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Heterogeneous Cloud Framework
for Big Data Genome Sequencing
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Abstract—The next generation genome sequencing problem with short (long) reads is an emerging field in numerous scientific and big
data research domains. However, data sizes and ease of access for scientific researchers are growing and most current methodologies
rely on one acceleration approach and so cannot meet the requirements imposed by explosive data scales and complexities. In this
paper, we propose a novel FPGA-based acceleration solution with MapReduce framework on multiple hardware accelerators. The
combination of hardware acceleration and MapReduce execution flow could greatly accelerate the task of aligning short length reads
to a known reference genome. To evaluate the performance and other metrics, we conducted a theoretical speedup analysis on a
MapReduce programming platform, which demonstrates that our proposed architecture have efficient potential to improve the speedup
for large scale genome sequencing applications. Also, as a practical study, we have built a hardware prototype on the real Xilinx

FPGA chip. Significant metrics on speedup, sensitivity, mapping quality, error rate, and hardware cost are evaluated, respectively.
Experimental results demonstrate that the proposed platform could efficiently accelerate the next generation sequencing problem with

satisfactory accuracy and acceptable hardware cost.

Index Terms—Short reads, genome sequencing, mapping, reconfigurable hardware, FPGA

1 INTRODUCTION

NEXT-GENERATION sequencing (NGS) problems have
attracted many attentions of researchers in biologi-
cal and medical computing domains. The current state-
of-the-art NGS computing machines are dramatically
lowering the cost and increasing the throughput of DNA
sequencing. Due to the heterogeneous accelerating
approaches, Moore’s law has largely fell behind the rate
of performance improvement during the past decades,
with no end in the foreseeable future. What's more, with
the pace as progress in semiconductor technology in
widespread and unexpected application fields, sequenc-
ing technology is being increasingly dominant especially
across widely in scientific and medical domains, in par-
ticular from basic biology to forensics, ecology, evolution-
ary studies, agriculture, drug discovery, and the growing
fields of personalized medicine [1].

DNA sequencing determines the nucleotide sequence of
short DNA fragments, which consist of a small number
(10 through 1,000) of bases, called short reads. This can be
done in a massively parallel manner, yielding much higher
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throughput than older sequencing technologies—on the
order of tens of billions of bases per day from one machine.
For comparison, the human genome is approximately 3 bil-
lion bases in length, which would take months or years to
be processed on a single machine.

Taking account the diversity of genome sequencing
applications, obviously there is no general workflow
worked for the tremendous NGS applications. However,
one general approach derives the short reads by ran-
domly fragmenting many copies of the genome is already
familiar in cutting-edge methodologies. In these cases,
the key first step in the data analysis pipeline is the short
read mapping problem, as is depicted in [1]: determining
the location in the reference genome to which each read
maps best. The problem is technically challenging for
two reasons. First, speed is becoming significantly impor-
tant simply due to the volume of data. For example, in
human genetic studies, mapping a billion reads from one
subject to the human reference genome is a tedious and
repeated routine.

Second, the sensitivity of the algorithm, which represents
the ability to map sequences that are not completely identi-
cal to the reference, is an important issue. These differences
exist both because of technical errors in the sequencing
machines and because of genetic mutation of the subject
genome. The latter case is rare but can not be ignored
because it may help identify possible genetic disease risks.
The cases are distinguishable because the sequencer errors
are generally random while the genetic differences are not.
Hence many mapped reads that consistently exhibit a dif-
ference with respect to the reference drives the desire for
more and more reads, since more data gives more accurate
variant calling.

Short read mapping is widely supported by open source
software tools such as Bowtie [2], BWA [3], and BFAST [4],
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running on a cluster of processors. However, NGS improve-
ments are moving the bottleneck of the genome sequencing
workflow from the sequencing phase to the short read map-
ping software. In particular, using MapReduce framework
to accelerate the short read mapping process by exploiting
the parallelism of the task has been proven to be an efficient
way as CloudBurst [5] has shown. However, CloudBurst
will not start until the millions of short reads have been
imported into the system. This would be time-consuming,
and any updates to one of the short reads require the Map-
Reduce tasks to be re-run which will dramatically degrade
the response time.

Furthermore, along with the rapid development of genome
technology, in the foreseeable future, the commercial genome
sequencing service could be provided to the research commu-
nity. The requirements for scientific researchers to access the
genome sequencing services provided by supercomputers
would be a driven force to the genome technology in the
future. To tackle this problem, a high performance genome
sequencing engine that can response in a reasonable response
time is becoming highly recommended and favorable.

Up to now, it has been popular and necessary to address
the computational requirements for NGS using efficient
hardware field programmable gate array (FPGA)-based
acceleration. For example, the recent work in [6], [7] stream
a good perspective of the reference genome through a sys-
tem doing exact matching of the short reads. However, the
“It didn’t fit” problem from TC-FPGA community predic-
tions [8] illustrates that the helpless fact the FPGA based
heterogeneous computing platform is preferable to deal
with computing-intensive applications, while tremendous
amount of data may cause inevitable failure if only the
hardware based acceleration is employed in the FPGA devi-
ces. Instead, they should be processed in a more parallel
way, such as MapReduce [9] framework. During the past
few years, there has been some creditable literature like
FPMR [10] that integrates high level MapReduce parallel
framework into FPGA based hardware prototype. How-
ever, in spite of the state-of-the-art hardware implementa-
tion achieving satisfying speedups, to our best knowledge,
few of them have considered FPGA based MapReduce pro-
gramming framework really applicable to this typical large
amount data-intensive computing domains.

To address the above problems, in this paper we present
a heterogeneous cloud framework with MapReduce and
multiple hardware execution engines on FPGA to accelerate
the genome sequencing problems. The contribution of this
paper is claimed as below:

1) We propose a novel architecture to accelerate read
mapping processing thread when facing large
amount of requests with FPGA based MapReduce.

2) A distributed MapReduce framework is presented to
dispatch the task into multiple FPGA accelerators.
The Map and Reduce process is based on RMAP
sequencing algorithm. And inside each FPGA based
accelerator, we implement BWA-SW algorithm ker-
nel in hardware that is connected to a local micropro-
cessor to speedup the local alignment process.

3) We conduct a theoretical analysis on the MapRe-
duce framework, and for each FPGA chip, we

construct a hardware prototype subsystem. The
experimental results with hardware speedup, sen-
sitivity, quality, error rate and hardware utiliza-
tion is presented and analyzed.

