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This article presents MP-Tomasulo, a dependency-aware automatic parallel task execution engine for
sequential programs. Applying the instruction-level Tomasulo algorithm to MPSoC environments, MP-
Tomasulo detects and eliminates Write-After-Write (WAW) and Write-After-Read (WAR) inter-task depen-
dencies in the dataflow execution, therefore to operate out-of-order task execution on heterogeneous units.
We implemented the prototype system within a single FPGA. Experimental results on EEMBC applications
demonstrate that MP-Tomasulo can execute the tasks out-of-order to achieve as high as 93.6% to 97.6% of
ideal peak speedup. A comparative study against a state-of-the-art dataflow execution scheme is illustrated
with a classic JPEG application. The promising results show MP-Tomasulo enables programmers to uncover
more task-level parallelism on heterogeneous systems, as well as to ease the burden of programmers.

Categories and Subject Descriptors: C.1.4 [Processor Architecture]: Parallel Architectures; D.1.3
[Programming Techniques]: Concurrent Programming—Parallel programming

General Terms: Performance, Design

Additional Key Words and Phrases: Automatic parallelization, data dependency, out-of-order execution

ACM Reference Format:
Wang, C., Li, X., Zhang, J., Zhou, X., and Nie, X. 2013. MP-Tomasulo: A dependency-aware automatic parallel
execution engine for sequential programs. ACM Trans. Archit. Code Optim. 10, 2, Article 9 (May 2013),
26 pages.
DOI:http://dx.doi.org/10.1145/2459316.2459320

1. INTRODUCTION

The past decades have witnessed a tremendous invasion of MultiProcessor System on
Chip (MPSoC), especially in high-performance parallel computing domains. As more
processors are being increasingly integrated into a single chip, it is possible to bring
higher computation abilities to heterogeneous platforms for various applications. In
particular, the Field Programming Gate Array (FPGA)-based MPSoC and Graphic
Processing Unit (GPU)-based heterogeneous architectures have been regarded as the
promising future microprocessor design paradigms [Borkar and Chien 2011]. Com-
pared to GPU architectures, FPGA can provide a more flexible framework to construct
prototypes for different applications efficiently.
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9:2 C. Wang et al.

However, task partitioning and scheduling approaches on heterogeneous MPSoC
platforms have encountered serious challenges, especially with inter-task depen-
dencies, including structural dependencies, Read-After-Write, Write-After-Write, and
Write-After-Read (denoted as RAW, WAW and WAR) data dependencies. Different
tasks using same source or destination parameters may cause tasks to run in sequence,
which largely confines the task-level parallelism.

To address the data dependencies (or named data hazards) problem at instruction
level, there are several traditional hazards detection and elimination solutions [Patt
et al. 1985], such as Scoreboarding and Tomasulo [Tomasulo 1967]. Both algorithms
provide Out-of-Order (OoO) instruction execution engines when there are sufficient
computing resources.

Meanwhile, parallel programming models have brought an alternative venue to en-
hance task-level parallelism for MPSoC platforms. However, a major drawback of the
state-of-the-art programming models like OpenMP and CUDA is that programmers
are required to handle the task assignments with data dependencies manually. In
contrast, an adaptation of Instruction-Level Parallelism (ILP) scheduling algorithm
to Task-Level Parallelism (TLP) provides a new insight to utilize the MPSoC platform
effectively. Current cutting-edge studies such as Task Superscalar [Etsion et al.
2010] and Gupta and Sohi [2011] explore new research directions into managing
heterogeneous CMPs at a higher abstraction level. However, both approaches address
the out-of-order task execution on a dedicated architecture without considerations
for FPGA-based MPSoC platforms. Therefore, in this article, we focus on offering a
middleware support on FPGA, which treats tasks as abstract instructions.

This article proposes MP-Tomasulo, a task-level out-of-order execution model for
sequential programs on FPGA-based MPSoC. The major contributions are listed as
follows.

(1) We bring an out-of-order scheduling scheme to a system-on-chip architecture,
and build a prototype MPSoC computing platform in the FPGA architecture with
General-Purpose Processors (GPP) and Intellectual Property (IP) cores. Based on
the platform, a software/hardware codesign flow and a flexible programming model
with compiler support is presented.

(2) We propose an MP-Tomasulo engine which applies the instruction-level Tomasulo
algorithm to an MPSoC scenario. MP-Tomasulo can eliminate WAW and WAR data
dependencies automatically to operate out-of-order execution at task level.

(3) We built a prototype system on a real FPGA hardware platform. Speedups of differ-
ent types of inter-task data dependencies are studied. A comparative study against
state-of-the-art dataflow execution using JPEG applications is also presented.

This article is decomposed as follows: Section 2 starts with the scope and motivation
of this article, and then introduces the state-of-the-art of out-of-order task execution
methods with parallel programming models. We show their characteristics and
their limitations with respect to the future high-end massively parallel embedded
applications requirements. Section 3 presents the hardware architecture and soft-
ware/hardware design flow. Then, in Section 4, we introduce the compiler-related
support, including the programming models and structure APIs. Section 5 details
the MP-Tomasulo architecture and execution model. We will illustrate its applicative
system environment, its data structures, and processing flows. The functionalities and
interpretabilities of the hardware components are presented in detail. We also sum-
marize the essential differences and limitations between instruction-level Tomasulo
and MP-Tomasulo. Section 6 proposes the implementation of the hardware prototype
on FPGA. Test cases from EEMBC benchmarks are presented and experimental
results are analyzed in that section. A JPEG application is employed to evaluate the
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Table I. RAW, WAW and WAR Dependencies

Dependencies Code Snippets Task Output Parameter Input Parameter(s)

RAW
do T adder (a , b )↘↘↘ Adder a b

do T idct( c , a ) IDCT c a

WAW
do T aes dec(a,b,c)↓↓↓ AES DEC a b, c

do T aes enc(a,b,e)↓↓↓ AES ENC a d, e

do T idct(a,f) IDCT a f

WAR
do T adder(a,b); Adder a b
do T adder(c,d,a);↙↙↙ Adder d d, a

do T idct(d,e); IDCT d e

MP-Tomasulo and the state-of-the-art parallel dataflow-based approach. Finally, we
conclude the article and explain future works in Section 7.

2. MOTIVATION AND RELATED WORK

2.1. Scope and Design Goals

As the major contribution of this article is to propose a scheduling engine for out-of-
order task execution, in this section the data-dependency issues (including RAW, WAW,
and WAR) are first observed.

Before the OoO perspective is presented, we define the following terms used through-
out this article first.

Tasks. Tasks refer to dynamic instances created when invoking special application
programming interfaces. Moreover, tasks are regarded as functional abstract instruc-
tions, and each IP core is treated as a dedicated functional unit for a specific hardware
task.

Function units. All the computing processors and IP cores are considered as struc-
tural function units to run tasks in parallel. All these function units are connected to
the scheduler processor through on-chip interconnect.

Parameters. Parameters refer to the input and output operands. Through looking
into the parameters for different tasks, inter-task data dependencies among tasks can
be uncovered.

