat{\sigma}_t = cX \cdot_t \hat{\sigma}_t.$$

Set $\sigma_t = \tilde{\alpha}(t)^{-1}(\hat{\sigma}_t)$, then in terms of the original spin bundle

$$\bar{\nabla}_X^{\alpha(t)}\sigma_t = c\alpha(t)^{-1}(X)\cdot\sigma_t,\tag{9}$$

A deformation of the Killing spinor σ_0 is a path $(\alpha(t), \sigma_t)$ satisfying

$$\mathcal{L}^{c}(\alpha(t),\sigma_{t})(X) := \bar{\nabla}_{X}^{\alpha(t)}\sigma_{t} - c\alpha(t)^{-1}(X) \cdot \sigma_{t} = 0.$$
(10)

We will make use of

Twisted Dirac operator:

$$\mathcal{D}: \Gamma(\Sigma \otimes TM_{\mathbb{C}}) \to \Gamma(\Sigma \otimes TM_{\mathbb{C}})$$

And the spinor valued 1-form $\Psi^{(\beta,\sigma)}$ with $\Psi^{(\beta,\sigma)}(X) = \beta(X)\sigma$, for $\beta : TM \to TM$. Differentiating (10) at (Id_{TM}, σ_0) :

Proposition 3.1 (M. Wang 1991)

$$d\mathcal{L}^{c}(\dot{\alpha},\dot{\sigma})(X) = \nabla \dot{\sigma}_{X} - cX\dot{\sigma} + c\dot{\alpha}(X)\sigma_{0} - \frac{1}{2}\sum_{i}e_{i}(\nabla_{i}\dot{\alpha})(X)\sigma_{0} + \frac{1}{2}g(\delta\dot{\alpha},X)\sigma_{0}.$$

If $\operatorname{tr}_{g}(\dot{\alpha}) = \delta \dot{\alpha} = 0$, then $d\mathcal{L}^{c}(\dot{\alpha}, \dot{\sigma}) = 0$ if and only if $\nabla_{X} \dot{\sigma} = cX \dot{\sigma}$ and $\mathcal{D}\Psi^{(\dot{\alpha},\sigma_{0})} = nc\Psi^{(\dot{\alpha},\sigma_{0})}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

A deformation of the Killing spinor σ_0 is a path $(\alpha(t), \sigma_t)$ satisfying

$$\mathcal{L}^{c}(\alpha(t),\sigma_{t})(X) := \bar{\nabla}_{X}^{\alpha(t)}\sigma_{t} - c\alpha(t)^{-1}(X) \cdot \sigma_{t} = 0.$$
(10)

We will make use of

Twisted Dirac operator:

$$\mathcal{D}: \Gamma(\Sigma \otimes TM_{\mathbb{C}}) \to \Gamma(\Sigma \otimes TM_{\mathbb{C}})$$

• And the spinor valued 1-form $\Psi^{(\beta,\sigma)}$ with $\Psi^{(\beta,\sigma)}(X) = \beta(X)\sigma$, for $\beta : TM \to TM$. Differentiating (10) at (Id_{TM}, σ_0) :

Proposition 3.1 (M. Wang 1991)

$$d\mathcal{L}^{c}(\dot{\alpha},\dot{\sigma})(X) = \nabla \dot{\sigma}_{X} - cX\dot{\sigma} + c\dot{\alpha}(X)\sigma_{0} - \frac{1}{2}\sum_{i}e_{i}(\nabla_{i}\dot{\alpha})(X)\sigma_{0} + \frac{1}{2}g(\delta\dot{\alpha},X)\sigma_{0}.$$

If $\operatorname{tr}_{g}(\dot{\alpha}) = \delta \dot{\alpha} = 0$, then $d\mathcal{L}^{c}(\dot{\alpha}, \dot{\sigma}) = 0$ if and only if $\nabla_{X} \dot{\sigma} = cX \dot{\sigma}$ and $\mathcal{D}\Psi^{(\dot{\alpha},\sigma_{0})} = nc\Psi^{(\dot{\alpha},\sigma_{0})}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

A deformation of the Killing spinor σ_0 is a path $(\alpha(t), \sigma_t)$ satisfying

$$\mathcal{L}^{c}(\alpha(t),\sigma_{t})(X) := \bar{\nabla}_{X}^{\alpha(t)}\sigma_{t} - c\alpha(t)^{-1}(X) \cdot \sigma_{t} = 0.$$
(10)

We will make use of

Twisted Dirac operator:

$$\mathcal{D}: \Gamma(\Sigma \otimes TM_{\mathbb{C}}) \to \Gamma(\Sigma \otimes TM_{\mathbb{C}})$$

And the spinor valued 1-form $\Psi^{(\beta,\sigma)}$ with $\Psi^{(\beta,\sigma)}(X) = \beta(X)\sigma$, for $\beta : TM \to TM$. Differentiating (10) at (Id_{TM}, σ_0) :

Proposition 3.1 (M. Wang 1991)

$$d\mathcal{L}^{c}(\dot{\alpha},\dot{\sigma})(X) = \nabla \dot{\sigma}_{X} - cX\dot{\sigma} + c\dot{\alpha}(X)\sigma_{0} - \frac{1}{2}\sum_{i}e_{i}(\nabla_{i}\dot{\alpha})(X)\sigma_{0} + \frac{1}{2}g(\delta\dot{\alpha},X)\sigma_{0}.$$

If $\operatorname{tr}_{g}(\dot{\alpha}) = \delta \dot{\alpha} = 0$, then $d\mathcal{L}^{c}(\dot{\alpha}, \dot{\sigma}) = 0$ if and only if $\nabla_{X} \dot{\sigma} = cX\dot{\sigma}$ and $\mathcal{D}\Psi^{(\dot{\alpha},\sigma_{0})} = nc\Psi^{(\dot{\alpha},\sigma_{0})}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

A deformation of the Killing spinor σ_0 is a path $(\alpha(t), \sigma_t)$ satisfying

$$\mathcal{L}^{c}(\alpha(t),\sigma_{t})(X) := \bar{\nabla}_{X}^{\alpha(t)}\sigma_{t} - c\alpha(t)^{-1}(X) \cdot \sigma_{t} = 0.$$
(10)

We will make use of

Twisted Dirac operator:

$$\mathcal{D}: \Gamma(\Sigma \otimes TM_{\mathbb{C}}) \to \Gamma(\Sigma \otimes TM_{\mathbb{C}})$$

And the spinor valued 1-form $\Psi^{(\beta,\sigma)}$ with $\Psi^{(\beta,\sigma)}(X) = \beta(X)\sigma$, for $\beta : TM \to TM$. Differentiating (10) at (Id_{TM}, σ_0) :

Proposition 3.1 (M. Wang 1991)

$$d\mathcal{L}^{c}(\dot{\alpha},\dot{\sigma})(X) = \nabla \dot{\sigma}_{X} - cX\dot{\sigma} + c\dot{\alpha}(X)\sigma_{0} - \frac{1}{2}\sum_{i}e_{i}(\nabla_{i}\dot{\alpha})(X)\sigma_{0} + \frac{1}{2}g(\delta\dot{\alpha},X)\sigma_{0}.$$

If $\operatorname{tr}_{g}(\dot{\alpha}) = \delta \dot{\alpha} = 0$, then $d\mathcal{L}^{c}(\dot{\alpha}, \dot{\sigma}) = 0$ if and only if $\nabla_{X} \dot{\sigma} = cX\dot{\sigma}$ and $\mathcal{D}\Psi^{(\dot{\alpha},\sigma_{0})} = nc\Psi^{(\dot{\alpha},\sigma_{0})}$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○臣 ○ のへぐ

For β : $TM \to TM$ g-symmetric, define $h(X, Y) = -2g(\beta(X), Y)$

Proposition 3.2 (M. Wang 1991)

If $\operatorname{tr}_{g}\beta = \delta\beta = 0$ and $\mathcal{D}\Psi^{(\beta,\sigma_{0})} = nc\Psi^{(\beta,\sigma_{0})}$, then $(\nabla^{*}\nabla + 2L)h = 0$ where $(Lh)_{ij} = R_{i\,j}^{k\,l}h_{kl}$.

So $h \in \Gamma(S^2 T^*M)$ is an infinitesimal Einstein deformation.

Definition 3.3 (M. Wang 1991)

An infinitesimal deformation of the Killing spinor σ_0 is a pair (β, σ) satisfying:

- (i) σ is a Killing spinor with constant c,
- (*ii*) $\operatorname{tr}_{g}\beta = \delta\beta = 0$,
- (*iii*) $\mathcal{D}\Psi^{(\beta,\sigma_0)} = nc\Psi^{(\beta,\sigma_0)}$

For β : $TM \to TM$ g-symmetric, define $h(X, Y) = -2g(\beta(X), Y)$

Proposition 3.2 (M. Wang 1991) If $\operatorname{tr}_{g} \beta = \delta\beta = 0$ and $\mathcal{D}\Psi^{(\beta,\sigma_{0})} = nc\Psi^{(\beta,\sigma_{0})}$, then $(\nabla^{*}\nabla + 2L)h = 0$ where $(Lh)_{ij} = R_{i \ j}^{k \ l} h_{kl}$.

So $h \in \Gamma(S^2 T^*M)$ is an infinitesimal Einstein deformation.