The structure of this paper is organized as below. We
present the motivation and the related state-of-the-art
studies and in Section 2, then Section 3 illustrates the
architecture and FPGA based MapReduce programming
framework. We also detail the execution flow of short read
mapping in Section 3. Thereafter, we explore the hot spots
of the genome sequencing application in Section 4. A theo-
retical study for both timing complexity and speedup anal-
ysis is also described in Section 4. In Section 5, we present
the hardware prototype and detail the experimental results
on the real FPGA hardware platform. Finally, Section 6
concludes the paper and introduces some future works.

2 RELATED WORK AND MOTIVATIONS

There are quite a lot of successful short read mapping soft-
ware tools that address the problem of processing the enor-
mous amount of data produced by the next-generation
sequencing machines. In this section, we first present the
motivation, and then analyze the state-of-the-art related
work of short read mapping algorithm, MapReduce accel-
eration frameworks and heterogeneous accelerating
approaches respectively.

2.1 Motivation

Although it has been only less than five years since the
emergence of the short read mapping problem of genome
sequencing, it is clearly an area of intense research activity.
It is widely acknowledged this field to be one of the pioneer-
ing application domains that benefit from innovative ideas.

Due to the I/O and computing intensive requirements of
state-of-the-art DNA sequencing problem, we anticipate
that DNA sequencing programs will be located in super-
computers but in a manner that provides pervasive and
ubiquitous services to scientific researchers or even public
users. In this scenario, system performance assessment
needs to consider more metrics such as response time, scal-
ability and mismatching rate, rather than the raw parallel
speedup oriented, as is illustrated in most of the published
work. In a cloud service model, it is likely that the service
need to begin operation before all the required data is
completely transferred via internet.

To the best of our knowledge, this approach targeting
NGS has not yet been fully studied. In this paper, we pres-
ent a novel approach for solving NGS problems using a
cloud based paradigm. We apply cluster computing
approach to FPGA based multiple acceleration engines into
a sound framework, and discuss architecture in a service-
oriented manner. We also apply MapReduce programming
model into the hybrid system to manipulate FPGA based
accelerators as function units, which could largely facilitate
the programmers to improve the performance.

2.2 Current Short Read Mapping Algorithms

In this section, we explore the state-of-the-art short read
mapping solutions, in particular into two main algorithmic
categories, as is inherited from [1]. The first category of
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TABLE 1
Summary for Accelerations for Genome Sequencing
Type References  Performance and Speedup  Algorithms or Methods Features
[16] 2~30x Unspecified Based on nVidia CUDA Model
GPU [17] 3.5~10x Smith-Waterman MUMmerGPU SW with CUDA
[18] 13x Smith-Waterman NVCC compiler With GPGPU
[19] 17 (30) GCUPS Smith-Waterman SIMT and virtualized SIMD
[6] 10x Smith-Waterman Parallel Mapping Single FPGA
[7] 1.6~4x RMAP Algorithm A simple Design Space Exploration
[20] 1.86 vs Bowtie Compact Linear Systolic Up to 3,574 matchers in parallel
[21] 22~42.9x PerM Algorithm Up to 100 PEs integrated
FPGA [22] 80~190x Based on BLAST SW Apply prefiltering to BLAST prefiltering
[1] 31vs Bowtie Based on BFAST SW Multiple Smith-Waterman Engines
[23] Up to 150x Based on MUSCLE SW MUDISC and MUSCLE introduced
[24] 2.4x vs GASSST Block-wise Alignment Both SW and FPGA based HW
[25] 185~250x Smith-Waterman With up to 384-PEs integrated
MapReduce [5] 30x vs RMAP in Serial RMAP Algorithm Hadoop Clusters with 24 Nodes

solution is based upon a block sorting data compression
algorithm called the Burrows-Wheeler transform (BWT)
[11]. This solution uses the FMindex [12] to efficiently store
information required to traverse a suffix tree for a reference
sequence. These solutions can quickly find a set of matching
locations in a reference genome for short reads that match
the reference genome with a very limited number of differ-
ences. However, the running time of this class of algorithm
is exponential with respect to the allowed number of differ-
ences; therefore BWT-based algorithms tend to be less sensi-
tive than other creditable solutions. Bowtie [2] and BWA [3]
are examples programs based on this algorithmic approach.

The second category of solution leverages the fact that
individual genomes differ only slightly, meaning it is likely
that some shorter sub-sequences of a short read will exactly
match the reference genome. This technique is called seed-
and-extend and these shorter sub-sequences are called
seeds. For example, for a 30 bp read to map to a reference
with only one difference, there must regardless of where
the difference occurs. In fact, if a we align an m bp read
with at most k differences, there must exist one exact align-
ment of m/(k + 1) consecutive bases [13]. An index of the
reference genome is compiled first, which maps every seed
that occurs in the reference genome to the locations where
they occur. To align a short read, all the seeds in the read
are looked up in the index, which yields a set of candidate
alignment locations (CALs). The short read is then scored
against the reference at each of these CALs using the Smith-
Waterman [14] string-matching algorithm. The location
with the highest score is chosen as the alignment location
for a short read. For example, BLAST [4] uses a hash table of
all fixed length k-mers in the reference to find seeds, and a
banded version of the Smith-Waterman algorithm to com-
pute high scoring gapped alignments. RMAP [15] uses a
hash table of non-overlapping k-mers of length m/(k + 1)
in the reads to find seeds.

Based on the string match problem abstractions, plenty
of traditional approaches those tackle high-speed similarity
analysis and indexing exploration can be adopted, such as
[26], [27], 28], [29], [30]. Baker and Prasanna [31] presented
a hardware implementation of the Knuth-Morris-Pratt
(KMP) algorithm. Since the KMP algorithm is designed to

match the input stream against a single string, one match-
ing unit is required per string, and the hardware system is
composed of a linear array of matching units. The methods
presented in [32] and [33] are based on pre-decoded charac-
ters with hardwired logic circuits. The system is optimized
with respect to the given set of signatures and the character-
istics of the FPGA devices. The FPGA is reconfigured when
there are changes to the signature set. However, the long
latency required in offline generation of the optimized
hardwired circuits is considered as a major disadvantage in
a network intrusion detection system that demands fast
responses to hostile conditions. For the sake of FPGA accel-
erators, many of the proposed hardware solutions are
based on the well-known Aho-Corasick (AC) algorithm
[34], where the system is modeled as a deterministic finite
automaton. The AC algorithm solves the string matching
problem in time linearly proportional to the length of the
input stream. However, the memory requirement is not fea-
sible in a straightforward hardware implementation. In
particular, [35] presents a pipelined processing approach to
the implementation of AC algorithm. However, these
approaches are not appropriate to be implemented in hard-
ware due to the complexity and timing overheads.