To illustrate this problem, we assume each task is composed of task name, source,
and destination parameters. As the tasks are treated as abstract instructions, the data
dependencies problem can also happen for task level. Table I presents the three kinds
of inter-task data dependencies with code snippets. For the RAW situation, two tasks
are illustrated in the example, do T adder and do T idct. Of the two tasks, assume
that the sources parameter of IDCT (a) is the same as the destination parameter of
AES DEC task (a), therefore the IDCT task shall wait for the parameter (a) until the
adder task finishes its execution and releases (a). Likewise, for a WAW dependency,
we model three tasks, the first two of which have three parameters. Note only the
first parameter is the destination while the other parameters are marked as sources.
Consequently WAW dependency appears since all the three tasks have the same out-
put operands, making the task executed in order. Finally, WAR hazards must also be
detected to avoid violating antidependencies.

By reviewing the data dependencies problems (RAW, WAW, and WAR) at instruction
level, Scoreboarding and Tomasulo are both effective methods used in superscalar
pipeline machines for out-of-order instruction execution purposes. Of these two
methods, Tomasulo is more widely used because it can eliminate WAW and WAR
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9:4 C. Wang et al.

dependencies, while Scoreboarding only solves it by running tasks in sequence.
Therefore, we choose Tomasulo instead of Scoreboarding at task level.

The basic concept of instruction-level Tomasulo is that whenever all input operands
are prepared, the instruction will be directly offloaded to an arithmetic unit. It is not
required to wait until all its previous instructions have finished execution, or are even
issued. At the end of execution, results are committed in order for synchronization.
Therefore oriented from this motivation, this article is to present an MP-Tomasulo
middleware support on MPSoC targeting out-of-order task-level parallelization.

2.2. Related Work

Data dependencies and the synchronization problem has already posed a significant
challenge in parallelism. Traditional algorithms, such as Scoreboarding and Tomasulo
[Tomasulo 1967], explore ILP with multiple arithmetic units, which can dynamically
schedule the instructions for out-of-order execution.

Meanwhile, with the increasing popularity of the MPSoC platform, parallelism is
shifting from instruction level to task level. There are already some creditable FPGA-
based research platforms, such as RAMP [Wawrzynek et al. 2007], Platune [Givargis
and Vahid 2002], and MOLEN [Kuzmanov et al. 2004]. These studies focus on provid-
ing reconfigurable FPGA-based environments and related tools that can be utilized to
construct application-specific MPSoC.

Alternatively, products and prototypes of the processor are designed to increase TLP
with coarser-grained parallelism, such as MLCA [Faraydon et al. 2004], Multiscalar
[Sohi et al. 1995], trace processors [Rotenberg et al. 1997], IBM CELL [Kahle et al.
2005], RAW processor [Taylor et al. 2002], Intel Terascale, and Hydra CMP [Hammond
et al. 2000]. These design paradigms present thread-level or individual cores which
can split a group of applications into small speculatively independent threads. Some
other works like TRIPS [Sankaralingam et al. 2006] and WaveScalar [Swanson et al.
2003] combine both static and dynamic dataflow analysis in order to exploit more
parallelism. A common concept of these literatures is to split a large task window into
small threads that can be executed in parallel. However, the performance is seriously
constrained by inter-task data dependencies.

In contrast, parallel programming models are quite popular to improve Task-Level
Parallelism (TLP) in MPSoC, such as OpenMP, MPI, Intel’s TBB, CUDA, OpenCL
[KhronosGroup 2010] and Cilk [Blumofe et al. 1995]. However, a major drawback of
these programming models is letting the programmer handle task assignments with
data dependencies manually, which increases the programmer burden of synchroniza-
tion and task scheduling.

Meanwhile, with the growing popularity of task-based programming models, task-
level scheduling methods are also motivated to operate high-level parallelism, such as
Kotha et al. [2010] and Suh and Dubois [2009]. Task Superscalar [Etsion et al. 2010]
proposes an abstraction of out-of-order superscalar pipelines that use the processor
as function units. Mladen and Niggemeier [2008] provide a modified version of the
Tomasulo scheme for DSP-based processor architectures to perform out-of-order task
execution. FlexCore [Deng et al. 2010] presents a hybrid process architecture using an
on-chip reconfigurable fabric (FPGA) to support runtime monitoring and bookkeeping
techniques. Hyperprocessor [Karim et al. 2003] manages global dependencies using
a universal register file. However, most of the works need hardware support, which
causes insufficient flexibility across different architectures. Recently, Sanchez et al.
[2011] have presented a dynamic fine grained scheduling scheme of pipeline paral-
lelism. The work is based on multi-core SMP to achieve load balancing. EnCore project
[Encore 2012] provides a new insight in programmable manycore systems. Some other
parallelization engines like Carbon [Kumar et al. 2007] and Limberg et al. [2009] have
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Table II. Strengths and Weaknesses of MP-Tomasulo

Classifications Typical Approaches Our Strength Our Weakness
General parallel
programming model
(No OoO)

OpenMP, Intel’s TBB, Ct, CnC
MapReduce, OpenCL, Cilk

No burden to
programmers

Not applicable to
large scale CMP
processors

Specific parallel
programming model
(With OoO)

StarSs & CellSs Extend from simu-
lated CellBE
architecture to
real FPGA based
systems

Limited by the hard-
ware resources pro-
vided by FPGA

Coarse Grained Task
Level Parallelism
(With OoO)

MLCA, Multiscalar, WaveScalar,
Trace, CELLRAW, Hydra, TRIPS

Automatic OoO
is supported on
FPGA

Not applicable to
large scale CMP
processors

Dataflow Based
OoO Execution
Model (With OoO)

TaskSuperscalar & Dataflow Extend from simu-
lators to real
FPGA based
systems

Limited by the
hardware resources
provided by FPGA

DSP-Tomasulo Extend from DSP
to real FPGA
based systems

FlexCore Automatic OoO
is supported on
FPGA

figured out the fine grained task-level parallelization in CMP and software-defined
radio application fields, respectively.

Of the state-of-the-art research, Task Superscalar is a recent sequential program-
based framework that achieves function-level parallel execution. It requires the user
to identify function parameters on which dependences may occur, using pragma direc-
tives. Task Superscalar builds a dynamic task-flow graph in prior to parallel execution
based on memory locations. Task Superscalar uses a master thread to farm out work
to other threads. It renames data, potentially incurring high memory usage. Further-
more, it targets the CellBE architecture and is implemented in simulation instead of
FPGA-based real hardware implementation.

Furthermore, Serialization Sets (SS) [Allen et al. 2009] is a sequential program-
based, determinate model that dynamically maps dependent (independent) compu-
tations into a common (different) “serializer”. Computations within a serializer are
serialized while those from different serializers are parallelized. Furthermore, based
on SS, Gupta and Sohi [2011] introduce an object-based dataflow execution with
data dependencies analysis method that we build upon SS to achieve an even more
dataflow-like execution and exploit higher degrees of concurrency. They employ a de-
centralized scheduler as well as use the token protocol to handle WAW dependences. As
the program is sequenced, dependent functions are shelved, and they are introduced
into the deques after their dependences have been resolved. However, the WAW and
WAR data hazards in Gupta and Sohi [2011] cannot be solved by renaming techniques.

