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Let (M, g) be spin with spin bundI&.

» We will consider variations of th&illing Spinor equation

Vxip =cX- 1, QZJGF(E),CGR\{O}, (1)

» In particular, we will consider variations ddasaki-Einsteimnd3-Sasaki manifolds
where (1) has a 2 antt + 1 (dimM = 4m — 1) space of solutions respectively.

» In this case the Reeb vector figjdyenerates a transversally holomorphic, and Kahler,
foliation .#¢. The holomorphic structure off¢ has a versal deformation space, with
tangent space

HE (A®), whereA® = T(AP¥ © Tp)

and - -

0 A0 % g01%
is thebasicDolbeault complex with values in the transverse holomarpéugent bundle
T;"O to ,9‘5 .
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» An harmonic representativé of [3] € H(};b(on') lifts to aninfinitesimal Einstein
deformation K of (M, g).

» If (M, g) is Sasaki-Einstein, then® preserves the 2 Killing spinorsy, o1 to 1st order, i.e.
(1) is preserved under the infinitesimal deformation of isth?.

» If (M, g) is 3-Sasaki, dinM = 4m — 1, then of then + 1 Killing spinorsoy, . . ., om the
2 determined by the Sasaki structdrerg, om are preserved by®, while o1, . . ., om_1
never are.

» If (M, g) is Sasaki-Einstein, then clearly not bff integrate to Sasaki-Einstein
deformations.

But by considering the deformation theorytadnsversally extremal metranalogous to the
Kahler case (due t¥. Rollin, S. Simanca, C. Tipler 20}@ve get:

Theorem 1.1
If T C Aut(M, g, ¢) is a maximal torus, then a neighborhood of z&ta™ H%b(.Ao”)T

parametrizes a family of Sasaki-Einstein metricegM with g = g.
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» If (M, g) is 3-Sasaki, then there is a diffeomorphismM — M which an
anti-holomorphic automorphism ofi;. ThusH(};b(AO") has a real structure.

Theorem 1.2
A neighborhood of zery C ReHéljh (A%*) parametrizes a family of Sasaki-Einstein metrigs g
with gy = g.
Theorem 1.2 has the following consequences:
» It is well known that 3-Sasaki structures are rigitl Pedersen and Y. S. Poon 1999

Thus there is a neighborhodd of 0 € V so thatg, t € A"\ {0} does not admit a
3-Sasaki structure.

» In other words if dimV = 4m — 1, theng = go admitsm+ 1 Killing spinors while
o, t € N\ {0} has 2.

» We give examples where this happens. We apply Theorems d.1.2aro toric 3-Sasaki
7-manifolds. Toric means it admitsT& group of automorphisms.
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Theorem 1.3
Let (M, g) be a toric 3-Sasaki 7-manifold. Theiimc Héljb(AO”) = bp(M) — 1and there is a
neighborhood/ C Héljh (A%*) = CP2—1 of 0 parametrizing Sasaki-Einstein metrics such that
o, t € U \ {0}, are not 3-Sasaki.
» Therefore, a toric 3-Sasaki 7-manifal¥l, g) with b,(M) > 1 has Einstein deformations
to metricsge which are Sasaki-Einstein but not 3-Sasaki.

» They give examples of manifolds with a metric with 3 Killingisors with deformations to
metrics admitting only 2. So there is no analogue of the falthg theorem oM. Wangfor
Killing spinors.

Equation (1) withc = 0 is just the equation for a parallel spinor.

Theorem 1.4 (M. Y. Wang, 1991)

Let (M, g) is a compact simply connected spin manifold with irredwectblonomy admitting a
nonzero parallel spinor. Then there is a neighborhaddétof g in the Einstein moduli space such
that eachg € W admits the same number of independent parallel spinors.
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Killing spinors

Let (M, g) a Riemannian manifold with a spin structure and spin buitlle

Definition 2.1
A Killing spinor is a nonzero sectiopt € I'(X) which satisfies

wa =cX- 711,

where c is a constant and % is Clifford multiplication.

Note thatc can be rescaled by rescaliggso we denote by, (resp.N/_) the C-dimension of
the space of Killing spinors with > 0 (resp.c < 0).