2.3 Accelerating Approaches

Along with the novel short read mapping algorithms, multi-
ple attempts have also been conducted to accelerate short
read mapping in diverse high performance computing tech-
niques. Graphics processing units (GPUs), MapReduce and
FPGA based hardware are the most widely used accelera-
tion engines. Table 1 listed most of the state-of-the-art litera-
tures for type, reference, performance metric, utilized
algorithm, and special features. In particular, the devoted
researches can be divided into following categories:

2.3.1 GPU Based Accelerators

GPUs have recently been used as a mature approach for
several bioinformatics applications, especially for sequence
alignment, one of the most significant research areas. For
example, [16] presents a similarity using Smith-Waterman
algorithm in GPU accelerators, using compute unified
device architecture (CUDA) programming engines.
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MUMmerGPU [17] is an open-source parallel pairwise local
sequence alignment program that runs on commodity
GPUs in common workstations. Based on this research, [18]
uses features a stackless depth-first-search print kernel with
massive GPU data layout configurations to improve register
footprint and conclude higher occupancy. Liu et al. [19]
makes new contributions to Smith-Waterman protein data-
base searches using compute unified device architecture. A
parallel Smith-Waterman algorithm has been proposed to
further optimize the performance based on the single-
instruction-multiple-thread (SIMT) abstraction.

2.3.2 FPGA Based Accelerations

Nevertheless, numerous attempts to accelerate short read
mapping on FPGAs tried to use a brute-force approach to
compare short sequences in parallel to a reference
genome. For example, the work in [6], [7] streams the ref-
erence genome through a system doing exact matching of
the short reads. Knodel et al. [6] demonstrate a greater
sensitivity to genetic variations in the short reads than
Bowtie and MAQ, but the mapping speed was approxi-
mately the same as that of Bowtie. Also, this system dem-
onstrated mapping short reads to only chromosome 1 of
the human genome. Fernandez et al. [7] demonstrate
between 1.6x and 4x speedup versus RMAP [15] for reads
with between 0 and 3 differences. This implementation
was for the full human genome.

Some recently papers conducing DNA short read
sequencing problem using FPGA based reconfigurable com-
puting acceleration engines are proposed in [1], [20], [21],
[22], [23], [24], [25]. Of these approaches, [20] proposes a sys-
tolic custom computation on FPGA to implement the read
mapping on a massively parallel architecture. This literature
enables the implementation of thousands of parallel search
engines on a single FPGA device. Wang et al. [36] shares the
idea of genome sequencing using MapReduce on FPGA
with multiple hardware accelerators, and further presents
the Big data genome sequencing on Zynq based clusters
[37]. Moreover, the authors in [21] proposed a CPU-FPGA
heterogeneous architecture for accelerating a short reads
mapping algorithm, which was built upon the concept of
hash-index with several optimizations that reorder hash
table accesses and compress empty hash buckets. The
authors in [22] applies pre-filtering of the kind commonly
used in BLAST to perform the initial all-pairs alignments. In
[1] the authors proposed a scalable FPGA-based solution to
the short read mapping problem in DNA sequencing, which
greatly accelerates the task of aligning short length reads to
a known reference genome. Not only the first stage of pro-
gressive alignment in multiple sequence alignment problem,
the third stage of progressive alignment on reconfigurable
hardware in [23]. Chen et al. [24] introduces a hybrid system
for short read mapping utilizing both software and field pro-
grammable gate array-based hardware. Zhang et al. [25]
presents a implementation of the Smith-Waterman algo-
rithm for both DNA and protein sequences on the platform.
The paper introduces a multistage processing element
design and a pipelined control mechanism with uneven
stage latencies to improve the performance and decrease of
the on-chip SRAM usage. Recently, [38] uses FPGA-based
system to accelerate the next generation long read mapping,

but the hardware engines is implemented on a sole FPGA
board. Chen et al. [39] presents a novel FPGA-based archi-
tecture which could address the problem with a bounded
number of PEs to realize any lengths of systolic array. It is
mainly based on the idea of the banded Smith-Waterman
but with a key distinguish that it reuses the PEs which are
beyond the boundary.

Previous efforts doing short read mapping using FPGAs
have achieved at most an order of magnitude improvement
compared to software tools. Also, previous solutions are not
convincible to produce a system that is well-suited to large
scale long read mapping and full genome sequencing.
Finally, current literatures only uses one unique method on
FPGA to accelerate the short read mapping problem, there-
fore it could make the most advantage of the parallel com-
puting and hardware acceleration based techniques.

2.3.3 MapReduce Based Acceleration Frameworks

Besides the above heterogeneous accelerating engines, Map-
Reduce [9] is an alternative software framework developed
and used by Google to support parallel-distributed execu-
tion of data intensive applications. Utilizing MapReduce
programming framework, CloudBurst [5] is a new credit-
able parallel read-mapping algorithm optimized for map-
ping next-generation sequence data to the human genome
and other reference genomes, for use in a variety of biologi-
cal analyses including SNP discovery, genotyping and per-
sonal genomics. It is modelled after the short read-mapping
program RMAP [15], and reports either all alignments or
the unambiguous best alignment for each read with any
number of mismatches or differences. This level of sensitiv-
ity could be prohibitively time consuming, but CloudBurst
uses the open-source Hadoop implementation of MapRe-
duce to parallelize execution using multiple compute nodes,
which means it can deal with larger amount of short reads
simultaneously. Similarly, [40] is based on the pre-process
of the reference genomes and iterative MapReduce jobs for
aligning the continuous incoming reads.

To sum up, even the MapReduce framework could dis-
seminate the read mapping to multiple computing machines,
but the execution kernel itself is quite inefficient, so the
throughput of the entire system is still worth pursuing,.

3. SHORT READ MAPPING ON HETEROGENEOUS
CLouD FRAMEWORK

As the MapReduce framework has been successfully inte-
grated into FPGA based researches [10], in this section, we
demonstrate the system architecture of a hybrid heteroge-
neous system utilizing both software and field programma-
ble gate array-based hardware for real time short reads
mapping service. We will model it as a specific-domain
search problem that has been studied well for the past
decades.