To sum up, Table II lists the strengths and weaknesses of the proposed method
compared to other related work. MP-Tomasulo, proposed in this article, applies
instruction-level Tomasulo algorithm to MPSoC, and provides an out-of-order task ex-
ecution engine. MP-Tomasulo divides the task issue and execution process with five
stages: issue stage, task partition stage, execution stage, write results stage, and com-
mit stage. It can detect RAW, WAW, and WAR data dependencies automatically with
the task-adaptive partitioning and scheduling schemes, therefore MP-Tomasulo can
improve the task-level parallelism without burden to programmers.
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Fig. 1. Target MPSoC hardware platform.

3. HARDWARE PLATFORM AND DESIGN FLOW

3.1. Hardware Platform

Figure 1 illustrates the MPSoC hardware platform including the following compo-
nents: one scheduler processor, multiple computing processors, and a variety of hetero-
geneous IP cores. Moreover, IP cores can be dynamically reconfigured from IP libraries
to fit in different applications. In particular, the functionalities of different components
in Figure 1 are described as follows.

(1) One scheduler processor (e.g., Microblaze, PowerPC, ARM) is employed to provide
a programming interface to users. In particular, the MP-Tomasulo module is im-
plemented as a software kernel running on the scheduler processor to schedule and
distribute the tasks to function units at runtime.

(2) Computing processors provide runtime environments for software computational
tasks. The tasks are offloaded from scheduler to computing processors for parallel
execution directly.

(3) Each IP core is responsible for accelerating one specific kind of task in hardware.
In addition, IP cores can be reconfigured and customized due to various application
demands.

(4) Interconnect modules are in charge of inter-task communication between scheduler
processor and diverse function units. For demonstration, the scheduler is connected
to each processor or IP core with a pair of Xilinx Fast Simplex Link (FSL) bus
channels [Xilinx 2009]. Moreover, the interconnect structure can be replaced by
other topologic interconnection schemes, such as crossbar, mesh, hierarchical bus,
or ring architectures.

(5) Memory blocks and peripherals are connected to the scheduler through the Core-
Connect Processor Local Bus (PLB). These modules are integrated to maintain
local data storage and debugging support, including DDR DRAM controller, Ether-
net controller, systemACE controller, UART, timer and interrupt controller, etc.

3.2. Software/Hardware Codesign Flow

In this article, MP-Tomasulo is based on a flexible programming framework FPM
[Wang et al. 2012], which is an extended version of CellSs [Bellens et al. 2006] from
CellBE to general FPGA architecture. FPM is a software-hardware codesign paradigm
that contains both C compilers for software applications and also hardware generation
design flows for the IP-based accelerator on FPGA platforms.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 2, Article 9, Publication date: May 2013.
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Fig. 2. Software/hardware codesign flow and runtime framework.

Taking both the integrated software and hardware modules into account, Figure 2
illustrates the software/hardware codesign flow, as well as the OoO runtime concept.
The software executables and hardware bitstreams are generated separately.

3.2.1. Software Design Flow. With respect to the software generating thread, program-
ming models and OoO libraries are provided to users to guide the implementation of
source codes with OoO annotations. The first file (scheduler.c) refers to the main pro-
gram of the application, and should be compiled with a Microblaze compiler to generate
a scheduler object. Inside the program there are different code segments, including the
functional tasks, I/O and debugging codes, etc. Except for the functional tasks, all the
other codes are executed locally in sequence, while the computational-intensive tasks
are offloaded to certain function units for parallel execution.

The second file (app.c) represents the application library on each computing Microb-
laze processor. Generally every computing processor contains a library with all kinds
of functions. A certain function will be executed under the request from the main pro-
gram. This file is also compiled with a Microblaze compiler, and a copy of the generated
executable is located in each computing processor. In order to execute the target pro-
gram, task requests mode by the scheduler processor are transferred through on-chip
interconnects. For this reason, communication wrappers are embedded both in sched-
uler and computing processors.

Like CellSs, all the procedures (task mapping, dependence analysis, data transfer,
and return) are transparent to the user code. What is required from programmers is
to use simple annotations (# Pragma) in the sequential program that indicate which
parts of the code will be run in parallel. Then FPM will map the tasks to target function
units automatically, taking into account the ability of dynamic IP reconfiguration at
runtime.

Afterwards codes with OoO annotations will be processed by the OoO compiler fron-
tend, through which annotated codes and function libraries are merged into translated
regular source codes. The regular source codes shall be further processed by the state-
of-the-art Xilinx software tool chains (EDK, SDK, etc).

3.2.2. Hardware Design Flow. In contrast to the software compilation procedure, hard-
ware design flow is presented in the bottom part of Figure 2. Besides the generated
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executables for software processors, the third and fourth files (Func1.v and Funck.v)
refer to RTL implementations for different functions in Hardware Description Lan-
guages (HDL). All the HDL source files should be designed under the user specification
and the OoO constraints. Furthermore, in order to let the execution flow immigrate be-
tween software and hardware, a uniform communication interface should be employed
to package the module into the IP core.

After the RTL codes are generated, they can be synthesized to netlists (e.g., *.ngc for
FPGA devices), then placed and routed to bitstream objects.

3.2.3. OoO Runtime Execution. The main program executable is normally started in the
scheduler processor. At the beginning of the program, the operation of each computing
processor is initiated by loading the function library of each computing GPP. Mean-
while, each IP core is initiated with the downloaded hardware bitstreams. These com-
puting processors and IP cores will stay in idle state until the main program starts
spawning tasks to them. Whenever the main program runs into a parallel code region
that can be spawned to a computing processor or IP core, the middleware runtime will
check data dependencies with previously issued tasks. If the current task is ready for
execution (no dependencies with previously issued tasks) and a selected target func-
tion unit is not in busy state, then the task can be spawned immediately. The task
offloaded by FSL primitives is not blocking and, therefore, if the task is not finished,
the system will continue with the subsequence of the main program.

When the tasks are finished, the results are returned through the FSL bus. At this
time, as the scheduler processor is running the subsequent pieces of work, an inter-
rupt signal is raised to stall the main program. For hardware support to the interrupt
mechanisms, an interrupt controller is integrated into the hardware platform, which
traces the interrupt events from all the FSL links.

It is important to emphasize that all the procedures (task partitioning, data depen-
dence analysis, data transfer, and results return) are transparent to the user code.
These procedures are basically sequential applications using the provided API that
indicates which parts of the code will be run in the parallel function units. Taking the
task-level parallelization degree into account, the system can dynamically change the
amount or the structure of IP cores for different applications.

4. COMPILER

In order to achieve the automatic OoO execution at task level, a programming model
FPM is proposed to handle the annotations. FPM is composed of two key components: a
source-to-source compiler and a runtime library, which includes an OoO scheduler and
an adaptive mapping scheme. The current tool chain of FPM supports the following
features.