Existence of a Killing spinot) € I'(3) has the following consequencek Friedrich 1980
» (M, g) is an Einstein manifold with Ric= 4(n — 1)c?g.
» Socis either 0, in which case is parallel;c is imaginary, in which cas® is
noncompact; oc is real, in which cas# is compact and irreducible.
» We will consider only the casec R \ {0}, and for convenience = j:%.
» 1) is an eigenspinor of lowest eigenvalddor the Dirac operatob : I'(X) — I'(2) in
the following sense.

If (M, g) is compact with scalar curvatuge> s > 0, then\? > %nTnlSO- And we have

equality if and only if the eigenspinor is a Killing spinor.
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Simply connected manifolds admitting a non-zero Killingnep were classified b. Bar,

1992
[ dmM [ NT [ N~ [ Hol(C(M)) [ geometry |

n 221 | 2lz] Id n-sphere

dm—1 2 0 SuU(2m) Sasaki-Einstein

dm+1 1 1 SU(2m+ 1) | Sasaki-Einstein

dm—1 | m+l 0 Sp(m) 3-Sasaki
6 1 1 Gy nearly Kahler
7 1 0 Spin(7) weak G

> The connectioVxy = Vi) — X1, ¢ = 31, on¥(M), naturally identifies with with
that induced by the Levi-Civita connection &{C(M)) (or 4 (C(M)) when dimM is
odd).

» Thus the classification is according to the holonomy of thee¢€(M), g) where

CM) =Ry xM, g=dr®+r?g.
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Definition 2.2

A Riemannian manifol@M, g) is Sasakif the metric con§C(M), g), C(M) := R4 x M and
g = dr? + r?g, is K&hler, i.e.g admits a compatible almost complex structure J so that
(C(M), g,J) is a Kahler structure. Equivalentlyiol(C(M), g) C U(m).

Thus is a particular metric contact structure. We have
» a contact structurg with Reeb vector field = Jror, a Killing field, and
» a strictly pseudoconvex CR structui@, ), D = kern.
» | induces a transversely holomorphic structurean with Kahler formwT = %dn.
» The tensor = V¢, with ¢|p = | andé(€) = 0 defines the CR structure.
We say that the Sasaki structure is
» quasi-regularif the orbits of¢ are closed (orbit space is an orbifold),
» irregular if not all the orbits of¢ close.

In the second case we must work on the transversal spaée @ince the leaf space in not
even Hausdorff. But one can work locally on the Kahler leafcsd.7, , gr,lwh.
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Sasaki-Einstein manifolds

Suppos€M, g) is Sasaki dintM = n = 2m — 1. We are interested iBasaki-Einsteirstructures

The Sasaki condition forces the Einstein constant to bel.
» This is equivalent t¢C(M), g) being Ricci-flat as

Ricg = Ricg —(n— 1)g. ?3)

» Also, the Ricci curvatures af andg' satisfy i = 2m — 1)

Ricg = Ricyr —2mg, 4)

» From (3) and (4)
Ricg(X,Y) = RicgT —2g", for basic vector fieldX, Y € I'(D), (5)
» so the Sasaki-Einstein condition is equivalent to the trersal space being

Kéahler-Einstein
Ricgr = 2mg'. (6)



transversally holomorphic foliation

(Cm

A transversely holomorphic structum a foliation.7 is given by{(Ua, ¢a)}ac.4 Where
{Ua }ae.a coversM

> {Ua}aea coversM,
» theypq : Uo — CM~1 has fibers the leaves o, locally onU.,
» there are holomorphic isomorphisgn s : wg(Ua NUg) = wa(Ua N Ug) such that

Ya =0agows ONUy NUg.



deformations of the foliation

There is aversal deformation spade of transversely holomorphic structures 6 fixing it as
a smooth foliation A. El Kacimi Alaoui, M. Nicolau '89; Girbau 1998



deformations of the foliation

There is aversal deformation spade of transversely holomorphic structures 6 fixing it as
a smooth foliation A. El Kacimi Alaoui, M. Nicolau '89; Girbau 1998

V is the germ 0P —1(0) wheref is an analytic map

H, (A%) 5 H2 (A%*).



deformations of the foliation
There is aversal deformation spade of transversely holomorphic structures 6 fixing it as
a smooth foliation A. El Kacimi Alaoui, M. Nicolau '89; Girbau 1998
V is the germ 0P —1(0) wheref is an analytic map
0
Ha, (A%%) = H2 (A%*).