3.1 High Level Architecture Framework

After sequencing DNA, researchers often map the reads to a
reference genome to find the locations where each read
occurs. The read-mapping algorithm reports one or more
alignments for each read within a scoring threshold, com-
monly expressed as the minimal acceptable significance of
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the alignment, or the maximum acceptable number of dif-
ferences between the read and the reference genome.

The motivation of combining the MapReduce and the
FPGA is to utilize MapReduce framework for the big data
aspect and the FPGA for the acceleration part. In particular,
growing with the data amount of genome sequencing, it
will be essential to use MapReduce to handle the extremely
large amount of data. MapReduce framework, in many
occasions, has been long proved and demon-strated as an
efficient methodology. In this paper, to benefit from both
MapReduce and FPGA, we construct the MapReduce
framework on CPU/FPGA hybrid platforms. Normally the
process is divided into following two steps:

1) The first stage is the MapReduce stage. Scientific
researchers can send short reads as a stream into our
system through the MapReduce server. As soon as
the request is received, it will undergo a general
Map scheduling stage, which partitions the entire
genome sequencing task into many small jobs, and
then distributes them to parallel computing nodes.

2)  The second stage is the local alignment in FPGA. Multi-
ple hardware acceleration engines are deployed to
speedup the genome sequencing analysis procedure.

Our proposed architecture framework is illustrated in
Fig. 1. Generally the system is constructed on a central clus-
ter server which is responsible for sequence pre-processing,
database access and user interaction, while multiple hard-
ware acceleration engines are deployed to speedup the
genome sequencing analysis procedure.

Throughout this paper, we use Hbase [41] as the Genome
Database, which is a distributed storage system for random,
real time read/write access to our Big Data for very large
tables—with billions of rows and millions of columns.
Hbase provides big table-like capabilities on top of Hadoop
[42] and HDFS [43]. Data stored in Hbase was divided
according to the table where it belongs. Each table may
have billions of rows and all the rows in the table were
ordered by the key field. The biggest difference between
Hbase and other SQL database is that Hbase is column-ori-
ent. Due to the large scale at millions of columns, each col-
umn belongs to column-family, which is a logic union of
columns. Each cell in Hbase stores multi versions of the
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Fig. 2. Map and reduce phases in MapReduce framework.

data. Since one table can contains hundreds or thousands
column families and columns in each column family can be
millions. This property is very important for our system
design. Each cell also contains multi version values that
allow us remember the history information.

At start-up, the cluster server is ready to receive multiple
user requests at any time. Due to the large amount short
reads (millions at least) in general, it is not practical to start
the mapping procedure in one machine, even in assistance
of hardware acceleration engines. We also need to distribute
the short reads to different computing machines in parallel,
each of which is equipped with FPGA based accelerators.
As a consequence, we extend the MapReduce programming
framework with multiple hardware acceleration engines on
single FPGA to further reduce the execution time for the big
data genome sequencing processing applications.

3.2 MapReduce Distribution Model

MapReduce [9] is a well known software framework devel-
oped and used by Google to support parallel-distributed
execution of their data intensive applications. Google uses
this framework internally to execute thousands of MapRe-
duce applications per day, processing petabytes of data, all
on commodity hardware. Unlike other parallel computing
frameworks, which require application developers explic-
itly manage inter-process communication, computation in
MapReduce is divided into two major phases called map
and reduce, and the framework automatically executes those
functions in parallel over any number of processors. A dem-
onstration work flow of MapReduce framework is illus-
trated in Fig. 2.

A typical MapReduce framework includes two phases:
map and reduce. The map function computes key—value pairs
from the input data based on any relationship applicable to
the problem, including computing multiple pairs from a
single input. Once the mappers are complete, MapReduce
shuffles the pairs so all values with the same key are
grouped together into a single list. The grouping of key-
value pairs effectively creates a large distributed hash table
indexed by the key, with a list of values for each key. The
reduce function can be arbitrarily complex, but must be
commutative, since the order of elements in the key-value
list is unstable. As an optimization, MapReduce allows
reduce-like functions called combiners to execute in-memory



WANG ET AL.: HETEROGENEOUS CLOUD FRAMEWORK FOR BIG DATA GENOME SEQUENCING 171

Reference Gnome 1 | «--- Reference Gnome1 | «++-e
Seed Key Seed Key
occur 1|occur 2 occur 3| seeses | eeeees occur 1|occur 2| readl | ceeeee | eeeeee
AGCTAGCT... p N AGCTAGCT... R b 9
T L 7 N X N
ACTGAGTC, % ACTGAGTC,. N \ \

’ \\ \\ \‘ \\
ACAGGGLC. L ACAGGGC.. NN N
ACGTAgCC... Vg, ACGT/ACCC... e \

7 N 7 SN 2
{ S { »
LC | {index | | LR L-C JIndex i LR

Fig. 3. Reference genome lookup table. Index means this occurrence’s
position in the reference genome 1, L-C means the left elements of this
occur; L-R means the right elements of this occur; The size of L-C and
L-R should be m-s-+k (k is the maximum number of differences or mis-
takes; s is seed length, m is minimum length of the reads.

immediately after the map function. Combiners are not possi-
ble in every application because they evaluate on a subset of
the values for a given key, but when possible, reduce the
amount of data processed in the shuffle and reduce phases.
In the k-mer counting example, the combiner emits a partial
sum from the subset of 1 s it evaluates, and the reduce func-
tion sums over the list of partial sums.

The MapReduce programming framework has been suc-
cessfully introduced with respect to the FPGA based acceler-
ations. For the sake of massive data processing requirement,
we use RMAP algorithm to align the short reads. RMAP
algorithm is based on seed-and-extend approach, which is
composed of two phases: Compare Phase and Seed-Extend
Phase [15]. Of the two phases, Compare Phase is basically
considered as a mathematical string matching problem,
which in this scenario is in charge of locating the seed string
in the reference genome sequence, therefore it is regarded as
the time-consuming part. On the other hand, Seed-Extend
Phase will be processed after the seed are indexed, and the
extensions in both sides of the seed string are to be com-
pared to explore whether a mismatch (e.g. genome muta-
tion) appears. Due to that the length of extended string is
always much shorter than the reference itself, hence the tim-
ing complexity of Seed-Extend Phase can be ignored with
respect to the large amount of the reference sequence. More-
over, for the sake of the area and hardware constraints of
FPGA chip areas, it is not feasible to implement all the hard-
ware logic within limited hardware look-up-tables (LUTs)
and slices registers, consequently we put our concentrations
on the hardware accelerations engines of the Comparing
Phase, implementing hardware IP cores on FPGA for RMAP
string matching applications.