Definition 3.3 (M. Wang 1991)

An infinitesimal deformation of the Killing spinor σ_0 is a pair (β, σ) satisfying:

- (i) σ is a Killing spinor with constant c,
- (*ii*) $\operatorname{tr}_{g}\beta = \delta\beta = 0$,
- (*iii*) $\mathcal{D}\Psi^{(\beta,\sigma_0)} = nc\Psi^{(\beta,\sigma_0)}$

For β : $TM \to TM$ g-symmetric, define $h(X, Y) = -2g(\beta(X), Y)$

Proposition 3.2 (M. Wang 1991) If $\operatorname{tr}_{g} \beta = \delta\beta = 0$ and $\mathcal{D}\Psi^{(\beta,\sigma_{0})} = nc\Psi^{(\beta,\sigma_{0})}$, then $(\nabla^{*}\nabla + 2L)h = 0$ where $(Lh)_{ij} = R_{i \ j}^{k \ l}h_{kl}$.

So $h \in \Gamma(S^2 T^*M)$ is an infinitesimal Einstein deformation.

Definition 3.3 (M. Wang 1991)

An infinitesimal deformation of the Killing spinor σ_0 is a pair (β, σ) satisfying:

- (i) σ is a Killing spinor with constant c,
- (*ii*) $\operatorname{tr}_{g}\beta = \delta\beta = 0$,
- (*iii*) $\mathcal{D}\Psi^{(\beta,\sigma_0)} = nc\Psi^{(\beta,\sigma_0)}$

For β : $TM \to TM$ g-symmetric, define $h(X, Y) = -2g(\beta(X), Y)$

Proposition 3.2 (M. Wang 1991) If $\operatorname{tr}_{g} \beta = \delta\beta = 0$ and $\mathcal{D}\Psi^{(\beta,\sigma_{0})} = nc\Psi^{(\beta,\sigma_{0})}$, then $(\nabla^{*}\nabla + 2L)h = 0$ where $(Lh)_{ij} = R_{i \ j}^{k \ l}h_{kl}$.

So $h \in \Gamma(S^2 T^*M)$ is an infinitesimal Einstein deformation.

Definition 3.3 (M. Wang 1991)

An infinitesimal deformation of the Killing spinor σ_0 is a pair (β, σ) satisfying:

- (i) σ is a Killing spinor with constant c,
- (*ii*) $\operatorname{tr}_{g}\beta = \delta\beta = 0$,
- (iii) $\mathcal{D}\Psi^{(\beta,\sigma_0)} = nc\Psi^{(\beta,\sigma_0)}$.

We will make use of some results of N. Koiso 1983 on the Einstein deformations of a Kähler-Einstein metric.

Recall the transverse metric g^T on \mathscr{F}_{ξ} is Kähler-Einstein,

$$\operatorname{Ric}_{g^T} = 2mg^T$$

An *harmonic* representative $\beta \in H^1_{\overline{\partial}_h}(\mathcal{A}^{0,\bullet})$ satisfies

$$\bar{\partial}_b \beta = 0$$
, and $\bar{\partial}_b^* \beta = 0.$ (11)

・ ロ ト ・ 目 ト ・ 目 ト ・ 目 ・ つ へ ()

Since $c_1^h(\mathscr{F}_{\xi}) > 0$, there are no non-zero harmonic sections of $\Lambda_b^{0,2}$ so $h_T^{\beta}(X,Y) = -2g(\beta(X),Y)$ is symmetric and of type (0,2).

We will make use of some results of N. Koiso 1983 on the Einstein deformations of a Kähler-Einstein metric.

Recall the transverse metric g^T on \mathscr{F}_{ξ} is Kähler-Einstein,

$$\operatorname{Ric}_{g^T} = 2mg^T$$

An *harmonic* representative $\beta \in H^1_{\overline{\partial}_h}(\mathcal{A}^{0,\bullet})$ satisfies

$$\bar{\partial}_b \beta = 0$$
, and $\bar{\partial}_b^* \beta = 0.$ (11)

・ ロ ト ・ 目 ト ・ 目 ト ・ 目 ・ つ へ ()

Since $c_1^h(\mathscr{F}_{\xi}) > 0$, there are no non-zero harmonic sections of $\Lambda_b^{0,2}$ so $h_T^{\beta}(X,Y) = -2g(\beta(X),Y)$ is symmetric and of type (0,2).

We will make use of some results of N. Koiso 1983 on the Einstein deformations of a Kähler-Einstein metric.

Recall the transverse metric g^T on \mathscr{F}_{ξ} is Kähler-Einstein,

$$\operatorname{Ric}_{g^T} = 2mg^T$$

An harmonic representative $\beta \in H^1_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet})$ satisfies

$$\bar{\partial}_b \beta = 0$$
, and $\bar{\partial}_b^* \beta = 0$. (11)

Since $c_1^b(\mathscr{F}_{\xi}) > 0$, there are no non-zero harmonic sections of $\Lambda_b^{0,2}$ so $h_T^{\beta}(X,Y) = -2g(\beta(X),Y)$ is symmetric and of type (0,2).

We will make use of some results of N. Koiso 1983 on the Einstein deformations of a Kähler-Einstein metric.

Recall the transverse metric g^T on \mathscr{F}_{ξ} is Kähler-Einstein,

$$\operatorname{Ric}_{g^T} = 2mg^T$$

An harmonic representative $\beta \in H^1_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet})$ satisfies

$$\bar{\partial}_b \beta = 0$$
, and $\bar{\partial}_b^* \beta = 0$. (11)

Since $c_1^b(\mathscr{F}_{\xi}) > 0$, there are no non-zero harmonic sections of $\Lambda_b^{0,2}$ so $h_T^{\beta}(X,Y) = -2g(\beta(X),Y)$ is symmetric and of type (0,2).

Proposition 4.2 (N. Koiso 1983)

The space \mathcal{E}^T is infinitesimal Einstein deformations of g^T , i.e.

$$\mathcal{E}^T := \{h \in \Gamma\left(\mathbf{S}^2 \, T_b^* M\right) | \operatorname{tr}_{g^T} h = \delta_{g^T} h = 0, \quad \left((\nabla^T)^* \nabla^T + 2L^T\right) h = 0\},$$

splits into Hermitian and anti-Hermitian components

$$\mathcal{E}^T = \mathcal{E}^T_H \oplus \mathcal{E}^T_A.$$

An anti-Hermitian $h\in \Gammaig(\mathrm{S}^2\,T_b^*Mig)$ is an element of \mathcal{E}_A^T if and only if

$$\nabla^T_{\alpha} h_{\beta\gamma} - \nabla^T_{\beta} h_{\alpha\gamma} = 0 \tag{12}$$

$$(\nabla^T)^{\alpha} h_{\alpha\beta} = 0 \tag{13}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Therefore, we have an isomorphism: $\mathcal{H}^{1}_{\Delta_{\bar{\partial}_{b}}}(\mathcal{A}^{0,\bullet}) \cong \mathcal{E}^{T}_{A}$.

Proposition 4.2 (N. Koiso 1983)

The space \mathcal{E}^T is infinitesimal Einstein deformations of g^T , i.e.

$$\mathcal{E}^T := \{ h \in \Gamma\left(\mathbf{S}^2 \, T_b^* M\right) | \operatorname{tr}_{g^T} h = \delta_{g^T} h = 0, \quad \left((\nabla^T)^* \nabla^T + 2L^T \right) h = 0 \},$$

splits into Hermitian and anti-Hermitian components

$$\mathcal{E}^T = \mathcal{E}^T_H \oplus \mathcal{E}^T_A$$

An anti-Hermitian $h \in \Gamma(S^2 T_b^* M)$ is an element of \mathcal{E}_A^T if and only if

$$\nabla^T_{\alpha} h_{\beta\gamma} - \nabla^T_{\beta} h_{\alpha\gamma} = 0 \tag{12}$$

$$(\nabla^T)^{\alpha} h_{\alpha\beta} = 0 \tag{13}$$

Therefore, we have an isomorphism: $\mathcal{H}^1_{\Delta_{\bar{\partial}_h}}(\mathcal{A}^{0,\bullet}) \cong \mathcal{E}^T_A$.

Proposition 4.2 (N. Koiso 1983)

The space \mathcal{E}^T is infinitesimal Einstein deformations of g^T , i.e.

$$\mathcal{E}^T := \{ h \in \Gamma\left(\mathbf{S}^2 \, T_b^* M\right) | \operatorname{tr}_{g^T} h = \delta_{g^T} h = 0, \quad \left((\nabla^T)^* \nabla^T + 2L^T \right) h = 0 \},$$

splits into Hermitian and anti-Hermitian components

$$\mathcal{E}^T = \mathcal{E}^T_H \oplus \mathcal{E}^T_A$$

An anti-Hermitian $h \in \Gamma(S^2 T_b^* M)$ is an element of \mathcal{E}_A^T if and only if

$$\nabla^T_{\alpha} h_{\beta\gamma} - \nabla^T_{\beta} h_{\alpha\gamma} = 0 \tag{12}$$

$$(\nabla^T)^{\alpha} h_{\alpha\beta} = 0 \tag{13}$$

Therefore, we have an isomorphism: $\mathcal{H}^1_{\Delta_{\overline{\partial}_h}}(\mathcal{A}^{0,\bullet}) \cong \mathcal{E}^T_A$.
The next result follows from computations using the O'Niell tensor. Recall that the local projection onto the leaf space of \mathscr{F}_{ξ} is a Riemannian submersion.

Lemma 4.3

Let (M, g) be a Sasaki-Einstein manifold. Suppose $h^T \in \Gamma(S^2 T_b^* M)$ is an anti-Hermitian infinitesimal Einstein deformation of g^T . Then $h = \pi^* h^T$ is an infinitesimal Einstein deformation of g.