We have:

»
Hgb(A"") = Hg‘b—'j(r(Ag" @ A1) =0,

by Kodaira-Nakano vanishing, sine‘é”_l’o <Oand(m—3)+1=m—-2<m-—1.



deformations of the foliation
There is aversal deformation spade of transversely holomorphic structures 6 fixing it as
a smooth foliation A. El Kacimi Alaoui, M. Nicolau '89; Girbau 1998
V is the germ 0P —1(0) wheref is an analytic map
0
Ha, (A%%) = H2 (A%*).

We have:

»
Hgb(A"") = Hgb—'a‘(r(Ag" @ A1) =0,

by Kodaira-Nakano vanishing, sin¢eﬂ1_l’0 <Oand(m—3)+1=m—-2<m-—1.

» ThusV is smooth. And after shrinkiny we may assumeX( El Kacimi Alaoui, B. Gimira
1997 that fort € V 7 admits a transversal Kahler structuie g{ , v ).



deformations of the foliation

There is aversal deformation spade of transversely holomorphic structures 6 fixing it as
a smooth foliation A. El Kacimi Alaoui, M. Nicolau '89; Girbau 1998

V is the germ 0P —1(0) wheref is an analytic map
0
Ha, (A%%) = H2 (A%*).

We have:

[
H, (A>®) = HE2(M(A5* @ Ap %) =0,

by Kodaira-Nakano vanishing, sin¢eﬂ1_l’0 <Oand(m—3)+1=m—-2<m-—1.

» ThusV is smooth. And after shrinkiny we may assumeX( El Kacimi Alaoui, B. Gimira
1997 that fort € V 7 admits a transversal Kahler structuie g{ , v ).

» The Kahler structure can be chosen so that it lifts to a Sasaldture(gt, £, nt) with
transversal holomorphic structukeand %dm = w{. From (6), up to homothety, we will
have m

T b( g
;[Wt 1= Cl(yé),

but it will not necessarily be Sasaki-Einstein.
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Recall that a hyperké&hler structure onra-dimensional manifold consists of a metgavhich

is Kahler with respect to three complex structudgsl,, Jz satisfying the quaternionic relations
J1Jy = —JJ; = Jz etc.

Definition 2.3

A Riemannian manifol@M, g) is 3-Sasakif the metric condC(M), g) is hyperkahler, i.eg

admits a compatible almost complex structurgs & = 1, 2, 3 such that(C(M), 9, J1, J2, J3)
is a hyperkahler structure. Equivalentlol(C(M)) C Sp(m).

A consequence of the definition is tHiM, g) is equipped with three Sasaki structures
(&, mi, i), i =1,2,3. The Reeb vector fieldg, k = 1, 2, 3 are orthogonal and satisfy
[&, &) = 2e%g, wheresT is anti-symmetric in the indicesj, k € {1,2, 3} ande!?® = 1.
The tensorspi, i = 1, 2, 3 satisfy the identities

i(§) = —e™e ™
diody = —djld—*py + 1 @& (8)
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3-Sasaki manifolds

The Reeb vector field§, k = 1, 2, 3 generate an action of §p or SQ(3).
A 3-Sasaki manifoldl comes with a family of related geometries. The maps aredabelth
their generic fibers.

VN

» Z, thetwistor spaceis the orbifold leaf space?;, with a complex contact structure
6 € QYL).

» M is aquaternionic-Ké&hlerorbifold.

» TheLeBrun-Salamon conjectugroposes that1 is smooth only if it is symmetric.
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Let P be the bundle of oriented orthonormal frames(vh g). A spin structure is a double
coverP. Given a symmetric, w.r.g, automorphismx : TM — TM we have a new metric
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We will need the machinery due $oP. Bourguignon and P. Gauduchon 18&ldescribing
spinors under metric variations.

Let P be the bundle of oriented orthonormal frames(bh g). A spin structure is a double
coverP. Given a symmetric, w.r.ig, automorphismx : TM — TM we have a new metric

g*(X,Y) = gla™ X, a"1v).

If P~ is the bundle of*-orthonormal oriented frames,: P — P% is SQ(n)-equivariant, and
gives an isomorphism

Y= |5 XSpin(n) An i1) ¥ = |50é XSpin(n) An.