To design the RMAP algorithm into MapReduce pro-
gramming framework, both the map and shuffle stages are
employed in string compare operations, while the reduce
stage is in charge of seed-extend operations.

At the very beginning of our system, we use MapReduce
tasks to build a lookup table for all the seed from the refer-
ence genomes like Fig. 3. Each seed may appear multiple
times in one reference genome, so we make every reference
genome as a column-family in Hbase table and each occur-
rence of a given key is a column in the family. The benefits

Fig. 4. Hbase table after users short read requests written.

to organize this way is we can make sure each reference
genome information was stored in one physical server,
which would accelerate computing a lot.

Considering the data structure of reference genome
lookup table structure, we utilize the LUT based slice regis-
ters within FPGA development board to allocate block
parameters, as it is the natural way to access the L-C, Index
and L-R values in hardware acceleration. However, due to
the hardware resources constraints, we can not integrate
all the Lookup Table together, therefore they are imple-
mented as private memory access for different hardware
accelerators.

When a short read reaches the buffer, it would be written
into the Hbase table immediately to form a table like Fig. 4
shows. It's the same table with Fig. 3 except the extra read
columns that were added into the corresponding reference
genome column-family. After writing into this table, each
read should begin to align itself with the corresponding ref-
erence genomes. This processing is not complex but still
time costing. To accelerate this procedure, we revise the
Hbase update operations: whenever there is an update in
specific column-family (which in our case is read column-
family), there would be a new task allocated to do the align-
ing job. Due to localization of the same row and the same
column-family, this task would not need communication,
which will be faster with the plain MapReduce algorithm.

Beside the tasks executed when request arrives, we have
a threshold on the short read buffer to judge whether the sys-
tem load (means the short reads requests per minutes) was
too high. In the situation that system load is high, each read
will not be processed by individual task, instead, after writ-
ing the request reads into the Hbase table, we will schedule
an global MapReduce task and generate the align results at
the same time.

The scheduling and generation process is divided into
three stages:

1) Generate lookup table. At the very beginning of our sys-
tem, we got numerous reference genomes and we will
schedule MapReduce tasks to generate the seed lookup table,
which will be used to handle user requests. Fig. 5 shows an
example of how the map, shuffle, and reduce function
works in generating lookup table.

The map function emits k-mers of length s as seeds from
all the reference sequences. The shuffle phase collects k-
mers shared between the reference sequences. Finally, the
reduce function write the same seed into the Hbase table.
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Fig. 5. Example on how to construct the lookup table.

2) Individual update tasks. The individual updates task
is implemented with Hbase but modified in a data trigger
way. Whenever updates on specify column-family hap-
pen (in our case, the reads family in lookup table), a new
process will be generated on the node where the refer-
ence genome stores. As the read has been stored in the
reference genome column-family, the process can read
the request reads locally.

After obtaining the request reads and the left flank and
right flank of the seed, we can extend the exact alignment
seed into longer inexact alignments. We partition the ref-
erence genome information into the set R and partition
the read into set Q. Then attempt to extend each pair of
tuples from the Cartesian product R X Q using either a
scan of the flanking bases to count mismatches, or the
Landau-Vishkin k-difference algorithm for gapped align-
ments. If an end-to-end alignment with at most k mis-
matches or k difference is found, it is then checked to
determine if it is a duplicate alignment.

3) Global MapReduce tasks. The global MapReduce task
will be scheduled when the system suffers from high
volumes of requests and when most of the requests do
not hit the cache. The global MapReduce job is sched-
uled on the lookup table, where all the reference genomes
and the reads were stored. The Map-Shuffle-Reduce
phases are pretty similar with the way we build the
lookup table except that we need to consider the reads
stored in each reference column-family. In the Reduce
phase of the global MapReduce task, we use the same
algorithm as the individual update task does.

The above section presents how MapReduce framework
is deployed to handle the short read processing problem. In
our solution, multiple acceleration engines have been inte-
grated to achieve higher speedup. As both the map and shuf-
fle stages are employed in string compare operations, while
the reduce stage is in charge of seed-extend operations.

3.3 Local Alignment on Single FPGA Chip

The basic unit of the MapReduce framework is one sin-
gle FPGA chip. In each chip, the accelerator is attached
to a local microprocessor. In order to support fast data
transfer, every function unit has been packaged into
a same manner accessed by Xilinx FSL channels. For
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Fig. 6. Architecture in single FPGA chip, the cmmunication interfaces
between processor and accelerator is based on FIFO interface.

demonstration, state-of-the-art Xilinx early access partial
reconfiguration paradigm is introduced to support IP
core replacement.

The reconfigurable fabric communicates with the main
core through a set of first-in-first-out (FIFO) interfaces as
shown in Fig. 6. The FIFO interfaces are connected to/from
the commit stage of the main core pipeline. The core-to-
accelerator interface works to enable communication
between the core and reconfigurable fabric. The processing
core sends its execution trace to the genome sequencing
accelerator via the FIFO interface, so that the fabric can per-
form the operations on each forwarded task.

A forward FIFO sends a trace of instructions, which are
completed and ready to commit, in the program order. A
FIFO packet contains fairly comprehensive information,
including the Data, Clock, Reset, Exist Full, Write signals.
The FIFO packet also includes the input buffer, output
buffer and control logic, in order to manipulate the finite
state machine.

The accelerator needs to be able to raise an interrupt and
communicate with the main core through explicit instruc-
tions. The instructions may read/write configuration regis-
ters on the co-processor and/or perform custom operations
for each extension.

The main core and hardware sequencing accelerator
communicate with each other through a set of FIFO inter-
faces. The core-to-accelerator interface uses a Xilinx Fast
Simplex Link as a demonstration. Signals in both direc-
tions include Control and FIFO data signals. There are
signals such as Clock and Reset shared by both main
core and IP core.

Communication between main core and accelerator is
utilized in master-slave manner. For task distribution,
microprocessor acts as master which sends a specific
instruction to drive the FIFO based interconnection.