Proposition 4.4

Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2 defining Killing spinors σ_j , j = 0, 1. If $\beta \in \mathcal{H}^1_{\Delta_{\overline{\partial}_b}}(\mathcal{A}^{0,\bullet})$ and h_T^{β} the corresponding basic anti-Hermitian symmetric tensor, then $h^{\beta} := \pi^* h_T^{\beta}$ is an infinitesimal Einstein deformation of g, and $(h^{\beta}, 0)$ is an infinitesimal deformation of the Killing spinors σ_j for j = 0, 1.

The next result follows from computations using the O'Niell tensor. Recall that the local projection onto the leaf space of \mathscr{F}_{ξ} is a Riemannian submersion.

Lemma 4.3

Let (M, g) be a Sasaki-Einstein manifold. Suppose $h^T \in \Gamma(S^2 T_b^* M)$ is an anti-Hermitian infinitesimal Einstein deformation of g^T . Then $h = \pi^* h^T$ is an infinitesimal Einstein deformation of g.

Proposition 4.4

Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2 defining Killing spinors σ_j , j = 0, 1. If $\beta \in \mathcal{H}^1_{\Delta_{\overline{\partial}_b}}(\mathcal{A}^{0,\bullet})$ and h_T^{β} the corresponding basic anti-Hermitian symmetric tensor, then $h^{\beta} := \pi^* h_T^{\beta}$ is an infinitesimal Einstein deformation of g, and $(h^{\beta}, 0)$ is an infinitesimal deformation of the Killing spinors σ_j for j = 0, 1.

The next result follows from computations using the O'Niell tensor. Recall that the local projection onto the leaf space of \mathscr{F}_{ξ} is a Riemannian submersion.

Lemma 4.3

Let (M, g) be a Sasaki-Einstein manifold. Suppose $h^T \in \Gamma(S^2 T_b^*M)$ is an anti-Hermitian infinitesimal Einstein deformation of g^T . Then $h = \pi^* h^T$ is an infinitesimal Einstein deformation of g.

Proposition 4.4

Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2 defining Killing spinors σ_j , j = 0, 1. If $\beta \in \mathcal{H}^1_{\Delta_{\overline{\partial}_b}}(\mathcal{A}^{0,\bullet})$ and h_T^{β} the corresponding basic anti-Hermitian symmetric tensor, then $h^{\beta} := \pi^* h_T^{\beta}$ is an infinitesimal Einstein deformation of g, and $(h^{\beta}, 0)$ is an infinitesimal deformation of the Killing spinors σ_j for j = 0, 1.

Some remarks on the proof:

Since
$$\operatorname{tr}_{g}(h^{\beta}) = \delta_{g}h^{\beta} = 0$$
, Proposition 3.1 is satisfied if

$$\sum_{i} e_{i}(\nabla_{i}h)(X)\sigma_{i} = 2ch(X)\sigma_{i}, \quad \text{for all } X \in TM, \ i = 1, 2.$$
(14)

Using the O'Neill tensor one puts (14) in form

$$\sum_{i=1}^{2m-2} e_i \left(\nabla_i^T h \right)(X) \sigma_j - \phi h(X) \xi \sigma_j = 2ch(X) \sigma_i.$$
(15)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

▶ Then in an Hermitian frame use the identities (12) (13) to show the first term is zero.

Some remarks on the proof:

• Since
$$\operatorname{tr}_g(h^\beta) = \delta_g h^\beta = 0$$
, Proposition 3.1 is satisfied if

$$\sum_i e_i (\nabla_i h)(X) \sigma_i = 2ch(X) \sigma_i, \quad \text{for all } X \in TM, \ i = 1, 2.$$
(14)

Using the O'Neill tensor one puts (14) in form

$$\sum_{i=1}^{2m-2} e_i \left(\nabla_i^T h \right)(X) \sigma_j - \phi h(X) \xi \sigma_j = 2ch(X) \sigma_i.$$
(15)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

▶ Then in an Hermitian frame use the identities (12) (13) to show the first term is zero.

Some remarks on the proof:

• Since
$$\operatorname{tr}_g(h^\beta) = \delta_g h^\beta = 0$$
, Proposition 3.1 is satisfied if

$$\sum_i e_i (\nabla_i h)(X) \sigma_i = 2ch(X) \sigma_i, \quad \text{for all } X \in TM, \ i = 1, 2.$$
(14)

▶ Using the O'Neill tensor one puts (14) in form

$$\sum_{i=1}^{2m-2} e_i \left(\nabla_i^T h \right)(X) \sigma_j - \phi h(X) \xi \sigma_j = 2ch(X) \sigma_i.$$
(15)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▶ Then in an Hermitian frame use the identities (12) (13) to show the first term is zero.

Some remarks on the proof:

• Since
$$\operatorname{tr}_g(h^\beta) = \delta_g h^\beta = 0$$
, Proposition 3.1 is satisfied if

$$\sum_i e_i (\nabla_i h)(X) \sigma_i = 2ch(X) \sigma_i, \quad \text{for all } X \in TM, \ i = 1, 2.$$
(14)

▶ Using the O'Neill tensor one puts (14) in form

$$\sum_{i=1}^{2m-2} e_i \left(\nabla_i^T h \right)(X) \sigma_j - \phi h(X) \xi \sigma_j = 2ch(X) \sigma_i.$$
(15)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▶ Then in an Hermitian frame use the identities (12) (13) to show the first term is zero.

Some remarks on the proof:

► Since
$$\operatorname{tr}_g(h^\beta) = \delta_g h^\beta = 0$$
, Proposition 3.1 is satisfied if

$$\sum_i e_i (\nabla_i h)(X) \sigma_i = 2ch(X) \sigma_i, \quad \text{for all } X \in TM, \ i = 1, 2.$$
(14)

▶ Using the O'Neill tensor one puts (14) in form

$$\sum_{i=1}^{2m-2} e_i \left(\nabla_i^T h \right)(X) \sigma_j - \phi h(X) \xi \sigma_j = 2ch(X) \sigma_i.$$
(15)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ Then in an Hermitian frame use the identities (12) (13) to show the first term is zero.

Proposition 4.5

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with Killing spinors σ_j , j = 0, ..., m. If $\beta \in \mathcal{H}^1_{\Delta_{\overline{\partial}_b}}(\mathcal{A}^{0,\bullet})$ is non-zero and h_T^β the corresponding basic anti-Hermitian symmetric tensor, then $h^\beta := \pi^* h_T^\beta$ is an infinitesimal Einstein deformation of g, and $(h^\beta, 0)$ is an infinitesimal deformation of the Killing spinors σ_j for j = 0, m, but never for j = 1, ..., m - 1.

Take a local quaternionic frame

$$(e_1, e_2, \ldots, e_{4m}) = (f_1, J_1f_1, J_2f_1, J_3f_1, f_2, \ldots, f_m, J_1f_m, J_2f_m, J_3f_m),$$

where $e_1, ..., e_{4m-4}$ are orthogonal to $\xi_i, i = 1, 2, 3$ and $f_m = \xi_2, J_1 f_m = \xi_3, J_2 f_m = \partial_r$, and $J_3 f_m = -\xi_1$.

- Then we have an Hermitian, w.r.t. J_1 , frame $\varepsilon_{\alpha} = \frac{1}{\sqrt{2}}(e_{2\alpha-1} \sqrt{-1}e_{2\alpha}), \ \alpha = 1, \dots, 2m.$
- The spinor bundle of (M, g) is $\Sigma = \Lambda^{ev} T^{1,0} C(M)|_M = \Lambda^{ev} \operatorname{Span}_{\mathbb{C}} \{ \varepsilon_{\alpha} | \alpha = 1, \dots, 2m \}.$

Proposition 4.5

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with Killing spinors σ_j , j = 0, ..., m. If $\beta \in \mathcal{H}^1_{\Delta_{\overline{\partial}_b}}(\mathcal{A}^{0,\bullet})$ is non-zero and h_T^β the corresponding basic anti-Hermitian symmetric tensor, then $h^\beta := \pi^* h_T^\beta$ is an infinitesimal Einstein deformation of g, and $(h^\beta, 0)$ is an infinitesimal deformation of the Killing spinors σ_j for j = 0, m, but never for j = 1, ..., m - 1.

► Take a local quaternionic frame

$$(e_1, e_2, \ldots, e_{4m}) = (f_1, J_1f_1, J_2f_1, J_3f_1, f_2, \ldots, f_m, J_1f_m, J_2f_m, J_3f_m),$$

where $e_1, ..., e_{4m-4}$ are orthogonal to $\xi_i, i = 1, 2, 3$ and $f_m = \xi_2, J_1 f_m = \xi_3, J_2 f_m = \partial_r$, and $J_3 f_m = -\xi_1$.

- Then we have an Hermitian, w.r.t. J_1 , frame $\varepsilon_{\alpha} = \frac{1}{\sqrt{2}}(e_{2\alpha-1} \sqrt{-1}e_{2\alpha}), \ \alpha = 1, \dots, 2m.$
- The spinor bundle of (M, g) is $\Sigma = \Lambda^{ev} T^{1,0} C(M)|_M = \Lambda^{ev} \operatorname{Span}_{\mathbb{C}} \{ \varepsilon_{\alpha} | \alpha = 1, \dots, 2m \}.$

Proposition 4.5

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with Killing spinors σ_j , j = 0, ..., m. If $\beta \in \mathcal{H}^1_{\Delta_{\overline{\partial}_b}}(\mathcal{A}^{0,\bullet})$ is non-zero and h_T^β the corresponding basic anti-Hermitian symmetric tensor, then $h^\beta := \pi^* h_T^\beta$ is an infinitesimal Einstein deformation of g, and $(h^\beta, 0)$ is an infinitesimal deformation of the Killing spinors σ_j for j = 0, m, but never for j = 1, ..., m - 1.