Let a(t) be a smooth path of symmetric automorphisms witf) = Idtv, andé Killing
spinors forg®,
V;(t)ﬁt = cX -t Gt.
Setot = a(t)~1(6t), then in terms of the original spin bundle
VYo = ca(t)1(X) - o, ©

whereVg® = a(t)=1 o VEW o a(t).
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Killing spinor deformations

A deformation of the Killing spinoey is a path(«a(t), ot) satisfying

La(t), or)(X) := VeWor — ca(t) LX) - oy = 0. (10)

We will make use of
» Twisted Dirac operator:

D: F(Z ®TMc) e F(Z 24 TM((;)

» And the spinor valued 1-forn# (5:9) with w(6.9)(X) = B(X)a, for  : TM — TM.
Differentiating (10) atldtm, oo):

Proposition 3.1 (M. Wang 1991)
dLe(&, 5)(X) = Vox — cX& + ca(X)ao — % D a(Vie)(X)oo + %g(aa, X)oo.

If trg(t) = d& = 0, then dZ¢(¢&, ¢) = Oif and only if Vxo = cXo and
D (4:00) = new(d;o0)
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Killing spinor deformations

For : TM — TM g-symmetric, defind (X, Y) = —2g9(8(X),Y)
Proposition 3.2 (M. Wang 1991)

If trg 8 = 68 = 0and DY (5:90) = ncw(#:90) then(V*V + 2L)h = O where
(Lh)ij = Rikjlhkp

Soh € I'(S? T*M) is aninfinitesimal Einstein deformation

Definition 3.3 (M. Wang 1991)
An infinitesimal deformation of the Killing spiner is a pair (8, o) satisfying:
(i) o is aKilling spinor with constant c,
(i) trgB8=98=0,
(i) DWB90) = ncw(F:o0),
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We will make use of some results Nt Koiso 1983on the Einstein deformations of a
Kahler-Einstein metric.

Recall the transverse metg¢ on F¢ is Kahler-Einstein,

Ricgr = 2mg'.

An harmonicrepresentatives € H(};b(Ao") satisfies
OB =0, andd; B = 0. (11)

Sincecg(ﬁig) > 0, there are no non-zero harmonic sectionﬁgn2 S0
h? (X,Y) = —29(B8(X), Y) is symmetric and of typ€0, 2).

Remark 4.1. By abuse of n0tatioh$ will also denote the real component of the previous
object. quf is a real anti-Hermitian symmetric tensor.
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Proposition 4.2 (N. Koiso 1983)

The space& is infinitesimal Einstein deformations of g.e.
ETi={heD(STyM)[trgh=55h=0, ((V)*V' +2LT)h=0},
splits into Hermitian and anti-Hermitian components

T =glasl.

An anti-Hermitian he T'(S* T M) is an element of}} if and only if

Vihg, — Vihay =0 (12)
(V1)*hap =0 13)

Therefore, we have an isomorphism.lAéb (A%) = &7
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Infinitesimal Killing spinor deformations on Sasaki-Eigist manifolds

The next result follows from computations using the O’Ntethsor. Recall that the local
projection onto the leaf space &f; is a Riemannian submersion.

Lemma 4.3

Let (M, g) be a Sasaki-Einstein manifold. Suppo§ee11“(82 Ty M) is an anti-Hermitian
infinitesimal Einstein deformation of gThen h= 7*h' is an infinitesimal Einstein
deformation of g.

Proposition 4.4

Let (M, g) be a spin Sasaki-Einstein manifold admitting the 2 definiilin spinors

oj,j=0,L1fg e ’I—LlAé (A%*) and h? the corresponding basic anti-Hermitian symmetric
b

tensor, then A := w*hf is an infinitesimal Einstein deformation of g, afi?, 0) is an
infinitesimal deformation of the Killing spinotg for j = 0, 1.
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Infinitesimal Killing spinor deformations on Sasaki-Eigist manifolds

Some remarks on the proof

» Since tg(h%) = dgh? = 0, Proposition 3.1 is satisfied if

> a(Vih)(X)oi = 2ch(X)oi, forall X € TM, i =1,2. (14)