Accelerator acts as masters when a back FIFO (BFIFO)
sends a return value to microprocessors. Note that the pro-
posed FIFO interface with the reconfigurable fabric can eas-
ily support IP core reconfiguration on the main core for
each extension. For example, after the hardware implemen-
tation of the accelerator is replaced, the communication
interfaces remain the same. The unified interfaces allow
applications to substitute accelerators during task execution
for different tasks, without interrupt the task execution. A
reconfiguration controller is introduced to deal with the
hardware reconfiguration.
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TABLE 2

Parameters Used to Analyze Speedup
Symbols Description Typical
m Minimum short reads size 100 ~ 2,000 bp
k Maximum mismatches 4 (<10)
S Seed size from reads m/k+1)
n Reference genome size 1 billion
R Number of Reads 1 million
p Speedup with multiple HW 75 x ¢

3.4 Sequencing Kernel As Hardware Accelerator
The aim of the sequence alignment is to report the matched
locations of queries (reads are usually called the queries
when conducting the alignment) in the reference. In order
to accelerate the read mapping problem, we employ a local
sequencing kernel in each hardware accelerator. This spe-
cific task is implemented as a hardware kernel for genome
sequencing accelerator in the FPGA chip. For demonstra-
tion, we employ BWA-SW [44] as the kernel sequencing
accelerator. Please note that the kernel could be replaced by
other state-of-the-art genome sequencing engines. Here, the
alignment procedure of BWA-SW algorithm contains three
major sequential steps: build index, search seeds and local
alignment, respectively. As the algorithm should be familiar
with the readers, consequently we only illustrate the brief
introduction of each step of the sequencing process:

1) Build index. To scan the enormous long reference effi-
ciently, indexes are constructed for the queries and
the reference. The index for the reference is only built
once and can be shared among all queries.

2)  Search seeds. After then, seeds are searched by tra-
versing the indexes of the queries and reference with
dynamic programming. Here, seeds mean those
small identical substrings between the queries and
the reference which indicate more possibility to be in
the exact alignments.

3) Local alignment. The seeds are extended and com-
pared with the local alignment algorithm. A similar-
ity score is calculated by the local alignment
algorithm to clarify whether the places are the real
alignment locations or not. Finally, the information
of the mapped reads is recorded in the sequence
alignment file.

4 THEORETICAL ANALYSIS

In this section, we analyze the timing complexity of the
algorithm, and then present the ideal speedup using differ-
ent hardware architectures.

4.1 Timing Complexity Analysis

The terms and parameters used in the equations are defined
in Table 2. m refers to the minimum short read size, which
lies between 100 to 2,000 bp generally. k is the maximum
allowed mismatches, which is configured to 4. s and n repre-
sents the seed size and reference genome size, respectively.
Due to the large amount of human genomes, the reference
genome size could reach to 1 billon or more. R indicates the
number of short reads, which could also be up to 1 million.

Ideal Speedup V.S. Amount of Accelerators
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Fig. 7. Theoretical speedup versus amount of accelerators.

Finally, the speedup with multiple hardware accelerators is
set to 75 x ¢, while c is the number of accelerators.

Assume m refers to the minimum short reads size, k
stands for the maximum allowed mismatches, s indicates
the seed size, n denotes the reference genome size, and R
represents the number of short reads. Based on these
parameters and the processing flow of the algorithm, the
timing complexity is analyzed separately in the following
two phases:

1)  Compare phase. In serial algorithm, each read was
divided into m/s seeds, and each seed compares with
the reference genome to get index, the complexity
would be O(n + s), therefore the timing complexity
in this stage is O(mn + m).

2)  Seed and extend phase. After that, we uses a variation
of the Landau-Vishkin k-difference alignment algo-
rithm which cost O(km) to get the score of each seed.
Considering the m/s seeds, the timing complexity in
this stage is O(km?).

So the total time would be O(m™n + km> + m). For R
reads, the total runtime would be O(Rmn + Rkm? + Rm). It
is widely applied that the reference genome size n is much
bigger than the minimum short read size m, consequently
the final timing complexity is O(Rmn).

Based on the timing analysis, we can derive the speedup
as we use the both the hardware accelerators and Map-
Reduce parallel processing framework. Let ¢ be the nodes
number of the acceleration engines, and SPU refers to the
speedup string match hardware implementations, hence
we can achieve the speed by multiple hardware acceleration
engines under MapReduce framework p = SPU X c. Finally
the total time of R reads in our system should be less than O
(Rmn/p).

4.2 Speedup Analysis
We have evaluated the curve depicting how the speedup of
the hybrid system is affected by the number of acceleration
engines. Due to the large amount of the genome size 7, the
final speedup curve is quite linear with the slope coefficient
is SPU (in our case, SPU is configured to 75x against soft-
ware execution, according to the profiling results on prelim-
inary experiments), as is presented in Fig. 7.

Both curve for binary tree and ring topologies appear to
be extremely close to the ideal linear speedup. The reason is
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that as the topologies take log ¢ and c¢/2 for translation
delays. When c is relatively small than the data sets (n and
m are quite huge due to human genome data sets), either
approach does make any noticeable difference. The curve
for both Binary Trees and Ring topologies are essentially
coincident with the ideal linear speedup, therefore the theo-
retical speedup for 64 accelerators can reach to up to 4,800x
at most. Fig. 7 also illustrates that the number of accelerators
has a linear effect on the speedup when the genome size is
much bigger than the short read size. We also measure the
curve between speedup and the Task scales 7. In this case, ¢
is set to 8, and the speedup is fixed to 758 = 600, which is
presented in the while bar in Fig. 7. The results demonstrate
that the final speedup is irrelevant to the communication
overheads as the application is computing intensive. Due to
the liner speedup metrics, it is a favourable solution to com-
bine both the high level parallel distributed with hetero-
geneous hardware acceleration engines into a sound
framework for future biological DNA sequencing solutions.

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Identify the Hardware Acceleration on FPGA
With respect to BWA-SW algorithm implemented on FPGA,
it contains three major steps: constructing index, searching
seeds and the local alignment. In order to save the area of
the FPGA chip, we need to select which part is the bottle-
neck and should be accelerated. We first profile the algo-
rithm on BWA-SW software to get an overview of the time
consumption of these steps.

