Some Results Related to Stability in Sasakian Geometry

Craig van Coevering
crai gvan@istc. edu. cn

University of Science and Technology of China, Hefei

Vanderbuilt University
May 21, 2015



Introduction

Some of this work is joint with Carl Tipler,
“Deformations of Constant Scalar Curvature Sasakian eand K-Stability,” I.M.R.N. 2015



Introduction
Some of this work is joint with Carl Tipler,
“Deformations of Constant Scalar Curvature Sasakian eand K-Stability,” I.M.R.N. 2015

This talk will consider some results on constant scalaraure Sasakian (cscS) metrics, and
more generally Sasaki-extremal metrics.

We will consider results related to theenergyandK-stability, familiar in the study of K&ahler
manifolds. We will consider



Introduction

Some of this work is joint with Carl Tipler,
“Deformations of Constant Scalar Curvature Sasakian eand K-Stability,” I.M.R.N. 2015

This talk will consider some results on constant scalaraure Sasakian (cscS) metrics, and
more generally Sasaki-extremal metrics.

We will consider results related to theenergyandK-stability, familiar in the study of K&ahler
manifolds. We will consider

» A proof of the convexity of the K-energy along weak geodegfitsdlowing ideas of R.
Berman and B. Berndtson, 2014),

» Uniqueness of cscS metrics (and Sasaki-extremal metocs) fix transversal
holomorphic structure,

» Existence of cscS metries- K-energy bounded below.



Introduction

Some of this work is joint with Carl Tipler,
“Deformations of Constant Scalar Curvature Sasakian eand K-Stability,” I.M.R.N. 2015

This talk will consider some results on constant scalaraure Sasakian (cscS) metrics, and
more generally Sasaki-extremal metrics.

We will consider results related to theenergyandK-stability, familiar in the study of K&ahler
manifolds. We will consider

» A proof of the convexity of the K-energy along weak geodegfitsdlowing ideas of R.
Berman and B. Berndtson, 2014),

» Uniqueness of cscS metrics (and Sasaki-extremal metocs) fix transversal
holomorphic structure,

» Existence of cscS metries- K-energy bounded below.
Considering the larger space of Sasakian structures cdfgafith a contact structure, €)

» A small deformation of a cscS structure has K-energy bouheémlv (by an “adjacent”
cscS structure),

» A small deformation of a cscS structure also admits a cse@tste if it is K-polystable.
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n = d°logr = Jdlogr

with Reeb vector field = Jro;, a Killing field, and

» a strictly pseudoconvex CR structui@, ), D = kern.

» | induces a transversely holomorphic structureZan the Reeb foliation, with Kéhler
formw™ = dn.

» (C(M), J) is an affine varietyY polarized by¢. So(Y, &) is the analogue of a polarized
Kahler manifold.

» S(&,J) is the space of Sasakian metrics with transversal compleststeJ.
Analogue of the space of Kéhler metrics in a polarization.

The transversal Kahler metrics #(¢, J) are

H(E,J) = {wg, = w' +dd¢ | (W' + dd°¢)™ A7 > 0}.
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Uniqueness of cscS structures:

» K. Cho, A. Futaki, H Ono 200Proved uniqueness of toric cscS structures. The geodesic
equation is jusG = 0, in terms of symplectic potenti&.

» Y. Nitta and K. Sekiya 200®roved uniqueness of Sasaki-Einstein structures, extgndi
arguments of S. Bando and T. Mabuchi.

This talk considers K-polystability and deformations ofstant scalar curvature Sasakian
metrics.

» Tristan C. Collins, Gabor Székelyhidi 20#2fined K-polystability for Sasakian manifolds
by defining the Donaldson-Futaki invariant in terms of thébkiit series on the affine cone
C(M).

» and they proved

cscS= K-semistable

» The deformation result we give only requires polystabilitigh respect to smooth
degenerations, where this is the usual Futaki invarianteoitral fiber.
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Given a Sasakian manifol the K-energyis a functional or#(¢, J):
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X. X. Chen 2000rewrote this formula to extendA to weakCh! structures
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Figure : Transversally complex foliation

Thetransversely holomorphic structuan a foliation.Z is given by{(Ua, ¢a)}ac.a Where
{Ua }ac.a coversM

> {Uq}ac.a coversM,

> thepa : Ua — Vo C C™has fibers the leaves of; locally onU,,

» holomorphic isomorphisrg, s : ¢g(Ua NUg) = pa(Ua N Ug) such that
Ya =0apowg ONUy NUg.

» There is a Kahler structuren, on¢gqa (Us) C C™.
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W N ANwg A Ta
a positive Borel measure o, and we take the product measure on each chart which is easily
seen to be invariant of the chart by Fubini’s theorem, definin
Wy N Awg ATAND

a positive Borel measure dvi.
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The following will be useful

Proposition 2.1
Letp € PSHM, w) N C°(M). Then there exists a sequengec PSHM, w) N C> (M) with
o \( pasi— oo.