» Using the O’Neill tensor one puts (14) in form

2m—2

> & (Vih) (X)aj — ¢h(X)éa; = 2ch(X)oi. (15)

i=1

» Then in an Hermitian frame use the identities (12) (13) tastie first term is zero.
» The remaining terms are equal by the definition of Cliffordltiplication.
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Proposition 4.5
Let(M,g), dimM = 4m— 1, be a 3-Sasaki manifold with Killing spinoes, j =0, ..., m. If
Be ?—llAé (A%*) is non-zero and@ the corresponding basic anti-Hermitian symmetric

b

tensor, then A := w*hf is an infinitesimal Einstein deformation of g, afftf, 0) is an
infinitesimal deformation of the Killing spinoes for j = 0, m, but never forj=1,...,m— 1.

» Take a local quaternionic frame
(1, €, ..., em) = (f1, hif1, Jof1, Jaf1, o, . . ., fm, Jufm, Jofm, Jafm),

whereey, . . ., esm—4 are orthogonal tg;, i = 1,2, 3 andfm = &2, J1fm = &3, Jofm = O,
andJsfm = —¢&;.

» Then we have an Hermitian, w.r.};, frame
o= H(@0n-1-V-1&a), a=1....2m

» The spinor bundle ofM, g) is & = A®TLOC(M)|w = A®Span.{eala=1,...,2m}.
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Infinitesimal Killing spinor deformations on 3-Sasaki nfafds

» We have the “symplectic form”

m

w = Z €201/ €2a- (16)

a=1

» And the Killing spinors on(M, g) arecx = %wk, k=0,...,m.

» If0 e Q%’O(L) is the complex contact form, then one can show that
0,1 . . .
Y5 = hgen, € Qp~(L) is harmonic and thus zero, S|nb%b(F(A°"(L))) =0.
» Thush(X) L Spar{¢1, &2, &3}
The rest is involves computing as in the last proposition.
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Integrable deformations: Sasaki-Einstein

We consider cases in which the above infinitesimal Killinghepdeformations integrate.
» The infinitesimal Killing spinor deformatioris® for 8 € ?—llAé (A%®) of a
b
Sasaki-Einstein metrigM, g) do not necessarily integrate.

» Note that this problem includes that of deforming Kahlendfin metrics.
WhenM is regular the leaf spacgis a Kéhler-Einstein manifold.

» We saw thatZ; has a smooth Kuranishi spageC H(l%(AO"). But 3“%, teV\ {0}
may not admit a transversal Kahler-Einstein metric.
LetT C Aut(M, g, &, ) be a maximal torus of the automorphism group of the Sasakitsire.

Theorem 5.1 (van Coevering, arXiv:1204.1630)

If 8 e ?—llAé (A%*)T, then I integrates to a deformation of Sasaki-Einstein structures
b

(gt7 It, gt)

More generally, let be the Lie algebra of T. Then there is a neighborhood/o6f
(0,¢) € V x t, so that for(t, ¢) € N there is a Sasaki-Extremal metrig; ¢, It, ¢).
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Integrable deformations: Sasaki-Einstein

A Sasaki-Extrematnetric is a critical point of the Calabi functional.

S(&,1) := {Sasaki structures with Reeb figgdand trans. holmorphic str}
M(E, 1) := {metrics associated to structuresdg, 1)}
The Calabi functionalC is
me, ) S R 17)
—

g Jw S5 dug

Theorem 5.1 is a special case of results on deforming S&sdfemal metrics.

Proof uses implicit function theorem on theduced scalar curvature

If the deformation does not preserve a maximal torus, thelitiad assumption is needed:
Non-degeneracy of the relative Futaki invariant.

Y. Rollin, S. Simanca, and C. Tipler, 20gave similar result in the K&hler case .

v

v

v

v
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Theorem 5.2

Let(M,g), dimM = 4m — 1, be a 3-Sasaki manifold with Killing spinoes, j = 0,...,m.

Then any Einstein deformatigiM, g;) of g with compatible 3-Sasaki structures, i.e. preserving
the existence of thegj, j = 0,..., m, is trivial. That is, there exists a familydf

diffeomorphisms of M withfg; = g.
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Integrable deformations: 3-Sasaki

It is well known that 3-Sasaki structures are rigitl Pedersen and Y. S. Poon 1999

Theorem 5.2

Let(M,g), dimM = 4m — 1, be a 3-Sasaki manifold with Killing spinoes, j = 0,...,m.

Then any Einstein deformatigiM, g;) of g with compatible 3-Sasaki structures, i.e. preserving
the existence of thegj, j = 0,..., m, is trivial. That is, there exists a familydf

diffeomorphisms of M withfg; = g.

The leaf space of#, is a complex orbifoldZ, thetwistor space So there is an

anti-holomorphic involutior : Z — Z. So

> Héb(Ao’.) = H(Z,0z), where© 3 is the orbifold sheaf of holomorphic vector fields.

» We have a real structure: Héljb(Ao") — Héljh (A%*)

Theorem 5.3
Let(M,g), dimM = 4m— 1, be a 3-Sasaki manifold, and denotedgy j = 0, ..., m the
Killing spinors associated to the 3-Sasaki structure. Ttheninfinitesimal Einstein
deformations A of g for 3 € Re?—ilAé (A%*) integrate to a family

b

g, te N C RY, d =dime H(};b(AQ‘) of Einstein deformations of g preserving only and
Om-
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Corollary 5.4
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Corollary 5.4
Let(M,g), dmM = 4m — 1, be a 3-Sasaki manifold with ¢ dim¢c Héljh (A%®). Then g has a

real d-dimensional family of non-trivial deformationy|t € V € R%}, where g, t # 0, has a
compatible Sasaki-Einstein structure but no 3-Sasaktcsire.

Idea of proof of theorem

> We have transversal Kahler metrio§, t € V with w € Zo.c2(7}).
» May assume that*gr = gr ands*w{ = —uwy.
» We want to solve Ric€iv] + ddfer) — 4mm(wf + ddfer) = 0.

» Differentiating at(t, ¢) = (0, 0) gives¢ +— (—Az 4 4m)¢, which has kernel and
cokernel the (normalized) holomorphy potentiddg of holomorphic vector fields oB.
» One can show that fdr € Hg, ¢*f = —f.

» Restrict the equation 6% (2)sym = {f € C%*(2Z)|s*f = f}. Then apply the implicit
function theorem.
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A 3-Sasaki manifoldM, g), dimM = 4m— 1, is toric if there is aT™ C Aut(M, g, £1, €2, &3).
» Toric 3-Sasaki manifolds have been constructed from 3¥$gs@tients by torus actions
on S"-1, with the 3-Sasaki structure given by right multiplicatiop Sp(1).
» Aresult ofR. Bielawski, 1999is that this gives all of them.

» A subtorusTk C T"is determined by a weight matriy , € Mat(k, n, Z). There are
conditions orf2 (due toC. Boyer, K. Galicki, B. Mann, E. Rees, 199Bat imply the
moment mag : S"1 — ()* ® R3 is a submersion, and further that the quotient

Mﬂk,n — S4n—l//Tk — /J,_l(o)/Tk

is smooth.

» Whenn = k + 2 the above authors showed there are infinitely many weighticea in
Mat(k, n, Z) for k > 1 giving infinitely many 7-m(';1nil‘old$§/lgkn for eachb, = k > 1.
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We assume now that diM = 7.

If b(M) > 1, then the maximal torus GasakiautomorphismsT2 C Aut(M, &1), is
3-dimensional.

Lemma 6.1 (van Coevering, arXiv:math.DG/0607721)

If Z is the twistor space of a toric 3-Sasaki 7-manifold M, théi{(#, ©z) = H1(Z,02)T,
dimcHY(Z2,0z) =by(M) —1=k—1.

And Z has a local b(M) — 1-dimensional space of deformations.

Theorem 6.2

Let (M, g) be a toric 3-Sasaki 7-manifold. Then g is in an effective dermp

ba(M) — 1-dimensional family{gt }tcs, U C CP2M—1 with gy = g, of Sasaki-Einstein
metrics where gis not 3-Sasaki for t£ 0.

One applies Theorem 5.81(2,02)T" = H(};b(.Ao")TS, whereT? is a maximal torus.



Toric 3-Sasaki 7-manifolds

Thus unlike the case of parallel spinocs=£ 0) the dimension of the space of Killing spinors is
not locally stable in general. See figure 1 for the isometougs of the metrics.

cho—1

T3 % Zy

Figure: Space of Sasaki-Einstein metrics
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