In the profiling step approximately 10,000,000 bp reads
are generated in total by simulators with different lengths
and error rates from the human genome database. In practi-
cal, we generate reads sets with the length of 100, 200, 500,
1,000, and 2,000 bp, respectively. For each kind of reads
with different lengths, genome variations and gaps are ran-
domly inserted with the error rate of 2, 5, and 10 percent,
respectively. The total base pair amounts of all the test cases
are almost the same (genome gaps may cause little differ-
ence for different cases). That is, there are 100,000 queries
for reads of 100 bp, 50,000 queries for reads of 200 bp,
20,000 queries for reads of 500 bp, 10,000 queries for reads
of 1,000 bp and 5,000 queries for reads of 2,000 bp. These
generated reads sets are aligned back to the human
genomes with BWA-SW software finally.

The profiling results are shown in Fig. 8 which outlines
the time consumption features of each step in BWA-SW pro-
gram. The x-axis indicates reads cases with different
lengths. On the other hand, the y-axis describes the time
percentage of Local Alignment step in the algorithm. In the
figure s indicates the suffix array (SA) interval threshold. It
clearly states that the local alignment phase takes the most
time of the program. For these cases, the local alignment
phase becomes the bottleneck of the program. In particular,
we can get following two conclusions:

First, when the interval the interval threshold is set, the
local alignment will contribute higher percentage of execu-
tion time with the short read lengths. For example, when
s = 7, the execution time percentage of the local alignment
phase takes 30.86 percent (at 100 bp), 57.09 percent (at
200 bp), 77.48 percent (at 500 bp), 77.7 percent (at 1,000 bp),
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Fig. 8. Profiling results for aligning different reads sets to the human
genome database. The figure reveals the time percentage of the Local
Alignment step in BWA-SW program for different lengths of reads with
different error rates. The profiling is conducted on a computer with the
64 bit Fedora13 OS installed and 2 Intel Xeon 2.53 GHz W3505 CPUs
as well as a 6 GB main memory integrated.

and 71.09 percent (at 2,000 bp), respectively. The experimen-
tal results demonstrate that the timing complexity of the
local alignment increases with the data scale sensitively.

Second, when the read length is set, the local alignment
will also contribute higher percentage of execution time with
higher interval thresholds. Similarly, when the read length is
set to 1,000 bp, the execution time percentage of the local
alignment phase takes 69.59 percent (at s = 3), 76.13 percent
(at s = 5), 77.7 percent (at s = 7), 78.3 percent (at s = 9) and
79.06 percent (at s = 11), respectively. The experimental
results demonstrate that the timing complexity of the local
alignment increases with the interval threshold as well.

From the profiling results, we can get a conclusion that
the local alignment phase is of the most desire to be acceler-
ated and parallelized.

5.2 General Speedup on FPGA Prototype

To evaluate the parallel speedup of the MapReduce and
FPGA architecture, we set up the real experimental environ-
ment on 8 Xilinx XV5 FPGA boards, each of which is
equipped with one dual-core Microblaze processor, and
hardware acceleration engines with programmable logic.
On each microprocessor, a Linux operation system (version
hanshuebner/linux-xInx) with Hadoop framework is run-
ning smoothly. Meanwhile the one BWA-SW genome
sequencing engine is implemented at register-transfer-level,
which is encapsulated into hardware acceleration engines
in each FPGA. The Microblaze processor is connected to the
hardware through onchip FSL bus links. All the FPGA
development boards are connected via Ethernets.

As all the FPGA development boards are deployed in the
same configurations, therefore we only evaluate the
speedup, sensitivity and other metrics on one FPGA chip
subsystem. The improvement of the efficiency and the
throughput of one FPGA chip can be revealed by the whole
system speedup which is shown in Fig. 9. Approximately
10,000,000 bp reads are generated from the human genome
database and aligned back with BWA-SW (version 0.6.2)
and our acceleration platform.

The three polygonal lines in Fig. 9 show the speedup
archived by our accelerating system over BWA-SW soft-
ware for different lengths of reads with error rates of 2, 5,
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Fig. 9. Speedup of our system compared to BWA-SW software. The
software runs on a computer with the 64 bit Fedora13 OS installed and
two Intel Xeon 2.53 GHz W3505 CPUs as well as a 6 GB main memory
integrated. Default options of the program are adopted for all the data
sets. Reads sets with lengths shorter than 500 bp (include the 500 bp)
are performed on the 500 bp configuration of our platform. Reads sets
with lengths of 1,000 and 2,000 bp are carried on the 1,000 and
2,000 bp configurations of our platform, respectively.

and 10 percent, respectively. We can see the performance
improvement of our platform for the short reads is quite lit-
tle. The speedups range only from 1.07x to 1.29x for reads
with lengths of 100 bp. And speedups for reads with lengths
of 200 bp range from 1.2x to 1.8x.

However, for long reads, the speedups are higher than
1.4x and reach as high as 2.73x for the case of reads with
lengths of 1,000 bp and 2 percent error rate. The speedups
for the reads with lengths of 2,000 bp become a little lower
compared with the ones of 1,000 bp for error rate of 2 and 5
percent, but the acceleration platform is still more than two
times faster than BWA-SW software for these cases. The
decrease of the speedups is caused by the increase of the
apportion time of the fixed operations (some fixed opera-
tions in the program cost quite a lot of time while the num-
ber of queries for the 2,000 bp reads is half of that for the
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1,000 bp). A trade-off exists between the single read align-
ment time cost and the total quantities.

5.3 Sensitivity Analysis

We improve the efficiency of the long read mapping by
realizing the bottleneck of BWA-SW software via the
hardware acceleration. It can be aware that this solution
does not archive any advance on the sensitivity of the
aligner. Nevertheless, the software itself has some param-
eters that affect the accuracy of the alignment. Users can
improve the sensitivity of the aligner by finely tuning the
options of the program. Generally speaking, the sensitiv-
ity can be increased at the plenty of the speed by loosen-
ing the seeds searching conditions. Fig. 10 illustrates the
effects of the SA interval threshold and the z-best strategy
option to our accelerating system. The command line
used for alignment is as follows:

e bwa bwasw -s s -z z human-index queries.fa
where ‘bwa’ is the executable file. Option ‘bwasw’ indicates
the long reads mode is used. Option ’-s s’ reveals that the
SA interval threshold is set to s (s =1, 3,5, 7,9, 11 in
Fig. 10). Option ‘-z z’ means that the only the z number of
the top best nodes of the inter loop of the nested traversal
are concerned, denoted as z =1, 2, 3 in Figs. 10, 10a, 10b and
10c respectively. Option ‘human-index’ reveals the index files
of the reference and option ‘queries.fa’ is the filename of the
reads set. It can be aware that bigger SA interval threshold s
results in more valid seeds and thus increases the sensitivity
of the program. On the other side, the bigger the z-best strat-
egy threshold z, the more branches will be searched and
therefore the more sensitive the program becomes.