► Take a local quaternionic frame

$$(e_1, e_2, \ldots, e_{4m}) = (f_1, J_1f_1, J_2f_1, J_3f_1, f_2, \ldots, f_m, J_1f_m, J_2f_m, J_3f_m),$$

where $e_1, ..., e_{4m-4}$ are orthogonal to $\xi_i, i = 1, 2, 3$ and $f_m = \xi_2, J_1 f_m = \xi_3, J_2 f_m = \partial_r$, and $J_3 f_m = -\xi_1$.

• Then we have an Hermitian, w.r.t. J_1 , frame $\varepsilon_{\alpha} = \frac{1}{\sqrt{2}}(e_{2\alpha-1} - \sqrt{-1}e_{2\alpha}), \ \alpha = 1, \dots, 2m.$

• The spinor bundle of (M, g) is $\Sigma = \Lambda^{ev} T^{1,0} C(M)|_M = \Lambda^{ev} \operatorname{Span}_{\mathbb{C}} \{ \varepsilon_{\alpha} | \alpha = 1, \dots, 2m \}.$

Proposition 4.5

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with Killing spinors σ_j , j = 0, ..., m. If $\beta \in \mathcal{H}^1_{\Delta_{\overline{\partial}_b}}(\mathcal{A}^{0,\bullet})$ is non-zero and h_T^β the corresponding basic anti-Hermitian symmetric tensor, then $h^\beta := \pi^* h_T^\beta$ is an infinitesimal Einstein deformation of g, and $(h^\beta, 0)$ is an infinitesimal deformation of the Killing spinors σ_j for j = 0, m, but never for j = 1, ..., m - 1.

► Take a local quaternionic frame

$$(e_1, e_2, \ldots, e_{4m}) = (f_1, J_1f_1, J_2f_1, J_3f_1, f_2, \ldots, f_m, J_1f_m, J_2f_m, J_3f_m),$$

where $e_1, ..., e_{4m-4}$ are orthogonal to $\xi_i, i = 1, 2, 3$ and $f_m = \xi_2, J_1 f_m = \xi_3, J_2 f_m = \partial_r$, and $J_3 f_m = -\xi_1$.

- Then we have an Hermitian, w.r.t. J_1 , frame $\varepsilon_{\alpha} = \frac{1}{\sqrt{2}}(e_{2\alpha-1} \sqrt{-1}e_{2\alpha}), \ \alpha = 1, \dots, 2m.$
- The spinor bundle of (M, g) is $\Sigma = \Lambda^{ev} T^{1,0} C(M)|_M = \Lambda^{ev} \operatorname{Span}_{\mathbb{C}} \{ \varepsilon_{\alpha} | \alpha = 1, \dots, 2m \}.$

We have the "symplectic form"

$$\varpi = \sum_{\alpha=1}^{m} \varepsilon_{2\alpha-1} \wedge \varepsilon_{2\alpha}.$$
 (16)

- And the Killing spinors on (M, g) are $\sigma_k = \frac{1}{k!} \varpi^k$, $k = 0, \dots, m$.
- If $\theta \in \Omega_b^{1,0}(\mathbf{L})$ is the complex contact form, then one can show that $\psi_{\bar{\beta}} = h_{\bar{\beta}}^{\gamma} \theta_{\gamma} \in \Omega_b^{0,1}(\mathbf{L})$ is harmonic and thus zero, since $H^1_{\bar{\partial}_b}(\Gamma(\Lambda^{0,\bullet}(\mathbf{L}))) = 0$.
- Thus $h(X) \perp \operatorname{Span}{\xi_1, \xi_2, \xi_3}$.

We have the "symplectic form"

$$\varpi = \sum_{\alpha=1}^{m} \varepsilon_{2\alpha-1} \wedge \varepsilon_{2\alpha}.$$
 (16)

- And the Killing spinors on (M, g) are $\sigma_k = \frac{1}{k!} \varpi^k$, $k = 0, \dots, m$.
- If $\theta \in \Omega_b^{1,0}(\mathbf{L})$ is the complex contact form, then one can show that $\psi_{\bar{\beta}} = h_{\bar{\beta}}^{\gamma} \theta_{\gamma} \in \Omega_b^{0,1}(\mathbf{L})$ is harmonic and thus zero, since $H^1_{\bar{\partial}_b}(\Gamma(\Lambda^{0,\bullet}(\mathbf{L}))) = 0$.
- Thus $h(X) \perp \operatorname{Span}{\xi_1, \xi_2, \xi_3}$

We have the "symplectic form"

$$\varpi = \sum_{\alpha=1}^{m} \varepsilon_{2\alpha-1} \wedge \varepsilon_{2\alpha}.$$
 (16)

- And the Killing spinors on (M, g) are $\sigma_k = \frac{1}{k!} \varpi^k$, $k = 0, \dots, m$.
- If $\theta \in \Omega_b^{1,0}(\mathbf{L})$ is the complex contact form, then one can show that $\psi_{\bar{\beta}} = h_{\bar{\beta}}^{\gamma} \theta_{\gamma} \in \Omega_b^{0,1}(\mathbf{L})$ is harmonic and thus zero, since $H^1_{\bar{\partial}_b}(\Gamma(\Lambda^{0,\bullet}(\mathbf{L}))) = 0$.
- Thus $h(X) \perp \text{Span}\{\xi_1, \xi_2, \xi_3\}.$

We have the "symplectic form"

$$\varpi = \sum_{\alpha=1}^{m} \varepsilon_{2\alpha-1} \wedge \varepsilon_{2\alpha}.$$
 (16)

- And the Killing spinors on (M, g) are $\sigma_k = \frac{1}{k!} \varpi^k$, $k = 0, \dots, m$.
- If $\theta \in \Omega_b^{1,0}(\mathbf{L})$ is the complex contact form, then one can show that $\psi_{\bar{\beta}} = h_{\bar{\beta}}^{\gamma} \theta_{\gamma} \in \Omega_b^{0,1}(\mathbf{L})$ is harmonic and thus zero, since $H^1_{\bar{\partial}_b}(\Gamma(\Lambda^{0,\bullet}(\mathbf{L}))) = 0$.
- Thus $h(X) \perp \text{Span}\{\xi_1, \xi_2, \xi_3\}.$

We consider cases in which the above infinitesimal Killing spinor deformations integrate.

The infinitesimal Killing spinor deformations h^β for β ∈ H¹_{Δ_{∂b}} (A^{0,•}) of a Sasaki-Einstein metric (M, g) do not necessarily integrate.

- ▶ Note that this problem includes that of deforming Kähler-Einstein metrics. When *M* is regular the leaf space *Z* is a Kähler-Einstein manifold.
- ▶ We saw that \mathscr{F}_{ξ} has a smooth Kuranishi space $\mathcal{V} \subset H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$. But \mathscr{F}'_{ξ} , $t \in \mathcal{V} \setminus \{0\}$ may not admit a transversal Kähler-Einstein metric.

Let $T \subset Aut(M, g, \xi, \phi)$ be a maximal torus of the automorphism group of the Sasaki structure.

Theorem 5.1 (van Coevering, arXiv:1204.1630)

If $\beta \in \mathcal{H}^1_{\Delta_{\overline{\partial}_b}}(\mathcal{A}^{0,\bullet})^T$, then h^{β} integrates to a deformation of Sasaki-Einstein structures (g_t, I_t, ξ_t) . More generally, let \mathfrak{t} be the Lie algebra of T. Then there is a neighborhood of \mathcal{N} of $(0,\xi) \in \mathcal{V} \times \mathfrak{t}$, so that for $(t,\zeta) \in \mathcal{N}$ there is a Sasaki-Extremal metric $(g_{t,\zeta}, I_t, \zeta)$.

We consider cases in which the above infinitesimal Killing spinor deformations integrate.

- The infinitesimal Killing spinor deformations h^β for β ∈ H¹_{Δ_{∂_b} (A^{0,●}) of a Sasaki-Einstein metric (M, g) do not necessarily integrate.}
- Note that this problem includes that of deforming K\u00e4hler-Einstein metrics. When *M* is regular the leaf space *Z* is a K\u00e4hler-Einstein manifold.
- ▶ We saw that \mathscr{F}_{ξ} has a smooth Kuranishi space $\mathcal{V} \subset H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$. But \mathscr{F}'_{ξ} , $t \in \mathcal{V} \setminus \{0\}$ may not admit a transversal Kähler-Einstein metric.

Let $T \subset Aut(M, g, \xi, \phi)$ be a maximal torus of the automorphism group of the Sasaki structure.

Theorem 5.1 (van Coevering, arXiv:1204.1630)

If $\beta \in \mathcal{H}^1_{\Delta_{\partial_b}}(\mathcal{A}^{0,\bullet})^T$, then h^β integrates to a deformation of Sasaki-Einstein structures (g_t, I_t, ξ_t) . More generally, let \mathfrak{t} be the Lie algebra of T. Then there is a neighborhood of \mathcal{N} of $(0, \xi) \in \mathcal{V} \times \mathfrak{t}$, so that for $(t, \zeta) \in \mathcal{N}$ there is a Sasaki-Extremal metric $(g_{t, \zeta}, I_t, \zeta)$.

We consider cases in which the above infinitesimal Killing spinor deformations integrate.

