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Introduction

Some of this work is joint with Carl Tipler,
“Deformations of Constant Scalar Curvature Sasakian Metrics and K-Stability,” I.M.R.N. 2015.

This talk will consider some results on constant scalar curvature Sasakian (cscS) metrics, and
more generally Sasaki-extremal metrics.

We will consider results related to theK-energyandK-stability, familiar in the study of Kähler
manifolds. We will consider

◮ A proof of the convexity of the K-energy along weak geodesics, (following ideas of R.
Berman and B. Berndtson, 2014),

◮ Uniqueness of cscS metrics (and Sasaki-extremal metrics) for a fix transversal
holomorphic structure,

◮ Existence of cscS metric⇒ K-energy bounded below.

Considering the larger space of Sasakian structures compatible with a contact structure(η, ξ)

◮ A small deformation of a cscS structure has K-energy boundedbelow (by an “adjacent”
cscS structure),

◮ A small deformation of a cscS structure also admits a cscS structure if it is K-polystable.
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Introduction

Definition 1.1
A Riemannian manifold(M, g) is Sasakianif the metric cone(C(M), ḡ), C(M) := R+ × M
andḡ = dr2 + r2g, is Kähler, i.e.̄g admits a compatible almost complex structure J so that
(C(M), ḡ, J) is a Kähler structure.

This is a metric contact structure(M, η, ξ,Φ, g) with an additional integrability condition. One
has

◮ a contact structure
η = dc log r = Jd log r

with Reeb vector fieldξ = Jr∂r , a Killing field, and

◮ a strictly pseudoconvex CR structure(D, I), D = kerη.

◮ I induces a transversely holomorphic structure onFξ , the Reeb foliation, with Kähler
form ωT = 1

2dη.

◮ (C(M), J) is an affine varietyY polarized byξ. So(Y, ξ) is the analogue of a polarized
Kähler manifold.

◮ S(ξ, J̄) is the space of Sasakian metrics with transversal complex structureJ̄.
Analogue of the space of Kähler metrics in a polarization.

The transversal Kähler metrics inS(ξ, J̄) are

H(ξ, J̄) = {ωφt = ωT + ddcφ | (ωT + ddcφ)m ∧ η > 0}.
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Background on results

Uniqueness of cscS structures:

◮ K. Cho, A. Futaki, H Ono 2007Proved uniqueness of toric cscS structures. The geodesic
equation is jusẗG = 0, in terms of symplectic potentialG.

◮ Y. Nitta and K. Sekiya 2009Proved uniqueness of Sasaki-Einstein structures, extending
arguments of S. Bando and T. Mabuchi.

This talk considers K-polystability and deformations of constant scalar curvature Sasakian
metrics.

◮ Tristan C. Collins, Gábor Székelyhidi 2012defined K-polystability for Sasakian manifolds
by defining the Donaldson-Futaki invariant in terms of the Hilbert series on the affine cone
C(M).

◮ and they proved
cscS⇒ K-semistable.

◮ The deformation result we give only requires polystabilitywith respect to smooth
degenerations, where this is the usual Futaki invariant on central fiber.
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K-energy

Given a Sasakian manifoldM theK-energyis a functional onH(ξ, J̄):

M(φ) = −
∫ 1

0

∫

M
φ̇t(S(φt) − S̄)(ωT)m ∧ η dt, S=

2nπc1(Fξ)[ω
T]m−1

[ωT]m

X. X. Chen 2000rewrote this formula to extendM to weakC1,1 structures

M(φ) =
S̄

m+ 1
E(φ)− ERic(φ) +

∫

M
log

(
ωm
φ ∧ η

ωm

)

ωm
φ ∧ η

E(φ) :=
m
∑

j=0

∫

M
φω

m−j
φ ∧ ωj ∧ η,

ERic(φ) :=

m−1
∑

j=0

∫

M
φω

m−j−1
φ ∧ ωj ∧ Ricω ∧η,
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Convexity of K-energy

Fξ

ϕα

Cm

Uα

Figure :Transversally complex foliation

Thetransversely holomorphic structureon a foliationFξ is given by{(Uα, ϕα)}α∈A where
{Uα}α∈A coversM

◮ {Uα}α∈A coversM,

◮ theϕα : Uα → Vα ⊂ Cm has fibers the leaves ofFξ locally onUα,

◮ holomorphic isomorphismgαβ : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) such that

ϕα = gαβ ◦ ϕβ on Uα ∩ Uβ .