From Fig. 10a, it can be obviously learnt that with the
increase of the SA interval threshold s, the speedup
archived by our accelerating platform also grows. More-
over, the tread becomes slower when the SA interval thresh-
old gets bigger. However, for situations when the z-best
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Fig. 10. Speedup of different data sets with different SA interval threshold s and z-best strategy threshold z. approximately 10,000,000 bp reads with
lengths of 100, 200, 500, 1,000, and 2,000 bp are simulated. Genomes mismatches and gaps at the error rate of 2 percent are inserted in all these

data sets. Reads sets in subfigure (a), (b), and (c) are the same.
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strategy z equals 2 or 3, the change of the speedup along the
SA interval threshold s becomes intangible. From Figs. 10b
and 10c, it can hardly give a direction whether the perfor-
mance will become better or worse when turning up the SA
interval threshold.

The coordinate systems for all subfigures in Fig. 10 are
the same. By taking account all the three subfigures in
Fig. 10, a trend can be realized that the smaller the z-best
strategy is, the higher the speedups are archived by the
accelerating platform. Every polygonal line in Fig. 10a is a
bit higher than the respective ones in Fig. 11b and the polyg-
onal lines in Fig. 10b are also not worse than those in
Fig. 10c. But not all test cases follow this trend. For example,
the speedup in Fig. 10b for the case of 2,000 bp reads when
the SA interval s equals 9 is 2.3x while the one in Fig. 10c
comes a little bigger, to be 2.4x.

Moreover, Figs. 10d, 10e, and 10f illustrates the speedup
with different z-strategy, interval thresholds, and read
lengths, respectively. It can de derived that the speedup is
not that sensitive with z-strategy, and increase much more
with the interval thresholds and read lengths.

5.4 Quality and Error Analysis

Mapping quality [45] is a key concept of to estimate the
probability of a query sequence being placed at a wrong
position. In particular, the mapping quality scores quantify
the probability that a read is misplaced. If an alignment
algorithm guarantees to find all local alignments, mapping
quality is determined by these local alignments only. How-
ever, as BWA-SW deploys heuristic rules, the chance of pro-
ducing a wrong alignment is also related to the heuristics.
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Fig. 12. Error rate different read lengths and error rates are simulated
from the human genome.
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TABLE 3
Hardware Utilization on FPGA (500 bp)
Resource Used Available Percent
Slice Flip-Flops 55 1,35,168 0.04%
4 input LUTS 293 1,35,168 0.22%
Slice Logics 153 67,584 0.23%
Bonded IOBs 67 768 8.72%
BUFGs 1 32 3.13%

To estimate the mapping quality of a BWA-SW alignment,
we measured the mapping quality scores with different
read lengths and intervals.

Fig. 11 presents the percentage of the mapping qualities
scores. We select Q20 as the major evaluation metric, as in the
reference [45]. From the figure we can include following
conclusions:

1)  The value of Q20 grows with the growing read
length when at a specific interval threshold, e.g.
from 88.86 to 98.44 percent when s = 5;

2)  The value of Q20 slightly increases with the interval
threshold, e.g. the Q20 increase from 95.36 to 95.83
percent, when the read length is 1,000 bp.

Furthermore, in the implementation, we try to automati-
cally adjust parameters based on the read lengths and
sequencing error rates to make the configurations work well
for inputs of different characteristics. Therefore we also need
to explore the error rate for different read lengths and inter-
val thresholds.

Fig. 12 depicts the percentage of the error rate. From the
figure we can include that the error rates falls with the
growing read length when at a specific interval threshold,
e.g. from 1.33 to 0.06 percent when s = 5. Furthermore,
when the read length is up to 2,000 bp, the error rates at all
interval thresholds at insignificant level, ranging from 0.04
to 0.08 percent, respectively.

5.5 Hardware Cost

Due to the limitation of the chip area in FPGA, hardware
cost is always a concerning factor for the FPGA based
design paradigm. The chip area is always an issue of con-
cern for the FPGA based design.

The prototype platform is implemented on the Xilinx
Virtex-5 LX110T FPGA. Table 3 lists the hardware utilization
on FPGA with the 500 bp case. As reported by the Xilinx tools,
each banded Smith-Waterman module could operate at
200 MHz and costs 55 slice Flip-Flops, 293 4-input slice LUTs,
and 153 for the slice logic. Bonded IO blocks are also needed
for 67. With respect to the total hardware logic available on
the FPGA chip, the percentage is quite acceptable that more
than 100 accelerator modules can be integrated in one chip.

TABLE 4
Power and Thermal Information (2,048 bp)

Supply Power Quiescent Dynamic Total Power
Power Power
1.319 W 0.019 W 1.339 W
Thermal Max Ambient(°C) Junction Temp(°C)
Properties 77.1 57.9
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Furthermore, we also measured the power and thermal
information in Table 4. The total power of a single accelera-
tor is only 1.339 W, which includes a quiescent power at
1.319 W (98.6 percent), and a dynamic power at 0.019 W (1.4
percent). Meanwhile the max ambient and the junction tem-
perature are 77.1 and 57.9 °C, respectively.

6 CONCLUSIONS AND FUTURE WORK

This paper has proposed a general heterogeneous cloud
framework for next genome sequencing with multiple hard-
ware accelerators on FPGAs. We utilize an extended Map-
Reduce distribution framework with multiple hardware
accelerators on FPGA. By extending a distributed process-
ing technique with hardware accelerators, this approach
could bring significant speedup for genome sequencing
alignment process. We have presented results both from a
theoretical analysis and real hardware platform on Xilinx
FPGA development board. The experimental results reveal
that each hardware accelerator could achieve up to 2.73x
speedup as well as it only occupies less than 1 percent of
the FPGA chip resources.

Given the promising preliminary results illustrated
in this paper, there exist various directions for future
developments. Additional engineering effort needs to be
applied to assess the scalability comparison to aforemen-
tioned cutting-edge approaches. Also a comparative study
between the short read mapping applications in high per-
formance GPU based supercomputers based on Hadoop
clusters and detailed analysis of the feasibility, cost and
overheads is working in progress. Furthermore, from the
technical perspective, if different reads contain the same
seeds, they could be cached in a fast table to response
with high efficiency.
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