- The infinitesimal Killing spinor deformations h^β for β ∈ H¹_{Δ_{∂_b} (A^{0,•}) of a Sasaki-Einstein metric (M, g) do not necessarily integrate.}
- Note that this problem includes that of deforming K\u00e4hler-Einstein metrics. When *M* is regular the leaf space *Z* is a K\u00e4hler-Einstein manifold.
- ▶ We saw that \mathscr{F}_{ξ} has a smooth Kuranishi space $\mathcal{V} \subset H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$. But \mathscr{F}'_{ξ} , $t \in \mathcal{V} \setminus \{0\}$ may not admit a transversal Kähler-Einstein metric.

Let $T \subset Aut(M, g, \xi, \phi)$ be a maximal torus of the automorphism group of the Sasaki structure.

Theorem 5.1 (van Coevering, arXiv:1204.1630)

If $\beta \in \mathcal{H}^1_{\Delta_{\overline{D}_b}}(\mathcal{A}^{0,\bullet})^T$, then h^{β} integrates to a deformation of Sasaki-Einstein structures (g_t, I_t, ξ_t) . More generally, let \mathfrak{t} be the Lie algebra of T. Then there is a neighborhood of \mathcal{N} of $(0, \xi) \in \mathcal{V} \times \mathfrak{t}$, so that for $(t, \zeta) \in \mathcal{N}$ there is a Sasaki-Extremal metric (g_t, ζ_t, ζ_t) .

We consider cases in which the above infinitesimal Killing spinor deformations integrate.

- The infinitesimal Killing spinor deformations h^β for β ∈ H¹_{Δ_{∂_b} (A^{0,•}) of a Sasaki-Einstein metric (M, g) do not necessarily integrate.}
- Note that this problem includes that of deforming K\u00e4hler-Einstein metrics. When *M* is regular the leaf space *Z* is a K\u00e4hler-Einstein manifold.
- We saw that 𝓕_ξ has a smooth Kuranishi space 𝒱 ⊂ H¹_{∂_b}(𝔅^{0,•}). But 𝓕_ξ^t, t ∈ 𝒱 \ {0} may not admit a transversal Kähler-Einstein metric.

Let $T \subset Aut(M, g, \xi, \phi)$ be a maximal torus of the automorphism group of the Sasaki structure.

Theorem 5.1 (van Coevering, arXiv:1204.1630)

If $\beta \in \mathcal{H}^1_{\Delta_{\overline{\partial}_b}}(\mathcal{A}^{0,\bullet})^T$, then h^β integrates to a deformation of Sasaki-Einstein structures (g_t, I_t, ξ_t) . More generally, let ξ be the Lie algebra of T. Then there is a neighborhood of \mathcal{N} of

 $(0,\xi) \in \mathcal{V} \times \mathfrak{t}$, so that for $(t,\zeta) \in \mathcal{N}$ there is a Sasaki-Extremal metric $(g_{t,\zeta},I_t,\zeta)$.

We consider cases in which the above infinitesimal Killing spinor deformations integrate.

- The infinitesimal Killing spinor deformations h^β for β ∈ H¹_{Δ_{∂_b} (A^{0,●}) of a Sasaki-Einstein metric (M, g) do not necessarily integrate.}
- Note that this problem includes that of deforming K\u00e4hler-Einstein metrics. When *M* is regular the leaf space *Z* is a K\u00e4hler-Einstein manifold.
- We saw that 𝓕_ξ has a smooth Kuranishi space 𝒱 ⊂ H¹_{∂_b}(𝔅^{0,•}). But 𝓕^t_ξ, t ∈ 𝒱 \ {0} may not admit a transversal Kähler-Einstein metric.

Let $T \subset Aut(M, g, \xi, \phi)$ be a maximal torus of the automorphism group of the Sasaki structure.

Theorem 5.1 (van Coevering, arXiv:1204.1630)

If $\beta \in \mathcal{H}^1_{\Delta_{\overline{\partial}_b}}(\mathcal{A}^{0,\bullet})^T$, then h^{β} integrates to a deformation of Sasaki-Einstein structures (g_t, I_t, ξ_t) .

More generally, let t be the Lie algebra of T. Then there is a neighborhood of \mathcal{N} of $(0,\xi) \in \mathcal{V} \times \mathfrak{t}$, so that for $(t,\zeta) \in \mathcal{N}$ there is a Sasaki-Extremal metric $(g_{t,\zeta},I_t,\zeta)$.

A Sasaki-Extremal metric is a critical point of the Calabi functional.

 $S(\xi, I) := \{ \text{Sasaki structures with Reeb field } \xi \text{ and trans. holmorphic str. } I \}$ $\mathfrak{M}(\xi, I) := \{ \text{metrics associated to structures in } S(\xi, I) \}$

The Calabi functional C is

$$\mathfrak{M}(\xi, I) \xrightarrow{C} \mathbb{R} \\
g \mapsto \int_{M} s_{g}^{2} d\mu_{g}$$
(17)

- Theorem 5.1 is a special case of results on deforming Sasaki-Extremal metrics.
- Proof uses implicit function theorem on the reduced scalar curvature.
- If the deformation does not preserve a maximal torus, then addition assumption is needed: Non-degeneracy of the relative Futaki invariant.
- Y. Rollin, S. Simanca, and C. Tipler, 2011 gave similar result in the Kähler case.

A Sasaki-Extremal metric is a critical point of the Calabi functional.

 $S(\xi, I) := \{$ Sasaki structures with Reeb field ξ and trans. holmorphic str. $I\}$ $\mathfrak{M}(\xi, I) := \{$ metrics associated to structures in $S(\xi, I)\}$

The Calabi functional C is

$$\mathfrak{M}(\xi, I) \xrightarrow{\mathcal{C}} \mathbb{R} \\
g \mapsto \int_{M} s_{g}^{2} d\mu_{g}$$
(17)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Theorem 5.1 is a special case of results on deforming Sasaki-Extremal metrics.
- Proof uses implicit function theorem on the reduced scalar curvature.
- If the deformation does not preserve a maximal torus, then addition assumption is needed: Non-degeneracy of the relative Futaki invariant.
- Y. Rollin, S. Simanca, and C. Tipler, 2011 gave similar result in the Kähler case.

A Sasaki-Extremal metric is a critical point of the Calabi functional.

 $S(\xi, I) := \{ \text{Sasaki structures with Reeb field } \xi \text{ and trans. holmorphic str. } I \}$ $\mathfrak{M}(\xi, I) := \{ \text{metrics associated to structures in } S(\xi, I) \}$

The Calabi functional C is

$$\mathfrak{M}(\xi, I) \xrightarrow{\mathcal{C}} \mathbb{R} \\
g \mapsto \int_{M} s_{g}^{2} d\mu_{g}$$
(17)

- Theorem 5.1 is a special case of results on deforming Sasaki-Extremal metrics.
- Proof uses implicit function theorem on the reduced scalar curvature
- If the deformation does not preserve a maximal torus, then addition assumption is needed: Non-degeneracy of the relative Futaki invariant.
- Y. Rollin, S. Simanca, and C. Tipler, 2011 gave similar result in the Kähler case.

A Sasaki-Extremal metric is a critical point of the Calabi functional.

 $\mathcal{S}(\xi, I) := \{\text{Sasaki structures with Reeb field } \xi \text{ and trans. holmorphic str. } I\}$

 $\mathfrak{M}(\xi, I) := \{$ metrics associated to structures in $\mathcal{S}(\xi, I) \}$

The Calabi functional C is

$$\mathfrak{M}(\xi, I) \xrightarrow{\mathcal{C}} \mathbb{R} \\
g \mapsto \int_{M} s_{g}^{2} d\mu_{g}$$
(17)

- Theorem 5.1 is a special case of results on deforming Sasaki-Extremal metrics.
- Proof uses implicit function theorem on the reduced scalar curvature
- If the deformation does not preserve a maximal torus, then addition assumption is needed: Non-degeneracy of the relative Futaki invariant.
- Y. Rollin, S. Simanca, and C. Tipler, 2011 gave similar result in the Kähler case.

A Sasaki-Extremal metric is a critical point of the Calabi functional.

 $S(\xi, I) := \{$ Sasaki structures with Reeb field ξ and trans. holmorphic str. $I\}$

 $\mathfrak{M}(\xi, I) := \{$ metrics associated to structures in $\mathcal{S}(\xi, I) \}$

The Calabi functional C is

$$\mathfrak{M}(\xi, I) \xrightarrow{\mathcal{C}} \mathbb{R} \\
g \mapsto \int_{M} s_{g}^{2} d\mu_{g}$$
(17)

- Theorem 5.1 is a special case of results on deforming Sasaki-Extremal metrics.
- > Proof uses implicit function theorem on the *reduced scalar curvature*.
- If the deformation does not preserve a maximal torus, then addition assumption is needed: Non-degeneracy of the relative Futaki invariant.
- Y. Rollin, S. Simanca, and C. Tipler, 2011 gave similar result in the Kähler case.

A Sasaki-Extremal metric is a critical point of the Calabi functional.

 $S(\xi, I) := \{$ Sasaki structures with Reeb field ξ and trans. holmorphic str. $I\}$

 $\mathfrak{M}(\xi, I) := \{$ metrics associated to structures in $\mathcal{S}(\xi, I) \}$

The Calabi functional C is

$$\mathfrak{M}(\xi, I) \xrightarrow{\mathcal{C}} \mathbb{R} \\
g \mapsto \int_{M} s_{g}^{2} d\mu_{g}$$
(17)

- Theorem 5.1 is a special case of results on deforming Sasaki-Extremal metrics.
- > Proof uses implicit function theorem on the *reduced scalar curvature*.
- If the deformation does not preserve a maximal torus, then addition assumption is needed: Non-degeneracy of the relative Futaki invariant.
- Y. Rollin, S. Simanca, and C. Tipler, 2011 gave similar result in the Kähler case.