◮ There is a Kähler structureωα onϕα(Uα) ⊂ Cm.
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Convexity of K-energy

Analysis is done on the foliation charts.

Let Tα be a closed degree(k, k) current defined onVα so thatg∗αβTα = Tβ .

PSH(M, ω) := {φ | φ u.s.c. inv. underξ and plurisubharmonic on each chartVα}

Givenφ1, . . . , φm−k ∈ PSH(M, ω), in eachVα we define (E. Bedford and B. Taylor 1976):

ωφ1 ∧ · · · ∧ ωφm−k
∧ Tα

a positive Borel measure onVα, and we take the product measure on each chart which is easily
seen to be invariant of the chart by Fubini’s theorem, defining

ωφ1 ∧ · · · ∧ ωφm−k
∧ T ∧ η

a positive Borel measure onM.
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Convexity of K-energy

The following will be useful

Proposition 2.1
Letφ ∈ PSH(M, ω) ∩ C0(M). Then there exists a sequenceφi ∈ PSH(M, ω) ∩ C∞(M) with
φi ց φ as i→ ∞.

We have weak continuity of the Monge-Ampère measure.

Given decreasing sequencesφi
1 → φ1, . . . , φ

i
m−k → φm−k in PSH(M, ω) we have

ωφi
1
∧ · · · ∧ ωφi

m−k
∧ T ∧ η → ωφ1 ∧ · · · ∧ ωφm−k

∧ T ∧ η

weak convergence of Borel measures.
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Convexity of K-energy

Let D ⊂ C then we have theHomogeneous Monge-Ampère equation

(π∗ω + ddcUτ )
m+1 = 0 for Uτ ∈ PSH(M × D, π∗ω),

P. Guan and X. Zhang 2012solved it forD = {τ ∈ C | 1 ≤ |τ | ≤ e} and
U(·, 1) = φ0,U(·, e) = φ1 ∈ C∞

b (M) on∂D, and showedU is weakC1,1, meaning

π∗ω + ddcUτ ≥ 0 is L∞(M × D).

Then
ω + ddcut ≥ is weakC1,1 geodesic connectingωφ0 , ωφ1 , 0 ≤ t ≤ 1.

t = logτ .

Proposition 2.2
If u ∈ PSH(M, ω) ∩ C0 then the first variations of the functionalsE andERic are

dE|u = (m+ 1)ωm
u ∧ η, dERic|u = mωm−1

u ∧ Ricω ∧η.
And second variations

dτdc
τE(Uτ ) =

∫

M
(π∗ω+ddcUτ )

m+1∧η dτdc
τERic(Uτ ) =

∫

M
(π∗ω+ddcUτ )

m∧π∗ Ricω ∧η.
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Convexity of K-energy

Theorem 2.3
Let uτ be a weak C1,1 geodesic connecting two points inH(ξ, J̄). ThenM(uτ ) is subharmonic
with respect toτ ∈ D. ThusM(ut), 0 ≤ t ≤ 1, t = logτ , is convex.

ωm
uτ defines a singular metriceΨ on the transversal canonical bundleKFξ

,
The second variation is the current

dτdc
τM(Uτ ) =

∫

M
T, T := ddc(Ψ(π∗ω + ddcU)m) ∧ η

But the main problem is to show thatT defines a non-negative current onM × D, i.e. a Borel
measure.

This is done as in the Kähler case with a local Bergman kernel approximation as in

R. Berman and B. Berndtsson, arXiv: 1405.0401, 2014.
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Some ideas of the proof
Bergman kernelfor holomorphic functions on the ballB ⊂ Cm with weightφ.

βk =
m!

km
Kkφe−kφ

Kkφ(x) = sup
s∈H0(B,KB)

s∧ s̄(x)
∫

B s∧ s̄e−kφ
.

βk → (ddcφ)m in total variation.

Choose local pshΦ so thatddcΦ = π∗ω + ddcU, φτ = Φ(·, τ). Define

Tk = ddcΨk ∧ (ddcΦ)m ∧ η, Ψk = logβk.

Then limk→∞ Tk = T.