(1) translation from annotated source codes into codes recognizable to processors: The
source-to-source compiler locates whether the tasks are to be executed by com-
puting processors or IP cores. From this feature, specific tasks can be accelerated
by hardware execution engines, while general software tasks can be also executed
simultaneously to uncover task-level parallelism.

(2) integration of the hardware bitstream and software executable files: From this fea-
ture, tasks can be decided to be spawned to either IP cores or GPP, as both of them
are regarded as function units to run tasks in parallel.

(3) specification of function parameter directions: In order to allow the FPM runtime
module to find the inter-task data dependencies, programmers should indicate the
direction of the parameters explicitly (input or output).

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 2, Article 9, Publication date: May 2013.
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Fig. 3. Example of annotated codes in FPM.

4.1. Programmer’s Perspective

Figure 3 outlines an example of annotated codes in FPM. Two files are listed: pragram
definition in the FPMlib file, and the main program file.

(1) The upper part of Figure 3 gives an example of the FPM library that provides dedi-
cated functions. The annotation indicates that the do T idct and do T aes functions
can be executed on IP cores. Input and output parameters are defined in a decla-
ration region before they are used in the annotated function. The sizes of the input
and output arrays are specified in the definition as well.

(2) The bottom part of Figure 3 illustrates an example of a main program running on
the scheduler processor. What is required by the programmer is to include the FPM
library as head files, and define the necessary parameters before using them. Then
the automatic parallel region maps the annotated functions to the target GPP or
IP core automatically. The codes in the automatic parallel region work as normal
sequential codes without annotations using the functions already defined in the
FPM libraries.

The annotated regions will undergo a source-to-source compilation procedure at
first, and then data dependencies are checked by middleware runtime support, and
finally the codes generated from automatic parallel regions can be spawned either to

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 2, Article 9, Publication date: May 2013.
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Table III. Example Programming Interfaces for Hardware

Task Programming Interfaces
IDCT void do T idct(int * output , int * input )

void handler T idct()
AES ENC void do T aes enc(int * output , int * input, int * input )

void handler T aes enc()
AES DEC void do T aes dec(int * output , int * input , int * input)

void handler T aes dec()

GPPs or IP cores. The task mapping decision is made by FPM at runtime. Although
hardware execution is faster, the solution of waiting for hardware is still not a best
choice when there are too many tasks already destined for the same hardware.

4.2. Code Translations of Different Regions

The FPM library includes the definition of parameters and annotated functions.
Table III lists three examples for the annotated functions. For each annotated func-
tion, the compiler generates an adapter that can be called from the main program.
In Table III IDCT stands for Inverse Discrete Cosine Transform and AES stands for
Advanced Encryption Standard. Each function contains both one output and multiple
input parameters. The parameters are annotated because they are also used to exploit
the potential inter-task data dependencies. Some tasks may have multiple inputs or
outputs, (e.g., AES ENC needs plaintext and key as inputs, cipher as output). After a
task is spawned, the scheduler can continue to run the subsequent tasks, and results
will be returned through interrupts.

For each interface, a handler T xxx function is in charge of interrupt handling. The
interrupt handler procedure is transparent to the user code, which means it is implic-
itly invoked automatically when the task results are returned.

4.2.1. Translated Code of Specific Functions. The main program running on the scheduler
processor is a sequential application. Each annotated task calls an internal function to
spawn the sequential tasks in parallel if they do not have inter-task data dependencies.
Therefore all the annotated functions are translated into data transfer directives.

It is important to emphasize that the translated directives depend on the hardware
interconnect between scheduler and function units. As a demonstration, we use direc-
tives with Xilinx Fast Simplex Link (FSL) peer-to-peer interconnection. All the com-
puting GPP and IP cores are connected to the scheduler processor with a unique ID.
For example, A do T IDCT (a,b) task indicates b is an input and a is the output. There-
fore this task calls the directive of write into fsl (val, 2), where val refers to the input
parameters (b), and “2” represents the ID of the IDCT IP core. Similarly, when the
results are returned, the read from fsl (val, 2) function will be implicitly invoked by
the interrupt handler procedure handler T IDCT(). The val parameter returned by
the FSL bus will be assigned to the output parameters (a) inside the interrupt handler
functions.

Furthermore, the write into fsl (val,2) directive invokes the putfsl (val, id) macro
that is originally supplied by the FSL bus specification. On the contrary, the
read from fsl (val,2) uses getfsl(val, id) as the basic data transfer macro. Related to
Xilinx FSL bus channels, we also use Microblaze as our scheduler and computing GPP.
By looking into the Microblaze instruction set architecture, PUT/GET/NPUT/NGET
instructions are in charge of transfer data between the processor register files and
external FSL bus channels.

4.2.2. Code in Computing GPPs and IP Cores. The computing processor can execute dif-
ferent types of applications. Figure 4 illustrates an example code with three functions
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Fig. 4. Example code in computing GPPs.

integrated to run dedicated tasks. Corresponding to the translated interfaces in the
scheduler processor side, FSL wrappers are provided in computing GPP as well to
communicate with the main scheduler.

Besides the communication interfaces described in upper part of Figure 4, the lower
part lists the internal function libraries implemented in computing GPP.

By contrast with the computing GPP, each IP core can run only one specific kind of
functions, as is illustrated in the hardware/software design flow. All the IP cores are
packaged in the same manner to communicate with the scheduler processor.

Taking FSL bus specification as an example, we utilized the signals transferred.
FSL Clk and FSL Rst refer to input clock and system reset signals, respectively.
FSL S * are control and data signals to drive the AES module as a slave module of
the scheduler. The FSL S Exists signal will be activated when there is new data ar-
riving from the scheduler. Similarly, when the tasks are finished, the results will be
returned via the FSL M * signals. The FSL M Full signal indicates the full status of
the FSL FIFO. In order to be compatible with the registers, the data width of the FIFO
is set to 32 bits.

5. MP-TOMASULO EXECUTION MODEL

This section proposes the MP-Tomasulo architectural framework. The description
focuses on how the MP-Tomasulo architecture is designed to dynamically detect
inter-task data dependencies, uncover task-level parallelism, and enable out-of-order
task execution. As the information of Tomasulo can be detailed in the referenced
textbook and also is well-known to the research community, we summarize the
essential differences between Tomasulo and MP-Tomasulo.

5.1. Architecture

Figure 5 illustrates the block diagram of the MP-Tomasulo architecture, which is com-
posed of four hierarchical layers: preanalysis layer, scheduling layer, transfer layer,
and computation layer.

First, the applications are divided into tasks in the preanalysis layer. The func-
tionality of this layer is similar to the frontend analysis module in Task Superscalar
[Etsion et al. 2010]. As the execution of the task-generating thread is decoupled from
that of the tasks themselves, the inter-task control path is resolved by the preanalysis
layer, and the tasks received by the pipeline are nonspeculative. The preanalysis
layer also maintains a window of recently generated tasks, for which it generates
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Fig. 5. MP-Tomasulo architecture.

the data-dependency graph, and uncovers task-level parallelism. All the tasks are
issued in order, and then undergo a general process including three stages: label 1©
represents the finished tasks, while labels 2© and 3© refer to the tasks under execution
and waiting to be processed, respectively.