A Sasaki-Extremal metric is a critical point of the Calabi functional.

 $S(\xi, I) := \{$ Sasaki structures with Reeb field ξ and trans. holmorphic str. $I\}$

 $\mathfrak{M}(\xi, I) := \{$ metrics associated to structures in $\mathcal{S}(\xi, I) \}$

The Calabi functional C is

$$\mathfrak{M}(\xi, I) \xrightarrow{\mathcal{C}} \mathbb{R} \\
g \mapsto \int_{M} s_{g}^{2} d\mu_{g}$$
(17)

- Theorem 5.1 is a special case of results on deforming Sasaki-Extremal metrics.
- > Proof uses implicit function theorem on the *reduced scalar curvature*.
- If the deformation does not preserve a maximal torus, then addition assumption is needed: Non-degeneracy of the relative Futaki invariant.
- ▶ Y. Rollin, S. Simanca, and C. Tipler, 2011 gave similar result in the Kähler case .

It is well known that 3-Sasaki structures are rigid (H. Pedersen and Y. S. Poon 1999).

Theorem 5.2

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with Killing spinors σ_j , j = 0, ..., m. Then any Einstein deformation (M, g_t) of g with compatible 3-Sasaki structures, i.e. preserving the existence of the σ_j , j = 0, ..., m, is trivial. That is, there exists a family f_t of diffeomorphisms of M with $f_t^* g_t = g$.

The leaf space of \mathscr{P}_{ξ} is a complex orbifold \mathcal{Z} , the *twistor space*. So there is an anti-holomorphic involution $\varsigma : \mathcal{Z} \to \mathcal{Z}$. So

- ► $H^1_{\bar{\partial}_h}(\mathcal{A}^{0,\bullet}) = H^1(\mathcal{Z},\Theta_{\mathcal{Z}})$, where $\Theta_{\mathcal{Z}}$ is the orbifold sheaf of holomorphic vector fields.
- We have a real structure $\varsigma : H^1_{\bar{\partial}_h}(\mathcal{A}^{0,\bullet}) \to H^1_{\bar{\partial}_h}(\mathcal{A}^{0,\bullet})$

Theorem 5.3

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold, and denote by σ_j , $j = 0, \ldots, m$ the Killing spinors associated to the 3-Sasaki structure. Then the infinitesimal Einstein deformations h^{β} of g for $\beta \in \operatorname{Re} \mathcal{H}^1_{\Delta_{\overline{\partial}_b}}(\mathcal{A}^{0,\bullet})$ integrate to a family g_t , $t \in \mathcal{N} \subset \mathbb{R}^d$, $d = \dim_{\mathbb{C}} \mathcal{H}^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$ of Einstein deformations of g preserving only σ_0 and σ_m .

It is well known that 3-Sasaki structures are rigid (H. Pedersen and Y. S. Poon 1999).

Theorem 5.2

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with Killing spinors σ_j , j = 0, ..., m. Then any Einstein deformation (M, g_t) of g with compatible 3-Sasaki structures, i.e. preserving the existence of the σ_j , j = 0, ..., m, is trivial. That is, there exists a family f_t of diffeomorphisms of M with $f_t^* g_t = g$.

The leaf space of \mathscr{F}_{ξ} is a complex orbifold \mathscr{Z} , the *twistor space*. So there is an anti-holomorphic involution $\varsigma : \mathscr{Z} \to \mathscr{Z}$. So

- ► $H^1_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}) = H^1(\mathcal{Z},\Theta_{\mathcal{Z}})$, where $\Theta_{\mathcal{Z}}$ is the orbifold sheaf of holomorphic vector fields.
- We have a real structure $\varsigma : H^1_{\bar{\partial}_h}(\mathcal{A}^{0,\bullet}) \to H^1_{\bar{\partial}_h}(\mathcal{A}^{0,\bullet})$

Theorem 5.3

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold, and denote by σ_j , $j = 0, \ldots, m$ the Killing spinors associated to the 3-Sasaki structure. Then the infinitesimal Einstein deformations h^{β} of g for $\beta \in \operatorname{Re} \mathcal{H}^1_{\Delta_{\overline{\partial}_b}}(\mathcal{A}^{0,\bullet})$ integrate to a family g_t , $t \in \mathcal{N} \subset \mathbb{R}^d$, $d = \dim_{\mathbb{C}} \mathcal{H}^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$ of Einstein deformations of g preserving only σ_0 and σ_m .

It is well known that 3-Sasaki structures are rigid (H. Pedersen and Y. S. Poon 1999).

Theorem 5.2

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with Killing spinors σ_j , j = 0, ..., m. Then any Einstein deformation (M, g_t) of g with compatible 3-Sasaki structures, i.e. preserving the existence of the σ_j , j = 0, ..., m, is trivial. That is, there exists a family f_t of diffeomorphisms of M with $f_t^* g_t = g$.

The leaf space of \mathscr{F}_{ξ} is a complex orbifold \mathscr{Z} , the *twistor space*. So there is an anti-holomorphic involution $\varsigma : \mathscr{Z} \to \mathscr{Z}$. So

- ► $H^1_{\bar{\partial}_b}(\mathcal{A}^{0,\bullet}) = H^1(\mathcal{Z},\Theta_{\mathcal{Z}})$, where $\Theta_{\mathcal{Z}}$ is the orbifold sheaf of holomorphic vector fields.
- We have a real structure $\varsigma : H^1_{\bar{\partial}_h}(\mathcal{A}^{0,\bullet}) \to H^1_{\bar{\partial}_h}(\mathcal{A}^{0,\bullet})$

Theorem 5.3

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold, and denote by σ_j , $j = 0, \ldots, m$ the Killing spinors associated to the 3-Sasaki structure. Then the infinitesimal Einstein deformations h^{β} of g for $\beta \in \operatorname{Re} \mathcal{H}^1_{\Delta_{\overline{\partial}b}}(\mathcal{A}^{0,\bullet})$ integrate to a family g_t , $t \in \mathcal{N} \subset \mathbb{R}^d$, $d = \dim_{\mathbb{C}} \mathcal{H}^1_{\overline{\partial}b}(\mathcal{A}^{0,\bullet})$ of Einstein deformations of g preserving only σ_0 and σ_m .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Corollary 5.4

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with $d = \dim_{\mathbb{C}} H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$. Then g has a real d-dimensional family of non-trivial deformations, $\{g_t | t \in \mathcal{V} \subset \mathbb{R}^d\}$, where $g_t, t \neq 0$, has a compatible Sasaki-Einstein structure but no 3-Sasaki structure.

Idea of proof of theorem.

- We have transversal Kähler metrics ω_t^T , $t \in \mathcal{V}$ with $\omega_t^T \in \frac{\pi}{2m} c_1^b(\mathscr{F}_{\mathcal{E}}^t)$.
- May assume that $\varsigma^* g_t = g_t$ and $\varsigma^* \omega_t^T = -\omega_t^T$.
- We want to solve Ricci $(\omega_t^T + dd_t^c \varphi_t) 4m\pi(\omega_t^T + dd_t^c \varphi_t) = 0.$
- ▶ Differentiating at $(t, \varphi) = (0, 0)$ gives $\phi \mapsto (-\Delta_{\bar{\partial}} + 4m)\dot{\varphi}$, which has kernel and cokernel the (normalized) holomorphy potentials \mathcal{H}_g of holomorphic vector fields on Z.
- One can show that for $f \in \mathcal{H}_g$, $\varsigma^* f = -f$.
- ▶ Restrict the equation to $C^{k,\alpha}(\mathcal{Z})_{sym} = \{f \in C^{k,\alpha}(\mathcal{Z}) | \varsigma^* f = f\}$. Then apply the implicit function theorem.

Corollary 5.4

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with $d = \dim_{\mathbb{C}} H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$. Then g has a real d-dimensional family of non-trivial deformations, $\{g_t | t \in \mathcal{V} \subset \mathbb{R}^d\}$, where $g_t, t \neq 0$, has a compatible Sasaki-Einstein structure but no 3-Sasaki structure.

Idea of proof of theorem.

- We have transversal Kähler metrics ω_t^T , $t \in \mathcal{V}$ with $\omega_t^T \in \frac{\pi}{2m} c_1^b(\mathscr{F}_{\mathcal{E}}^t)$.
- May assume that $\varsigma^* g_t = g_t$ and $\varsigma^* \omega_t^T = -\omega_t^T$.
- We want to solve $\operatorname{Ricci}(\omega_t^T + dd_t^c \varphi_t) 4m\pi(\omega_t^T + dd_t^c \varphi_t) = 0.$
- ▶ Differentiating at $(t, \varphi) = (0, 0)$ gives $\phi \mapsto (-\Delta_{\bar{\partial}} + 4m) \dot{\varphi}$, which has kernel and cokernel the (normalized) holomorphy potentials \mathcal{H}_g of holomorphic vector fields on Z.
- One can show that for $f \in \mathcal{H}_g$, $\varsigma^* f = -f$.
- ▶ Restrict the equation to $C^{k,\alpha}(\mathcal{Z})_{sym} = \{f \in C^{k,\alpha}(\mathcal{Z}) | \varsigma^* f = f\}$. Then apply the implicit function theorem.

Corollary 5.4

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with $d = \dim_{\mathbb{C}} H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$. Then g has a real d-dimensional family of non-trivial deformations, $\{g_t | t \in \mathcal{V} \subset \mathbb{R}^d\}$, where $g_t, t \neq 0$, has a compatible Sasaki-Einstein structure but no 3-Sasaki structure.