(B. Berndtsson 2006) Plurisubharmonic variation of Bergman kernels

ddc logKkφτ
≥ 0 onB× D

So
ddc logβk ≥ −kddcΦ,

and

Tk = ddc logβk ∧ (ddcΦ)m ∧ η

≥ −k(ddcΦ)m+1 ∧ η

≥ 0
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Consequences of convexity
Forφ0, φ1 ∈ H(ξ, J̄) we have

M(φ1) −M(φ0) ≥ −d(φ1, φ0)
(

Cal(φ0)
) 1

2 ,

Calabi Energy Cal(φ) :=
∫

M
(S(φ) − S̄)2ωm

φ ∧ η.

Corollary 2.4
Suppose that(η0, ξ, ω

T
0 ), (η1, ξ, ω

T
1 ) ∈ S(ξ, J̄) are two cscS structures. Then there is a

a ∈ Aut(Fξ , J̄), diffeomorphisms preserving the transversely holomorphic foliation, so that
a∗ωT

1 = ωT
0 .

◮ The metricsg0 = ωT
0 (·, J̄·) + η0 ⊗ η0 anda∗g1 = ωT

0 (·, J̄·) + η̂ ⊗ η̂, whereη̂ = a∗η1,
are not necessarily equal. Butη̂ − η0 is a closed basic form. So uniqueness is up changing
the contact form byH1(M,R) = H1

gT .

◮ The proof extends to prove uniqueness of Sasaki-extremal structures,∂#

gT Sg transversely

holomorphic.
One considers a bluerelative K-energyMV, V extremal vector field.

◮ SinceM is not known to be strictly convex the argument involves an approximation with

Ms := M+ sFµ, Fµ(u) =
∫

M
u dµ − E(u),

whereµ is a smooth volume form.
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Space of Sasakian structures

Consider a fixed contact structure(M, η, ξ).

Definition 3.1
◮ A (1, 1)-tensor fieldΦ : TM → TM on a contact manifold(M, η, ξ) is called analmost

contact-complex structureif

Φξ = 0, Φ2 = −id + ξ ⊗ η.

◮ An almost contact-complex structureΦ on a contact manifold(M, η, ξ) is compatible with
η if

dη(ΦX,ΦY) = dη(X,Y), and dη(X,ΦX) > 0 for X ∈ ker(η), X 6= 0.

◮ Φ is calledK-contactif in addition,LξΦ = 0.

It is aSasakian structureif in addition

NΦ(X,Y) := [X,Y] + Φ([ΦX,Y] + [X,ΦY])− [ΦX,ΦY] = 0 for all X,Y ∈ Γ(TM).

The subspace of Sasakian, transversely integrable, structuresKint ⊂ K is an analytic subvariety.
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Space of Sasakian structures

Proposition 3.2
Given a K-contact complex structureΦ0, the manifoldK is parameterized by operators
P : T1,0(Φ0) → T0,1(Φ0) satisfying the following:

(i) After lowering an index P♭ ∈ Γ(S2(Λ1,0
b )), basic symmetric tensors, and

(ii) Id − P̄P> 0.

And one has
T1,0(Φ) = Im(Id − P), T0,1(Φ) = Im(Id − P̄),

whereΦ = Φ0(Id + Q)(Id − Q)−1, Q = 1
2(P+ P̄).

The subspaceKi ⊆ K of Sasakian structures is the subvariety which in the complex
parametrization is given by

N(P) = ∂̄bP+ [P,P] = 0.

The spaceK of K-contact metric structures is an infinite dimensional Kähler manifold with
Kähler form

ΩK(A,B) =
∫

M
tr(ΦAB) dµη .
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Moment map

DefineG to be the group ofstrict contactomorphismof (M, η, ξ). G acts onK by holomorphic
isometries

(g,Φ) 7→ g∗Φg−1
∗ .

The Lie algebra ofG is

Lie(G) =
(

{X ∈ Γ(TM) : LXη = 0}, [·, ·]
) ∼=

(

C∞
b (M), {·, ·}

)

X 7→ HX = η(X)
.

Theorem 3.3 (W. He 2011, S. K. Donaldson 1997)
The action ofG onK is Hamiltonian with equivariant moment mapµ : K → G∗

µ(Φ) = sT(Φ) − sT
0 .