We have weak continuity of the Monge-Ampére measure.
Given decreasing sequencgis— ¢1, ..., ¢\, — ¢m_k in PSHM, w) we have

w¢.1/\~~-/\w¢.an/\T/\17—>w¢1/\-~~/\w¢m_k/\T/\n

weak convergence of Borel measures.
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(*w 4 ddU )™ =0 forU, € PSHM x D, 7*w),
P. Guan and X. Zhang 20®dlved it forD = {r € C |1 < |7| < e} and
U(-,1) = ¢o,U(:,8) = ¢1 € CZ°(M) on D, and showedJ is weakCL:1, meaning
7w +dd°U, >0 isL(M x D).

Then
w + ddPu > is weakCh! geodesic connecting,, wg,, 0 < t < 1.

t=logr.

Proposition 2.2

If u € PSHM, w) N CO then the first variations of the functionafsand £ are
d€lu = (M+ DwPM An, dERC, = mol1 A Ric, An.

And second variations

d,dE(U,) = / (m*w4dd°U, )™ Ay d dCERCU,) = / (7* w+dd°U, )"Ar* Ricy, A7
M M
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Theorem 2.3
Let u- be a weak &1 geodesic connecting two points#i(¢, J). ThenM (u, ) is subharmonic
with respect tor € D. ThusM (w), 0 <t < 1,t=logr, is convex.

wl' defines a singular metrig? on the transversal canonical bunéllez,
The second variation is the current

drdS M(U, ) = / T, T = dd®(W(n*w + dU)™ A
M

But the main problem is to show th@tdefines a non-negative current bhx D, i.e. a Borel
measure.

This is done as in the K&hler case with a local Bergman keip@loximation as in

R. Berman and B. Berndtsson, arXiv: 1405.0401, 2014
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Bergman kernefor holomorphic functions on the bl C C™ with weight¢.

m! K
P = 1 mKis® ¢

SA3(X)
Keg(X) = sup ——".
SEHO(B,Kg) Jpsnseke

Bk — (dd°¢)™ in total variation.

Choose local psi® so thatdd®® = 7*w + dd°U, ¢, = ®(-, 7). Define
Tk = dd®T A (ddc@)m An, Wy =logpk.
Thenlimg_,oo Tk =T.

(B. Berndtsson 200&PIurisubharmonic variation of Bergman kernels

dd®logKys, >0 onBxD

So
dd®log Bk > —kdd"®,

and
Tk = dd® log Bk A (ddc<19)m An
> —k(dd°®)™1 A p
>0
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For ¢o, 1 € H(&,J) we have

M(1) — M(¢o) > —d(¢1, 60) (Callo)) 2,
Calabi Energy Cal(¢) := / (S(¢) — 9% An.
M

Corollary 2.4
Suppose thatno, &, wg), (11, €, w] ) € S(€,J) are two cscS structures. Then there is a
ac Aut(ﬁ?, J), diffeomorphisms preserving the transversely holomarftiiation, so that
a*wI =wp.
» The metricsgo = w{ (+,3) + mo ® mo anda*gy = w (-, ) + A ® 7, wheres = a*ny,
are not necessarily equal. Bfit— g is a closed basic form. So unigueness is up changing
the contact form by4(M,R) = HzT.

» The proof extends to prove uniqueness of Sasaki-extremnmtatesﬁ;ﬁsg transversely
holomorphic.

One considers a bluerelative K-enetiy, V extremal vector field.
» SinceM is not known to be strictly convex the argument involves goraximation with

Ms = M+ Fy, }'M(u):/ udu — £(u),
M

wherey is a smooth volume form.
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Consider a fixed contact structuf®!, n, £).
Definition 3.1

» A (1,1)-tensor field® : TM — TM on a contact manifoldM, 7, £) is called analmost
contact-complex structurié

Pe=0, P=—-id+exn.

» An almost contact-complex structufeon a contact manifoldM, 7, £) is compatible with
n if
dn(®X, ®Y) = dn(X,Y), and dy(X, @X) > 0for X € ker(n), X # 0.

> & is calledK-contactif in addition, L = 0.

It is a Sasakian structurig€in addition
N (X, Y) := [X, Y] + ®([®X, Y] + [X, ®Y]) — [®X,®Y] =0 forallX,Y e I'(TM).

The subspace of Sasakian, transversely integrable, wtesét™ C K is an analytic subvariety.
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Space of Sasakian structures

Proposition 3.2
Given a K-contact complex structude,, the manifoldC is parameterized by operators
P: TLO0(®g) — TOL(dy) satisfying the following:

(i) After lowering an index P € F(SZ(Aé’O)), basic symmetric tensors, and

(i) 1d —PP> 0.
And one has

TH(®) =Im(d = P), T%4(®) = Im(ld — P),

where® = ®o(ld + Q)(Id — Q)~%, Q= (P +P).

The subspack’ C K of Sasakian structures is the subvariety which in the coxple
parametrization is given by ~
N(P) = o,P + [P,P] = 0.

The space&C of K-contact metric structures is an infinite dimensionahk# manifold with
Kahler form

Q. (A, B) = /M 1r(®AB) dya.
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Defineg to be the group o$trict contactomorphisrof (M, 7, £). G acts onkC by holomorphic

isometries
(9,®) — 9. ®g; L.

The Lie algebra of is

Lie(G) = ({X e T(TM) : Lxn=0},[,]) =
X =

(CEO(M)v {'7 })
Hx = n(X) '

Theorem 3.3 (W. He 2011, S. K. Donaldson 1997)

The action o7 on K is Hamiltonian with equivariant moment map:  — G*

P :Cy°(M) — I'(Te, ),
Q: Ty, K = C°(M), Q(A) =d

Then
(Q(A)7 H>L2 = Q(A,'P(H)),

P() = Lyx; Po
(A

A€ Ty K, H € C°(M).



Slice argument

» Although, a complexificatio;C does not exist, the Lie algebra
Lie(G) ® C = Cg° (M, C) acts onkC. Complexify P

P C°(M,C) — I(TK).
Then&(t) is in the orbit ofG< iff

() € ImP Vi
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Slice argument

» Although, a complexificatio;C does not exist, the Lie algebra
Lie(G) ® C = Cg° (M, C) acts onkC. Complexify P
P:C°(M,C) — I'(TK).

Then&(t) is in the orbit ofG< iff

() € ImP Vi

> If @ € K" andf € C°(M), theny/—1f acts onw™ by
Loxw' = —v/—109f.
ThusG® induces a holomorphic foliation o™ whose leaves are transversal Kahler

classes.

» Moser’s argument shows that t#& -orbit of & € K" is the space of alln,, £, 4, ds)
with

1
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Slice argument

We consider a finite dimensional slice for the actiorgfon K.
Let (M, n, &, o) be a cscS structure a@l= Aut(M, n, &, Pg).
We have the transversally elliptis®:

0 CPM,C) 25 Tgk 2 B2 .. @

H(B®) = ker((5*0)* + PP*)

is the space of first order deformationsd§ modulo the action ofC.



Slice argument

Proposition 3.4

There exists a G-equivariant’Gnap$ from a neighborhood B @fin H1(B*) to K with

§(0) = @, such thau o S= (s" — ) o & takes value ihie(G).

Furthermore, thegC orbit of every integrable smooth close to®y intersects the image &. If
x and ¥ lie in the same & orbit in B andS(x) € K', then§(x) and$(x’) are in the samg®
orbit in K. Moreover,5 is tangent to S at O to first order.
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Slice argument

Proposition 3.4

There exists a G-equivariant’Gnap$ from a neighborhood B @fin H1(B*) to K with

§(0) = @, such thau o S= (s" — ) o & takes value ihie(G).

Furthermore, thegC orbit of every integrable smooth close to®y intersects the image &. If
x and ¥ lie in the same & orbit in B andS(x) € K', then§(x) and$(x’) are in the samg®
orbit in K. Moreover,5 is tangent to S at O to first order.

This idea has been used By Donaldson, G. Székelyhidi, T. Bronridet there are technical
difficulties in applying the implicit function theorem, tiegore onlyC? regularity is proved.
Proposition 3.5

Suppose that x U, after possibly shrinking U, is polystable for thé @ction on H-(B*).
Then there is y in the &orbit of x such that §5(8(y)) — ) = 0. If in addition §(x) is

integrable, then the corresponding cscS manifdit] 7, S(y)) is in S(M, &, (x)).



Consequences

Theorem 3.6

Let (M, n, &, ®o) be a cscS manifold andM, n, £, @) a nearby Sasakian manifold with
transverse complex structude Then if(M, n, £, @) is K-polystable, there is a constant scalar
curvature Sasakian structure in the spagé, J), unique up to automorphisms.
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Consequences

Theorem 3.6

Let (M, n, &, ®o) be a cscS manifold andM, n, £, @) a nearby Sasakian manifold with
transverse complex structude Then if(M, n, £, @) is K-polystable, there is a constant scalar
curvature Sasakian structure in the spagé, J), unique up to automorphisms.

Theorem 3.7
Let (M, n, &, ®o) be a cscS manifold. Then any small deformafibh 7, £, ) which is
Sasakian is K-semistable.

Proof.
For any test configuration df, £) we have
1
inf _ (Cal(g))2||v|l¢ > c(n) Fut(Yp, &, v). 2)
ot | (Callg)) lulle = e(m) Fut¥o, &)
Slice argument shows that unstable orbits are adjacent®stsuctures. O
The next result was prove By Tosatti 2010n the Kéher case.

Theorem 3.8

Let(M,n, &, ®o) be a cscS manifold. Then any small deformatibh 7, £, @) which is
Sasakian has K-energy bounded below. The lower bound is fme_, .o M (¢t) where
w + dd°¢t approaches an adjacent cscS structure.



Further work

» One should be able to prove that the non-polystable orbitsotladmit csc Sasakian
structures.
This is proved in Kahler case B§. Chen and S. Sun 201sing the Calabi flow.

» Then the space of csc Sasakian structures compatible(wi) is a complex space with a
singular Kahler structure.



Thank you
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