Idea of proof of theorem.

- We have transversal Kähler metrics ω_t^T , $t \in \mathcal{V}$ with $\omega_t^T \in \frac{\pi}{2m} c_1^b(\mathscr{F}_{\mathcal{E}}^t)$.
- May assume that $\varsigma^* g_t = g_t$ and $\varsigma^* \omega_t^T = -\omega_t^T$.
- We want to solve Ricci $(\omega_t^T + dd_t^c \varphi_t) 4m\pi(\omega_t^T + dd_t^c \varphi_t) = 0.$
- ▶ Differentiating at $(t, \varphi) = (0, 0)$ gives $\phi \mapsto (-\Delta_{\bar{\partial}} + 4m) \dot{\varphi}$, which has kernel and cokernel the (normalized) holomorphy potentials \mathcal{H}_g of holomorphic vector fields on Z.
- One can show that for $f \in \mathcal{H}_g$, $\varsigma^* f = -f$.
- ▶ Restrict the equation to $C^{k,\alpha}(\mathcal{Z})_{sym} = \{f \in C^{k,\alpha}(\mathcal{Z}) | \varsigma^* f = f\}$. Then apply the implicit function theorem.

Corollary 5.4

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with $d = \dim_{\mathbb{C}} H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$. Then g has a real d-dimensional family of non-trivial deformations, $\{g_t | t \in \mathcal{V} \subset \mathbb{R}^d\}$, where $g_t, t \neq 0$, has a compatible Sasaki-Einstein structure but no 3-Sasaki structure.

Idea of proof of theorem.

- ▶ We have transversal Kähler metrics ω_t^T , $t \in \mathcal{V}$ with $\omega_t^T \in \frac{\pi}{2m} c_1^b(\mathscr{F}_{\mathcal{E}}^t)$.
- May assume that $\varsigma^* g_t = g_t$ and $\varsigma^* \omega_t^T = -\omega_t^T$.
- We want to solve $\operatorname{Ricci}(\omega_t^T + dd_t^c \varphi_t) 4m\pi(\omega_t^T + dd_t^c \varphi_t) = 0.$
- ▶ Differentiating at $(t, \varphi) = (0, 0)$ gives $\phi \mapsto (-\Delta_{\bar{\partial}} + 4m) \dot{\varphi}$, which has kernel and cokernel the (normalized) holomorphy potentials \mathcal{H}_g of holomorphic vector fields on Z.
- One can show that for $f \in \mathcal{H}_g$, $\varsigma^* f = -f$.
- ▶ Restrict the equation to $C^{k,\alpha}(\mathcal{Z})_{sym} = \{f \in C^{k,\alpha}(\mathcal{Z}) | \varsigma^* f = f\}$. Then apply the implicit function theorem.

Corollary 5.4

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with $d = \dim_{\mathbb{C}} H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$. Then g has a real d-dimensional family of non-trivial deformations, $\{g_t | t \in \mathcal{V} \subset \mathbb{R}^d\}$, where $g_t, t \neq 0$, has a compatible Sasaki-Einstein structure but no 3-Sasaki structure.

Idea of proof of theorem.

- ▶ We have transversal Kähler metrics ω_t^T , $t \in \mathcal{V}$ with $\omega_t^T \in \frac{\pi}{2m} c_1^b(\mathscr{F}_{\mathcal{E}}^t)$.
- May assume that $\varsigma^* g_t = g_t$ and $\varsigma^* \omega_t^T = -\omega_t^T$.
- We want to solve $\operatorname{Ricci}(\omega_t^T + dd_t^c \varphi_t) 4m\pi(\omega_t^T + dd_t^c \varphi_t) = 0.$
- ▶ Differentiating at $(t, \varphi) = (0, 0)$ gives $\phi \mapsto (-\Delta_{\bar{\partial}} + 4m)\dot{\varphi}$, which has kernel and cokernel the (normalized) holomorphy potentials \mathcal{H}_g of holomorphic vector fields on Z.
- One can show that for $f \in \mathcal{H}_g$, $\varsigma^* f = -f$.
- ▶ Restrict the equation to $C^{k,\alpha}(\mathcal{Z})_{sym} = \{f \in C^{k,\alpha}(\mathcal{Z}) | \varsigma^* f = f\}$. Then apply the implicit function theorem.
Integrable deformations: 3-Sasaki

Corollary 5.4

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with $d = \dim_{\mathbb{C}} H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$. Then g has a real d-dimensional family of non-trivial deformations, $\{g_t | t \in \mathcal{V} \subset \mathbb{R}^d\}$, where $g_t, t \neq 0$, has a compatible Sasaki-Einstein structure but no 3-Sasaki structure.

Idea of proof of theorem.

- ▶ We have transversal Kähler metrics ω_t^T , $t \in \mathcal{V}$ with $\omega_t^T \in \frac{\pi}{2m} c_1^b(\mathscr{F}_{\xi}^t)$.
- May assume that $\varsigma^* g_t = g_t$ and $\varsigma^* \omega_t^T = -\omega_t^T$.
- We want to solve Ricci $(\omega_t^T + dd_t^c \varphi_t) 4m\pi(\omega_t^T + dd_t^c \varphi_t) = 0.$
- Differentiating at (t, φ) = (0,0) gives φ→ (-Δ_∂ + 4m)φ, which has kernel and cokernel the (normalized) holomorphy potentials H_g of holomorphic vector fields on Z.
- One can show that for $f \in \mathcal{H}_g$, $\varsigma^* f = -f$.
- ▶ Restrict the equation to $C^{k,\alpha}(\mathcal{Z})_{sym} = \{f \in C^{k,\alpha}(\mathcal{Z}) | \varsigma^* f = f\}$. Then apply the implicit function theorem.

Integrable deformations: 3-Sasaki

Corollary 5.4

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with $d = \dim_{\mathbb{C}} H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$. Then g has a real d-dimensional family of non-trivial deformations, $\{g_t | t \in \mathcal{V} \subset \mathbb{R}^d\}$, where g_t , $t \neq 0$, has a compatible Sasaki-Einstein structure but no 3-Sasaki structure.

Idea of proof of theorem.

- ▶ We have transversal Kähler metrics ω_t^T , $t \in \mathcal{V}$ with $\omega_t^T \in \frac{\pi}{2m} c_1^b(\mathscr{F}_{\xi}^t)$.
- May assume that $\varsigma^* g_t = g_t$ and $\varsigma^* \omega_t^T = -\omega_t^T$.
- We want to solve Ricci $(\omega_t^T + dd_t^c \varphi_t) 4m\pi(\omega_t^T + dd_t^c \varphi_t) = 0.$
- Differentiating at (t, φ) = (0, 0) gives φ → (-Δ_∂ + 4m)φ, which has kernel and cokernel the (normalized) holomorphy potentials H_g of holomorphic vector fields on Z.
- One can show that for $f \in \mathcal{H}_g$, $\varsigma^* f = -f$.
- ▶ Restrict the equation to $C^{k,\alpha}(\mathcal{Z})_{sym} = \{f \in C^{k,\alpha}(\mathcal{Z}) | \varsigma^* f = f\}$. Then apply the implicit function theorem.

Integrable deformations: 3-Sasaki

Corollary 5.4

Let (M, g), dim M = 4m - 1, be a 3-Sasaki manifold with $d = \dim_{\mathbb{C}} H^1_{\overline{\partial}_b}(\mathcal{A}^{0,\bullet})$. Then g has a real d-dimensional family of non-trivial deformations, $\{g_t | t \in \mathcal{V} \subset \mathbb{R}^d\}$, where g_t , $t \neq 0$, has a compatible Sasaki-Einstein structure but no 3-Sasaki structure.

Idea of proof of theorem.

- ▶ We have transversal Kähler metrics ω_t^T , $t \in \mathcal{V}$ with $\omega_t^T \in \frac{\pi}{2m} c_1^b(\mathscr{F}_{\xi}^t)$.
- May assume that $\varsigma^* g_t = g_t$ and $\varsigma^* \omega_t^T = -\omega_t^T$.
- We want to solve Ricci $(\omega_t^T + dd_t^c \varphi_t) 4m\pi(\omega_t^T + dd_t^c \varphi_t) = 0.$
- Differentiating at (t, φ) = (0, 0) gives φ → (-Δ_∂ + 4m)φ, which has kernel and cokernel the (normalized) holomorphy potentials H_g of holomorphic vector fields on Z.
- One can show that for $f \in \mathcal{H}_g$, $\varsigma^* f = -f$.
- ▶ Restrict the equation to $C^{k,\alpha}(\mathcal{Z})_{sym} = \{f \in C^{k,\alpha}(\mathcal{Z}) | \varsigma^* f = f\}$. Then apply the implicit function theorem.

A 3-Sasaki manifold (M, g), dim M = 4m - 1, is toric if there is a $T^m \subseteq Aut(M, g, \xi_1, \xi_2, \xi_3)$.

- Toric 3-Sasaki manifolds have been constructed from 3-Sasaki quotients by torus actions on S⁴ⁿ⁻¹, with the 3-Sasaki structure given by right multiplication by Sp(1).
- A result of R. Bielawski, 1999, is that this gives all of them.
- A subtorus T^k ⊂ Tⁿ is determined by a weight matrix Ω_{k,n} ∈ Mat(k, n, Z). There are conditions on Ω (due to C. Boyer, K. Galicki, B. Mann, E. Rees, 1998) that imply the moment map µ : S⁴ⁿ⁻¹ → (t^k)* ⊗ ℝ³ is a submersion, and further that the quotient

$$M_{\Omega_{k,n}} = S^{4n-1} / T^k = \mu^{-1}(0) / T^k$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

is smooth

When n = k + 2 the above authors showed there are infinitely many weight matrices in Mat(k, n, Z) for k ≥ 1 giving infinitely many 7-manifolds M_{Ωk}, for each b₂ = k ≥ 1.