P : C∞
b (M) → Γ(TΦ0K), P(f ) = LXf Φ0

Q : TΦ0K → C∞
b (M), Q(A) = dsT(A)

Then
〈Q(A),H〉L2 = Ω(A,P(H)), A ∈ TΦ0K, H ∈ C∞

b (M).
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Slice argument

◮ Although, a complexificationGC does not exist, the Lie algebra
Lie(G)⊗ C ∼= C∞

b (M,C) acts onK. ComplexifyP

P : C∞
b (M,C) → Γ(TK).

ThenΦ(t) is in the orbit ofGC iff

Φ̇(t) ∈ ImP ∀t.

◮ If Φ ∈ Kint andf ∈ C∞
b (M), then

√
−1f acts onωT by

LΦXf ω
T = −

√
−1∂∂̄f .

ThusGC induces a holomorphic foliation onKint whose leaves are transversal Kähler
classes.

◮ Moser’s argument shows that theGC-orbit of Φ ∈ Kint is the space of all(ηφ, ξ,Φφ, gφ)
with

ηφ = η + dc
bφ, ωT

φ = ωT +
1

2
ddcφ.
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Slice argument

We consider a finite dimensional slice for the action ofGC onK.

Let (M, η, ξ,Φ0) be a cscS structure andG = Aut(M, η, ξ,Φ0).

We have the transversally ellipticB•:

0 → C∞
b (M,C)

P−→ TΦ0K
∂̄b−→ B2 → · · · . (1)

H1(B•) ∼= ker((∂̄∗ ∂̄)2 + PP∗)

is the space of first order deformations ofΦ0 modulo the action ofGC.
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Slice argument

Proposition 3.4
There exists a G-equivariant C2 mapŜ from a neighborhood B of0 in H1(B•) to K with
Ŝ(0) = Φ0, such thatµ ◦ Ŝ= (sT − sT

0) ◦ Ŝ takes value inLie(G).

Furthermore, theGC orbit of every integrable smoothΦ close toΦ0 intersects the image of̂S. If
x and x′ lie in the same GC orbit in B andŜ(x) ∈ Ki , thenŜ(x) andŜ(x′) are in the sameGC

orbit in K. Moreover,̂S is tangent to S at 0 to first order.

This idea has been used byS. Donaldson, G. Székelyhidi, T. Brönnlebut there are technical
difficulties in applying the implicit function theorem, therefore onlyC2 regularity is proved.

Proposition 3.5
Suppose that x∈ U, after possibly shrinking U, is polystable for the GC-action on H1(B•).
Then there is y in the GC-orbit of x such that sT(Ŝ(y)) − sT

0 = 0. If in addition Ŝ(x) is

integrable, then the corresponding cscS manifold(M, η, Ŝ(y)) is in S(M, ξ, Ŝ(x)).
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Consequences

Theorem 3.6
Let (M, η, ξ,Φ0) be a cscS manifold and(M, η, ξ,Φ) a nearby Sasakian manifold with
transverse complex structurēJ. Then if(M, η, ξ,Φ) is K-polystable, there is a constant scalar
curvature Sasakian structure in the spaceS(ξ, J̄), unique up to automorphisms.

Theorem 3.7
Let (M, η, ξ,Φ0) be a cscS manifold. Then any small deformation(M, η, ξ,Φ) which is
Sasakian is K-semistable.

Proof.
For any test configuration of(Y, ξ) we have

inf
g∈S(ξ,̄J)

(Cal(g))
1
2 ‖υ‖ξ ≥ c(n) Fut(Y0, ξ, υ). (2)

Slice argument shows that unstable orbits are adjacent to cscS structures.

The next result was prove byV. Tosatti 2010in the Käher case.

Theorem 3.8
Let (M, η, ξ,Φ0) be a cscS manifold. Then any small deformation(M, η, ξ,Φ) which is
Sasakian has K-energy bounded below. The lower bound is given lim t→∞ M(φt) where
ω + ddcφt approaches an adjacent cscS structure.
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Further work

◮ One should be able to prove that the non-polystable orbits donot admit csc Sasakian
structures.
This is proved in Kähler case byX. Chen and S. Sun 2010using the Calabi flow.

◮ Then the space of csc Sasakian structures compatible with(η, ξ) is a complex space with a
singular Kähler structure.
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