Second, the scheduling layer is responsible for data dependencies detection and out-
of-order task scheduling. A task queue is employed to fetch tasks from the preanalysis
layer. A ReOrder Buffer (ROB) is introduced to maintain in-order issue and commit
for tasks. Reservation Stations (RS) are employed to analyze inter-task dependencies
and store the intermediate values temporarily. A parameter table is utilized to record
the mapping scheme between parameters and function units. All the ready tasks are
issued from RS to transfer layer.

Third, the transfer layer is conducted to offload ready tasks to function units and
synchronize them after they have finished execution. A task multiissue transmitter
spawns multiple tasks to the related function units simultaneously. We integrate
a monitor to keep track of all function units with respect to achieving system load
balancing. Furthermore, one arbiter is essential when multiple tasks are returned
simultaneously.

Finally, the computation layer consists of heterogeneous function units including
both computing processors and IP cores. On-chip interconnections (buses, crossbar,
mesh, ring, etc.) serve a group of functional units.

5.2. Data Structures of MP-Tomasulo

MP-Tomasulo algorithm runs as a software kernel on the scheduler processor. If
the scheduler decides that the task cannot execute immediately, it will monitor any
changes in the function units and then decide when the task can be issued. The sched-
uler also controls when the results will be stored into the local parameter table after
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the task returns. In particular, there are five data structure components utilized by
the MP-Tomasulo scheduler.

(1) Reservation Stations (RS) are employed to analyze inter-task dependencies. When-
ever there is a ready task, it can be dispatched to function units immediately. There
are nine fields for each reservation station: Name records the task name; Busy in-
dicates whether the unit is busy or not; Vj and Vk are the source parameters; Qj
and Qk are the flags indicating when Vj, Vk are ready and not yet read. Finally Dest
keeps the destination ROB entry.

(2) The ReOrder Buffer (ROB) utilized for in-order task issue and commitments. There
exist two kinds of tasks: one consists the accelerated tasks running on the IP cores
(e.g., FFT, JPEG) that are dispatched by MP-Tomasulo, and the other is comprised
of software control tasks (e.g., I/O print, interrupt) running on the scheduler itself.
However, due to the fact that MP-Tomasulo has no knowledge of software control
tasks, when a specific parameter is being outputted by a Printf function, the pro-
ducer task may still run in progress. In other words, no speculation and precise in-
terrupts will be supported without ROB structure, which may cause dramatically
wrong results of the I/O functions. As a consequence, ROB should be maintained to
keep in-order commitment. In particular, ROB structure consists of the following
elements: Entry refers to the functionality of current task; Busy indicates the task
status; Task represents the task ID; Dest represents output operands; Value is the
data value of output operands.

(3) The parameter table indicates which functional unit will store values for each pa-
rameter, if an active task has the parameter as its destination. Each table entry
includes three fields: Reorder, Busy, and Data. Reorder reserves the entry of re-
order to indicate which task to depend on; the Busy field keeps the reorder status
of the parameter; and the parameter value is stored in the Data field.

(4) The task partition module is in charge of task partitioning and mapping. Since
each task can either run on the processor or IP core, a fair partitioning method will
largely increase the system throughput. For demonstration, we employ a greedy
strategy: If there are idle IP cores, the task will be distributed to a specific IP core;
otherwise, the task will be offloaded to a computing processor. If all the available
function units are busy, the task must wait until certain hardware is released.

(5) Function Unit Monitor and Arbitration monitors and collects the running status
of all function units. The status helps the task partitioning module to achieve load
balance of the hardware.

5.3. Processing Flow

The MP-Tomasulo algorithm is divided into five stages: issue stage, partition stage,
execution stage, write result stage, and commit stage. The five stages are similar to
instruction level but adding a task partition stage. From Table IV, we can formally
examine the steps and then see in detail how the algorithm keeps the necessary infor-
mation determining when to progress from one step to the next. The five steps are as
follows.

(1) Issue—Fetch a task from task queue. Issue the task if there is an empty reserva-
tion station and an empty slot in the ROB; send the operands to RS if they are
available in ROB. Update the control entries to indicate which buffers are in use.
The number of ROB entries allocated for the result is also sent to RS, so that the
number can be used to tag the result when it is transferred back from processing
elements. If either all the reservations are full or the ROB is full, the task issue is
stalled until both have available entries.
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Table IV. Processing Flow of MP-Tomasulo

(2) Task Partition—When all the operands are ready, MP-Tomasulo needs to decide
which function unit to run the current task.

If there is only one function unit which can run the current task, then the task
has no other options. However, in most situations, there are at least two available
units (if both IP core and computing processor are available). Therefore in this
situation, the task execution time on each function unit will be compared, and then
a function unit with minimum execution time will be chosen. If a new function unit
is chosen, the original function unit table entry will be replaced by the new one.

(3) Execution—The functional unit begins execution once operands are ready. When
the current task is finished, it notifies the scheduler that it has completed execu-
tion. Task distribution and data transfer are both performed through on-chip inter-
connect. One interrupt controller is integrated to detect interrupt request signals
from all the interconnect channels. The interrupt handler assigns the parameters
with results. In our proposed architecture, since results from different tasks may
be transferred back at the same time, a First-Come-First-Serve (FCFS) policy is
used to deal with interrupts, and no interrupt preemption is supported.
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(4) Write Result—After results are returned, they will be stored in ROB, as well as
broadcasted to RS slots waiting for this result. If the value to be stored is avail-
able, it is written into the Value field of the ROB entry. If the value to be stored is
not available yet, the interconnection must be monitored until that value is broad-
casted, at which time the Value field of the ROB entry is updated.

(5) Commit—This is the final stage of completing a task, after which only its results
remain. The normal commit cases occur when the task reaches the head of the task
queue and its results are present in the buffer; at this point, MP-Tomasulo updates
the parameters with results and removes the task from ROB.

5.4. Major Improvements of MP-Tomasulo

Compared to the traditional Tomasulo algorithm, the major improvements of MP-
Tomasulo are summarized as follows.

(1) Task mapping. This article involves the situation when there are more than one
function units available for each task. It mentions how to choose the suitable func-
tion unit for each task. Although a simple greedy strategy is presented, to our best
knowledge, few literatures take task mapping together with out-of-order execution.

(2) Monitoring and profiling. MP-Tomasulo monitors and collects the running infor-
mation of all the processors, so it can trace the whole execution process and locate
the hotspot through profiling techniques. The runtime information can be used to
guide the hardware reconfiguration.

(3) IP core reconfiguration. Benefiting from state-of-the-art dynamic partial reconfig-
uration technical supports (such as Xilinx EAPR), IP cores can be dynamically
reconfigured at runtime. Since the FPGA provides an area-constrained platform,
the reconfiguration technique largely improves hardware resource utilization.

(4) On-chip interconnection. This is utilized to distribute tasks and transfer results. In
our proposed hardware architecture, we demonstrate a star network based on peer-
to-peer links to model the on-chip interconnects. The star network can be replaced
by other schemes, such as Network-on-Chip (NoC).

With the aforesaid improvements, MP-Tomasulo can efficiently increase TLP in MP-
SoC by detecting data dependencies. Meanwhile, tasks are first buffered into ROB
entries and then dispatched to different processors automatically when operands are
ready. Therefore MP-Tomasulo uncovers task-level parallelism to minimize the num-
ber of stalls arising from the program’s true data dependences.

5.5. Limitations

MP-Tomasulo supports the architecture in which IP cores are tightly coupled to the
processor without shared memory access operations. In this situation, the IP core is
more like a hardware accelerator for specific tasks. For more coarse-grained paral-
lel architectures like SMP, there exists frequent memory access for each task. Even
though MP-Tomasulo may be applied as well, programming models based on memory
consistency will do a better job.

MP-Tomasulo is implemented as a software algorithm running on the central Mi-
croblaze scheduler. For this point, we have following concerns.

(1) The IP cores on FPGA can be dynamically reconfigured. Whenever IP cores are
reconfigured (e.g., added, deleted, or replaced, etc.), the function unit table needs
to be updated simultaneously, which will be difficult to implement on hardware.

(2) The area consumption of hardware MP-Tomasulo reduces the available resources
for Microblaze and IP cores. Consequently, for now we use a software scheduler to
involve more hardware IP cores in the limited FPGA chip area.
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(3) Although some sort of memory management might be possible, allocation and man-
agement of arbitrary memory areas for such values might be a bit of a headache in
real FPGA-based hardware implementations.

Besides the software implementation, MP-Tomasulo is also limited by several factors
in eliminating program stalls.

(1) The inter-task parallelism degrees determine whether independent tasks can be
found to execute at large. If each task relies on its predecessor, then our dynamic
scheduling scheme can reduce no further stalls.

(2) The size of ROB and RS entries determines how far ahead MP-Tomasulo can find
independent tasks. The sizes refer to the set of tasks examined as candidates for
potential execution. Larger sizes mean that more tasks can be prefetched, however,
bringing overheads when storing tasks and maintaining data concurrency among
different entries.

(3) The number and types of functional units determine the impact of structural de-
pendencies in the issue stage. If there are no more available function units, the
tasks will stall, and no tasks can be issued until these dependencies are cleared.

(4) Task partitioning plans determine the target function unit for each task. The
partition method has a significant impact on performances evaluation. Our
demonstrated greedy strategy can only achieve a local optimum instead of global
optimum for the whole task sequences. However, the current task partitioning
plans can be switched to other schemes, for example, dynamic programming or
heuristic methods.

6. PROTOTYPE IMPLEMENTATIONS

6.1. Platform Setup

To evaluate MP-Tomasulo in real hardware, we implemented a prototype on a state-
of-art FPGA board, equipped with Xilinx Virtex-5 FPGA. We use Microblaze version
7.20.a (with the clock frequency 125 MHz, local memory of 8KB, no configurable task
or data cache) as scheduling and computing processors.

Specifically, the prototype system is composed of the following components.

(1) One scheduling Microblaze processor is integrated to run the MP-Tomasulo soft-
ware scheduling algorithm and provide API to programmers.

(2) One Microblaze is employed as computing processor. Software task functions are
implemented and packaged in standard C libraries.

(3) Five hardware IP cores are implemented in HDL (Verilog) and packaged with uni-
form Xilinx FSL-based interfaces. The scheduler Microblaze is connected to the
computing Microblaze and IP cores with pairs of Xilinx FSL channels. Tasks and
results are transferred via FSL bus links.

Parts of the EEMBC-DENBench [EEMBC 2010] have been utilized for demonstra-
tion. For each following test case, we both transplanted the software benchmarks to
Microblaze and implemented the IP core: Adder, IDCT, AES, DES, and JPEG. Since
the IP cores can be configured with custom execution cycles in hardware, they can play
the same role with the remaining benchmarks to demonstrate the effectiveness of the
MP-Tomasulo approach. Furthermore, the hardware implementation of the platform
is detailed in the referenced SOMP [Wang et al. 2011] architecture.

6.2. Results and Analysis

Based on the prototype system, we designed several applications to measure the per-
formance and the scheduling overheads for the proposed MP-Tomasulo algorithm on
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Fig. 6. Experimental results for no dependencies, RAW, WAW, and WAR.

the hardware prototype. Since the EEMBC benchmarks only provide individual appli-
cations (such as IDCT, AES, etc.), we combined different tasks with selected parame-
ters to construct different types of inter-task data dependencies.

6.2.1. Speedups of Different Types of Data Dependencies. In this section, we measured the
speedup under four situations: no dependencies, WAW, RAW, and WAR. In order to
evaluate the peak speedup, we define two parameters.

First, the task execution time denotes the entire execution time used in different
types of data hazards. In the circumstance of no dependencies, WAW, and RAW, the
task execution time is configured to the same value (varying from 5k to 100k cycles),
while in WAR and WAW the execution time is configured to different values for het-
erogeneous computational tasks.

Second, the task scale refers to the total amount of different tasks. In particular, as
we use multiple loop iterations to construct the intra-loop and inter-loop data hazards
between tasks, the task scale indicates the number of loop iterations. In demonstra-
tion, we set the task scale to less than 4096 in all the test cases.

(1) No Data Dependencies. Figure 6(a) presents the speedup of the case with no de-
pendencies. The horizontal coordinate refers to the task scale. When the four IP
cores have the same running time, the theoretical maximum speedup is 4.0x. How-
ever, because of the software scheduling cost and communication overheads, the
experimental results cannot reach the peak speedup, especially in the situation
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Table V. Test Applications for WAW Data Dependencies

WAW Test Sequence 2 Execution Time(Cycles)
do T adder(a,c)

adder:100000do T adder(b,c)
idct:50000do T idct(a,c)

Table VI. Task Sequences to Test WAR Data Dependencies

WAR Sequence 1 WAR Sequence 2 Execution Time
do T idct(a,b)

adder:100000do T adder(a,b) do T adder(c,a)
idct:50000do T adder(c,a) do T idct(a,b)
enc:25000do T idct(a,b) do T idct(d,a)
dec:12500do T aes enc(a,e,f)

with smaller and less tasks. From the figure, we can see that when the task scale
and task running time are large enough, the experimental peak speedup can reach
3.744x, which is 93.6% of the ideal peak value.

(2) WAW Data Dependencies. The experimental results of WAW data dependencies are
presented in Figure 6(b). In this case, all the tasks are configured as the same
value, which means the ideal peak speedup is the same as the no dependency situ-
ation 3.744x, which is 93.6% of ideal speedup.
Another test sequence for WAW inter-task dependency is listed in Table V. Three
tasks are designed in the sequence. In particular, task do T adder(a,c) and task
do T idct(a,c) both use the parameter a as destination parameter (with c as the
source). Since IDCT costs less time, it finishes before the second adder task, which
causes a WAW dependency. The theoretical maximum speedup is calculated in
Eq. (1).

Speedup= (TAdder × 2 + TIDCT)/(TAdder × 2) = 1.25 (1)

The experimental result is described in Figure 6(c). It is easily observed that the
experimental speedup grows with the task scale. The reason is that the scheduling
phase and execution stage for each task run on different processors, which can
be treated as two stages in the pipeline. For the first task, they can only run in
sequence to fill the pipeline the. As the task scale grows, the influence of pipeline
filling becomes smaller. The experimental speedup grows from 1.184x to 1.222x,
which is from 93.13% to 97.74% of the theoretical value.

(3) RAW Data Dependencies. Figure 6(d) illustrates the experimental speedup of RAW.
Since RAW dependency cannot be eliminated by any renaming technologies, tasks
can only run in sequential, which means the ideal speedup is 1.0x. In this case, the
maximum experimental speedup is 0.957, which is 95.7% of the ideal speedup.

(4) WAR Data Dependencies. In the WAR case, tasks with different execution time are
configured in Table VI.

For the two sequences, the theoretical peak speedup is calculated in Eqs. (2) and (3).

Speedup1 = (TAdder × 2 + TIDCT)/(TAdder × 2) = 1.25 (2)

Speedup2 = (TAdder × 2 + TIDCT × 2 + Taes enc)/(TAdder × 2) = 1.625 (3)

The experimental result is shown in Figure 6(e) and (f) accordingly. The curve is sim-
ilar to the WAW situation. The experimental peak speedup for the first task sequences
grows from 1.183x to 1.220x, which is from 94.58% to 97.63% of the theoretical value.
And for the second sequences, speedup increases from 1.538x to 1.587x, which is from
94.64% to 97.67%.
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Fig. 7. Dependency-aware out-of-order task scheduling.

6.2.2. Speedup of MP-Tomasulo vs. Scoreboarding. We designed several example test
cases using the specific functions of the implemented IP cores. A sample test case
is illustrated in Figure 7. Each node stands for a task, and the edges refer to the de-
pendencies. Different tasks are marked with colors. In the first step (a), the data and
structure dependencies among all tasks are detected. Tasks that do not have data de-
pendencies with other tasks are regarded as the ready tasks. In this stage, only task 1
and task 4 are in the ready task list.

In the second step (b), considering the multiple hardware resources, parts of struc-
ture dependencies are removed. Task 3 can be issued immediately as soon as it arrives.

Finally, all the WAW and WAR dependencies are eliminated by parameter renaming
technologies, resulting in a simplified task-dependency graph in (c). Also task 6 is
added into ready task list.

We measure speedups of one typical task sequence through partitioning the test
tasks. In this test case, we select regular test with 11 different random tasks.

Figure 8 depicts the comparison between theoretical and experimental results of the
task sequence. The length of the sequence increases from 1 to 11, and the curve of
experimental value is consistent with the theoretical value, but slightly larger. This
is because the theoretical value has not considered scheduling and communication
overheads. The average of these overheads is less than 4.9% of task running time
itself. The execution time remains flat when the length of the queue increases from
2 to 6. The result is caused by out-of-order execution and completion. Taking tasks 2
and 4 for instance, 2 takes more clock cycles to finish than 4. As there are not data
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Fig. 8. Experimental results of regular tasks.

Fig. 9. Impact of ROB size on the speedup.

dependencies among these tasks, they can be issued at the same time. After task 4 is
finished, it must wait until all the predecessor tasks are finished.

Compared to Scoreboarding [Wang et al. 2012], Tomasulo has higher scheduling
overheads, which leads to a bigger gap between the experimental and theoretical
value. However, since MP-Tomasulo cannot only detect WAW and WAR hazards but
also eliminate them by renaming, the overall speedup is significantly larger than
Scoreboarding.

6.2.3. Impact of ROB Size on the Speedup. Since the peak speedup for MP-Tomasulo is
also dependent on the size of ROB structures, we designed three applications to mea-
sure the impact of ROB size.

Figure 9 illustrates the experimental result. As the ROB size grows bigger, the ROB
has more slots for task allocation in the issue stage, which brings increasing speedup
at first. When the ROB size is 8, the speedup achieves a saturation value at 1.8374x,
which is 97.99% of the theoretical value. However, when the ROB is large enough,
continuing to enlarge ROB size will cause additional overheads for update and syn-
chronization operation, so the performances will be reduced.
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Fig. 10. Impact of RS size on the speedup.

6.2.4. Impact of RS Size on the Speedup. Besides ROB, RS size also has a significant
impact on speedups. Based on the RS size and theoretical speedup, Figure 10 presents
the impact of RS size on the speedup of all the three preceding task sequences. Growing
with the RS size, there is a shape increase when it changes from 1 to 2, and then it
saturates. When RS size is set to 1, it means there is only one reservation station
integrated for each type of task. Therefore, after the first task is issued, all the other
tasks must wait until the RS slot is free again, therefore the speedup is less than 1.0x.

However, when the RS changes to 2, up to 2 tasks in the same type are allowed to
be issued to the RS at the same time. Respecting this, if the first task is blocked, there
will also exist another available entry for the next task in the same type. Therefore
the execution works in a dual buffer, and the speedup is significantly increased. For a
different application, if there are more continuous tasks belonging to the same type in
the application, the ideal RS size will be larger as well.

Then when the RS is larger than 2, the speedup is saturated. This is because in this
test case only two of the same tasks are designed in sequence, which means two RS
slots for each type of task are enough to achieve peak speedup. In fact, the overheads
include two parts: task allocation cost for RS and data broadcast cost.

As the RS is utilized to store and transfer intermediate values, as the RS grows
bigger, it gets easier to allocate RS to tasks, which reduces the allocation cost. Mean-
while, the growing RS size will also bring extra cost when data is broadcasted. The
experimental results and theoretical values are 98.57%, 93.94%, and 95.03%.

6.3. A Comparative Study on JPEG Applications

6.3.1. Performance Comparison. Along with the software version of the MP-Tomasulo
algorithm described before, it is necessary to show how MP-Tomasulo works if it is
implemented on hardware. Therefore, we have also realized a hardware scheduling
module according to the data structures and processing flow described in Section 5.
Along with the Scoreboarding technique [Wang et al. 2012], there are also some cred-
itable OoO execution engines, like [Gupta and Sohi 2011]. In order to evaluate its
superiority, we use a JPEG application to test the efficiency of our framework. JPEG
can be divided into four stages: Color space Convert (CC), two-dimensional Discrete
Cosine Transform (DCT), Quantization (Quant), and Entropy coding (Huffman). The
first three stages have fixed amount input variables and output variables, therefore
they are appropriate to be implemented as a hardware IP core. In contrast, the Huff-
man stage runs on MB because it does not have fixed amount output variables and
only takes 1.94% of the total execution time of the whole program on average.

In Figure 11 we show the analysis of the execution of the JPEG benchmark. The
JPEG algorithm takes a BMP picture as input, and outputs a picture in JPEG format.
The entire picture is divided into 8*8 bits blocks, and each time only one block is
processed. Assuming that the benchmark is run on an FPGA platform and that the
memory size is constrained so that the whole picture cannot be stored in the memory
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Fig. 11. JPEG application and task-dependency analysis.

Fig. 12. Speedup comparison. In each group, the left bar is the speedup using the algorithm in Gupta and
Sohi [2011], the middle bar is the practical speedup on our experimental platform, and the right bar is the
ideal speedup using our platform.

at a time, a possible code as depicted in Figure 11(a) may be proposed. Figure 11(b)
illustrates the task sequences when the first two loops are executed, and Figure 11(c)
introduces the dependency graph of the tasks in Figure 11(b), in which the solid arrows
stand for RAW and the dashed arrows stand for WAW.

For the specific JPEG application, a real hardware module has been integrated into
the FPGA board as well. With the help of a MP-Tomasulo module, the sequential exe-
cution mode of the JPEG program is converted to an OoO mode, where only tasks that
have RAW dependency with others need to run in order, while the WAW dependency
will be dynamically eliminated by the MP-Tomasulo module. We select 30 pictures of 6
different sizes for experiments, and for each size we randomly picked 5 pictures in BMP
format. In order to explain our framework does eliminate WAW/WAR dependency, we
compare the experimental results with the method described in Gupta and Sohi [2011],
as is illustrated in Figure 12. The method in Gupta and Sohi [2011] only detects de-
pendency, however, WAW/WAR dependency is treated the same as RAW dependency
when tasks are running. In Figure 12 we compare ideal speedup of Gupta and Sohi
[2011], the practical, and ideal speedup of our framework. Note the speedup takes the
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Fig. 13. Reconfigurability study comparing dynamic partial reconfiguration with software execution, using
JPEG applications.

execution time of the software version running on an MB as the baseline, while ideal
speedup is defined as the theoretical speedup ignoring the scheduling time. The ideal
speedup of Gupta and Sohi [2011] is only half of the ideal speedup of our framework
because, restricted by WAW dependency, only one MB and one CC-DCT-QUART IP
core are in use, while the other PEs are all idle.

Experimental results depict that MP-Tomasulo can achieve an average of more than
95% of the ideal speedup, which greatly encourages our motivation and technical scope.

6.3.2. Reconfigurability Study. The aforesaid JPEG test case has demonstrated the su-
periority of MP-Tomasulo over the state-of-the-art OoO approach. As we use the real
FPGA hardware platform, it is also interesting to explicitly exploit the reconfigura-
bility of an FPGA-MPSoC to highlight the significance of MP-Tomasulo. It is common
knowledge that due to the reconfiguration overheads, it is not always a fair way to
get better results if we use dynamic reconfiguration methods rather than execute the
application in software. We use the JPEG case to evaluate this point. As the entire pic-
ture for JPEG is divided into multiple blocks, the system may reconfigure when several
blocks (let be N) are processed. If N is small, the reconfiguration overheads will drag
down the parallel hardware speedup, the performance will be even worse than the
sequential execution, therefore, we explore the trade-off in the revised version.

For the sake of area limitations for normal FPGA devices, in this study, we consider
an area-optimal condition where only one IP core can be integrated at a time. As the
four function modules are implemented in separate IP cores, the functionality will be
reconfigured after certain blocks (let be N) are processed. Figure 13 illustrates the
processing flow for both dynamic partial reconfigurable hardware and software. In the
initialization step, only the CC IP core is integrated in the system. After the color
space for N blocks is converted, the CC IP core will be reconfigured to 2D-DCT IP core.
Consequently three reconfiguration operations happen for each N blocks, denoted as
the three bars with dashed edges between the four phases. Due to the unavoidable
overheads, the total execution time may be even longer than the software execution
time in CPU, as is presented in the bottom part of Figure 13. Therefore we evaluate
the trade-off using different N values for hardware reconfiguration and software.

For the JPEG test case, we run some preanalysis to identify that the threshold value
of N lies between the span from 12 to 24. Then we evaluate the situation with differ-
ent N, ranging from 13 to 23, as well as the software execution in CPU. We use the
Lena picture in different sizes, from 64*64 to 512*512, to observe the trade-off between
dynamic reconfiguration and software execution. Figure 14 presents experimental re-
sults of the execution time for each block. The x-axis refers to different size of pictures,

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 2, Article 9, Publication date: May 2013.



�

�

�

�

�

�

�

�

9:24 C. Wang et al.

Fig. 14. Hardware execution time of different N vs. software execution.

Table VII. Hardware Cost of the Heterogeneous MPSoC System

Resource Used/Available Utilization
Number of Slice Registers 7536/28800 26.2%

Number of Slice LUTS 19941/28800 69.2%
Number used as Memory: 534/7680 7.0%
Number of External IOBs 4/480 0.8%

Number of BUFGs 3/32 0.9%
Number of DSP48Es 31/48 64%

Fig. 15. Percent of hardware resources.

each with different N values and software execution, while the y-axis indicates the av-
erage execution time for each block. It can be observed that the threshold value of N in
this case is approximately 18. When N is smaller than 18, the reconfigurable hardware
execution time will be longer than software execution. Otherwise, as N grows bigger
than 18, the dynamic partial reconfiguration shows its technical superiority. This ex-
periment facilitates researchers to gain a quantitative analysis using reconfiguration
techniques.

6.4. Hardware Cost

We have measured the hardware cost of the entire MPSoC system. Table VII summa-
rizes the hardware cost within a single FPGA. The whole system takes 26.2% of slice
registers and 69.2% of slice LUTs.

Furthermore, by looking further into the synthesis report, we see most of the
resources are occupied by Microblaze processors and hardware IP cores, as is sum-
marized in Figure 15. The basic system (including scheduler, the MP-Tomasulo
module, peripherals, and interconnects) cost is acceptable, except that the hard-
ware implementation of MP-Tomasulo takes 1714 of the flip-flops and 1963 LUTs.
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Experimental results demonstrate that the hardware module is larger than one
Microblaze processor in this JPEG application, but the hardware utilization could be
adjusted in other application-specific computing systems. Taking the total amount
of hardware resources into consideration, the entire hardware platform can be
easily transplanted onto different boards and then used to test and verify for more
scheduling algorithms, programming models, interconnect structure, and concepts.

7. CONCLUSIONS AND FUTURE WORK

We have proposed MP-Tomasulo, a dynamic scheduling algorithm for out-of-order task
execution. Regarding processors and IP cores as function units, MP-Tomasulo pro-
cesses tasks as abstract instructions. It can analyze inter-task dependencies at run-
time and distribute tasks to heterogeneous function units automatically. The algorithm
is carried out on a state-of-the-art FPGA platform. Test cases and experiments demon-
strate the algorithm can achieve more than 95% of the theoretical peak speedup.

As future work, we plan to extend MP-Tomasulo to reconfigurable situations where
processors and IP cores can be adaptive to fit in different applications at runtime.
Also, we plan to study more hardware IP extensions to investigate how the approach
can be applied to general multiple tasks in superscalar or thread-level parallelization
in support of operating systems.
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