A 3-Sasaki manifold (M, g), dim M = 4m - 1, is toric if there is a $T^m \subseteq Aut(M, g, \xi_1, \xi_2, \xi_3)$.

- Toric 3-Sasaki manifolds have been constructed from 3-Sasaki quotients by torus actions on S⁴ⁿ⁻¹, with the 3-Sasaki structure given by right multiplication by Sp(1).
- A result of R. Bielawski, 1999, is that this gives all of them.
- A subtorus T^k ⊂ Tⁿ is determined by a weight matrix Ω_{k,n} ∈ Mat(k, n, Z). There are conditions on Ω (due to C. Boyer, K. Galicki, B. Mann, E. Rees, 1998) that imply the moment map µ : S⁴ⁿ⁻¹ → (t^k)^{*} ⊗ R³ is a submersion, and further that the quotient

$$M_{\Omega_{k,n}} = S^{4n-1} / T^k = \mu^{-1}(0) / T^k$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

is smooth

When n = k + 2 the above authors showed there are infinitely many weight matrices in Mat(k, n, Z) for k ≥ 1 giving infinitely many 7-manifolds M_{Ωk}, for each b₂ = k ≥ 1.

A 3-Sasaki manifold (M, g), dim M = 4m - 1, is toric if there is a $T^m \subseteq Aut(M, g, \xi_1, \xi_2, \xi_3)$.

- Toric 3-Sasaki manifolds have been constructed from 3-Sasaki quotients by torus actions on S⁴ⁿ⁻¹, with the 3-Sasaki structure given by right multiplication by Sp(1).
- A result of R. Bielawski, 1999, is that this gives all of them.
- A subtorus T^k ⊂ Tⁿ is determined by a weight matrix Ω_{k,n} ∈ Mat(k, n, Z). There are conditions on Ω (due to C. Boyer, K. Galicki, B. Mann, E. Rees, 1998) that imply the moment map µ : S⁴ⁿ⁻¹ → (t^k)* ⊗ ℝ³ is a submersion, and further that the quotient

$$M_{\Omega_{k,n}} = S^{4n-1} / T^k = \mu^{-1}(0) / T^k$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

is smooth

When n = k + 2 the above authors showed there are infinitely many weight matrices in Mat(k, n, Z) for k ≥ 1 giving infinitely many 7-manifolds M_{Ωk,n} for each b₂ = k ≥ 1.

A 3-Sasaki manifold (M, g), dim M = 4m - 1, is toric if there is a $T^m \subseteq Aut(M, g, \xi_1, \xi_2, \xi_3)$.

- Toric 3-Sasaki manifolds have been constructed from 3-Sasaki quotients by torus actions on S⁴ⁿ⁻¹, with the 3-Sasaki structure given by right multiplication by Sp(1).
- A result of R. Bielawski, 1999, is that this gives all of them.
- A subtorus T^k ⊂ Tⁿ is determined by a weight matrix Ω_{k,n} ∈ Mat(k, n, Z). There are conditions on Ω (due to C. Boyer, K. Galicki, B. Mann, E. Rees, 1998) that imply the moment map μ : S⁴ⁿ⁻¹ → (t^k)* ⊗ ℝ³ is a submersion, and further that the quotient

$$M_{\Omega_{k,n}} = S^{4n-1} / T^k = \mu^{-1}(0) / T^k$$

is smooth.

When n = k + 2 the above authors showed there are infinitely many weight matrices in Mat(k, n, Z) for k ≥ 1 giving infinitely many 7-manifolds M_{Ωk n} for each b₂ = k ≥ 1.

A 3-Sasaki manifold (M, g), dim M = 4m - 1, is toric if there is a $T^m \subseteq Aut(M, g, \xi_1, \xi_2, \xi_3)$.

- Toric 3-Sasaki manifolds have been constructed from 3-Sasaki quotients by torus actions on S⁴ⁿ⁻¹, with the 3-Sasaki structure given by right multiplication by Sp(1).
- A result of R. Bielawski, 1999, is that this gives all of them.
- A subtorus T^k ⊂ Tⁿ is determined by a weight matrix Ω_{k,n} ∈ Mat(k, n, Z). There are conditions on Ω (due to C. Boyer, K. Galicki, B. Mann, E. Rees, 1998) that imply the moment map μ : S⁴ⁿ⁻¹ → (t^k)* ⊗ ℝ³ is a submersion, and further that the quotient

$$M_{\Omega_{k,n}} = S^{4n-1} / T^k = \mu^{-1}(0) / T^k$$

is smooth.

When n = k + 2 the above authors showed there are infinitely many weight matrices in Mat(k, n, Z) for k ≥ 1 giving infinitely many 7-manifolds M_{Ωk}, for each b₂ = k ≥ 1.

We assume now that $\dim M = 7$.

If $b_2(M) \ge 1$, then the maximal torus of *Sasaki* automorphisms, $T^3 \subset Aut(M, \xi_1)$, is 3-dimensional.

Lemma 6.1 (van Coevering, arXiv:math.DG/0607721)

If \mathcal{Z} is the twistor space of a toric 3-Sasaki 7-manifold M, then $H^1(\mathcal{Z}, \Theta_{\mathcal{Z}}) = H^1(\mathcal{Z}, \Theta_{\mathcal{Z}})^{T^2}$,

 $\dim_{\mathbb{C}} H^1(\mathcal{Z}, \Theta_{\mathcal{Z}}) = b_2(M) - 1 = k - 1.$

And Z has a local $b_2(M) - 1$ -dimensional space of deformations.

Theorem 6.2

Let (M, g) be a toric 3-Sasaki 7-manifold. Then g is in an effective complex $b_2(M) - 1$ -dimensional family $\{g_t\}_{t \in \mathcal{U}}, \mathcal{U} \subset \mathbb{C}^{b_2(M)-1}$ with $g_0 = g$, of Sasaki-Einstein metrics where g_t is not 3-Sasaki for $t \neq 0$.

One applies Theorem 5.1; $H^1(\mathcal{Z}, \Theta_{\mathcal{Z}})^{T^2} = H^1_{\overline{\partial}_h}(\mathcal{A}^{0, \bullet})^{T^3}$, where T^2 is a maximal torus.

We assume now that $\dim M = 7$.

If $b_2(M) \ge 1$, then the maximal torus of *Sasaki* automorphisms, $T^3 \subset Aut(M, \xi_1)$, is 3-dimensional.

Lemma 6.1 (van Coevering, arXiv:math.DG/0607721) If \mathcal{Z} is the twistor space of a toric 3-Sasaki 7-manifold M, then $H^1(\mathcal{Z}, \Theta_{\mathcal{Z}}) = H^1(\mathcal{Z}, \Theta_{\mathcal{Z}})^{T^2}$,

$$\dim_{\mathbb{C}} H^1(\mathcal{Z}, \Theta_{\mathcal{Z}}) = b_2(M) - 1 = k - 1.$$

And \mathcal{Z} has a local $b_2(M) - 1$ -dimensional space of deformations.

Theorem 6.2

Let (M, g) be a toric 3-Sasaki 7-manifold. Then g is in an effective complex $b_2(M) - 1$ -dimensional family $\{g_t\}_{t \in \mathcal{U}}, \mathcal{U} \subset \mathbb{C}^{b_2(M)-1}$ with $g_0 = g$, of Sasaki-Einstein metrics where g_t is not 3-Sasaki for $t \neq 0$.

One applies Theorem 5.1; $H^1(\mathcal{Z}, \Theta_{\mathcal{Z}})^{T^2} = H^1_{\overline{\partial}_h}(\mathcal{A}^{0,\bullet})^{T^3}$, where T^2 is a maximal torus.

We assume now that $\dim M = 7$.

If $b_2(M) \ge 1$, then the maximal torus of *Sasaki* automorphisms, $T^3 \subset Aut(M, \xi_1)$, is 3-dimensional.

Lemma 6.1 (van Coevering, arXiv:math.DG/0607721) If \mathcal{Z} is the twistor space of a toric 3-Sasaki 7-manifold M, then $H^1(\mathcal{Z}, \Theta_{\mathcal{Z}}) = H^1(\mathcal{Z}, \Theta_{\mathcal{Z}})^{T^2}$,

$$\dim_{\mathbb{C}} H^1(\mathcal{Z}, \Theta_{\mathcal{Z}}) = b_2(M) - 1 = k - 1.$$

And \mathcal{Z} has a local $b_2(M) - 1$ -dimensional space of deformations.

Theorem 6.2

Let (M, g) be a toric 3-Sasaki 7-manifold. Then g is in an effective complex $b_2(M) - 1$ -dimensional family $\{g_t\}_{t \in \mathcal{U}}, \mathcal{U} \subset \mathbb{C}^{b_2(M)-1}$ with $g_0 = g$, of Sasaki-Einstein metrics where g_t is not 3-Sasaki for $t \neq 0$.

One applies Theorem 5.1; $H^1(\mathcal{Z}, \Theta_{\mathcal{Z}})^{T^2} = H^1_{\overline{\partial}_h}(\mathcal{A}^{0, \bullet})^{T^3}$, where T^2 is a maximal torus.

Thus unlike the case of parallel spinors (c = 0) the dimension of the space of Killing spinors is not locally stable in general. See figure 1 for the isometry groups of the metrics.

Figure: Space of Sasaki-Einstein metrics

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで