
Brief Announcement: MIC++: Accelerating Maximal
Information Coefficient Calculation with GPUs and FPGAs

Chao Wang, Xi Li, Aili Wang, and Xuehai Zhou
School of Computer Science, University of Science and Technology of China, Hefei, China

School of Software Engineering, University of Science and Technology of China, Suzhou, China
{cswang,llxx,wangal,xhzhou}@ustc.edu.cn

ABSTRACT
To discover relationships and associations between pairs of vari-
ables in large data sets have become one of the most significant
challenges for bioinformatics scientists. To tackle this problem,
maximal information coefficient (MIC) is widely applied as a mea-
sure of the linear or non-linear association between two variables.
To improve the performance of MIC calculation, in this work we
present MIC++, a parallel approach based on the heterogeneous ac-
celerators including Graphic Processing Unit (GPU) and Field Pro-
grammable Gate Array (FPGA) engines, focusing on both coarse-
grained and fine-grained parallelism. As the evaluation of MIC++,
we have demonstrated the performance on the state-of-the-art GPU
accelerators and the FPGA-based accelerators. Preliminary esti-
mated results show that the proposed parallel implementation can
significantly achieve more than 6X-14X speedup using GPU, and
4X-13X using FPGA-based accelerators.

Keywords
MIC; Accelerator; GPU; FPGA

1. INTRODUCTION AND CONTRIBUTION
Large scale data analysis is posing significant challenges to state-

of-the-art bioinformatics computing machines and technologies. The
problem of identifying whether two or more variables are inde-
pendent or have some kinds of associations (functional or non-
functional) is called the Detecting Association Problem [1]. This
problem is becoming g increasingly important in different fields
growing with the explosive data scale. To tackle this issue, David
N.Reshef [2] has established the generality of maximal information
coefficient (MIC) calculation method, showing its equitability on
functional relationships through simulations, and observe the intu-
itively equitable behavior on more general associations. However,
this MIC computation algorithm is entirely computational and data
intensive so that it is not feasible to employ traditional machine
on large data sets. Billions of samples and thousands of variables
make the computing impossible and time-consuming. To our best
knowledge, although there has been some preliminary research on
the acceleration of MIC calculation using cloud-based distributed

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA ’16 July 11-13, 2016, Pacific Grove, CA, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4210-0/16/07.

DOI: http://dx.doi.org/10.1145/2935764.2935804

system [4] or GPU-based accelerators [3], so far no hardware ac-
celerating techniques like using FPGA-based platforms have been
implemented.

To solve this problem, in this paper, we propose MIC++, an
accelerator framework based on heterogeneous GPU and FPGA
hardware accelerators. We extended the current sequential algo-
rithm which is based on dynamic programming, and can achieve
higher performance without any correctness penalty and insignifi-
cant overheads. We claim following contributions of this work:

• In this work, we analyze the behavior of the MIC calculation
with four steps and propose a parallelized implementation
of the MIC calculation with hierarchical coarse-grained and
fine-grained parallelisms, named MIC++. We can use paral-
lelized MIC++ algorithm to different accelerators like GPU
and FPGA based architectures.

• We implement the parallel MIC++ approach on NVIDIA GTX
750 GPU, and Xilinx Virtex-7 NetFPGA SUME real hard-
ware platforms. Experimental results demonstrate the MIC++
accelerator can achieve 6X-14X speedup with ignorable hard-
ware cost. Finally, we believe the MIC accelerator can be
utilized in a wider range such as data processing in machine
learning areas.

2. MIC PARALLELIZATION
Fig.1 illustrates the parallel MIC++ architecture. In particular,

Fig.1 (a) demonstrates the coarse-grained parallelism on accelera-
tor based cluster architectures, while Fig.1 (b) and Fig.1 (c) illus-
trate the fine-grained parallelism on accelerating threads.

2.1 Coarse-grained parallelism
Regarding the MIC calculation process, Each element of MICM

(MIC matrix) is defined as I(x, y), which stands for the maximum
entropy when partitioning all the two-variable pairs in x rows and
y columns. The computing process of MICM starts by sorting all
pairs in ascendant order by the Y value. Thus, each column of
MICM uses the same initial partition. Then, we use accelerator
based architecture to compute MICM in parallel. In the coarse-
grained parallelism step, we only focus on the sorting of the in-
put data set D, while the fine-grained parallelism step handles ac-
tual accelerating for computing MICM. When processing large data
sets, sorting steps (step 1 and 3) take intolerable long time when us-
ing serial sorting algorithms such as QuickSort or MergeSort. By
contrast, Bitonic sorting networks have been introduced to run sort-
ing steps in parallel. Bitonic sorting networks have been proved as
efficient measures for GPU computing not only for its time com-
plexity but also for its data-dependency, meaning that the time con-
sumption of sorting depends on the size of the data set but not the

287

I(2,2) … I(2,y) … I(2,T)

… … … … …

I(x,2) … I(x,y) … I(x,T)

… … … … …

I(T,2) … I(T,y) … I(T,T)

MIC Matrix

R1

…
Rx

…
RT

… Cy … CTC1

Accelerator Scheduler

GPU Node FPGA Node

S(2,2)

… …

S(x,2) … S(x,y)

… … … …

S(T,2) … S(T,y) … S(T,T)

Middle Matrix

r1

…
rx

…
rT

… cy … cTc1

(a) Cluster with Accelerators

Grid 1 … Grid x … Grid T

Block 1 … Block x … Block T

Thread 1 … Thread x … Thread T

S(2,y-1)
…

S(x,y-1) …
… …

S(T,y-1) …
cycy-1

S(x,y)

(b) Accelerating
Threads

(c) Reduce Process

Figure 1: Architecture of the parallel algorithm, the MIC matrix is first
processed by GPU cluster scheduler (in a), and then organized into a Middle
Matrix, which will be operated in CUDA threads (b and c).

original sequence of it. The time complexity of Bitonic sorting is
O(log2(N)), and it is a comparator based sorting network. Thus,
no additional memory is required as in Quicksort. The other two
steps of initial partition are not suitable for coarse-grained paral-
lelization due to the inter-task dependencies between them. Fi-
nally, it can be concluded that the steps 1 and 3 run on acceler-
ators while steps 2 and 4 run on CPU. Though data transmission
takes place between CPU and accelerators in Bitonic sorting net-
works, the overall performance is still significantly improved than
the serial algorithms. Besides, when the CPU is executing step
2, execution of step 3 on GPU can be fully overlapped, reducing
the overall time consumption of the implementation of the algo-
rithm. When the coarse-grained parallelism finishes, a series of
two-dimensional vectors (TDVs) are stored. The TDVs contain the
partitions of each (x, y) pair, which will be used to compute the
MIC in the fine-grained parallelism.

2.2 Fine-grained parallelism
In the coarse-grained parallelism, the TDV that holds the neces-

sary data for computing a certain column of MICM is generated. In
this section, we design a parallel algorithm to accelerate the com-
puting process at each node. Fig.1 (b) presents the computing pro-
cess of each column of MICM. The left part of Fig.1 (b) is a middle
matrix (MM) that temporarily stores the intermediate results. Each
element of MM is S(x, y), which refers to the maximum entropy
when partitioning the first x columns of TDV into y columns. MM
is a lower triangular matrix, where the last row finally stores the re-
sults of the column of MICM, e.g. the data of rT in Fig.1(b) is cy
in Fig.1(a) after transposition, both rT and cy are surrounded with
dashed line. The right part of Fig.1(b) demonstrates the data de-
pendencies when computing an element in MM. Each S(x,y) only
relies on the elements whose x-axis index is no more than x of the
(y − 1) column, as shown in the right part of Fig.1(b), the dark el-
ements will affect the value of S(x, y). When computing S(x, y),
each element produces a new entropy and then S(x, y) selects the
maximum one of the final value. Based on the above analysis, ac-
celerator threads are organized at three levels, Grid level, Block
level, and Thread level, respectively, as illustrated in Fig.1 (c).

Grid level: Each column of MM is calculated simultaneously.
As adjacent columns have data dependencies, thus each column is
organized as a grid in the middleware (like CUDA), a synchroniza-
tion function is inserted between adjacent grids. The kth column is
corresponding to the kth grid.

Block level: Different elements of a column have different data

dependencies as described above. To efficiently use the shared
memory of each block, each separate component is organized as
a block.

Thread level: As shown in the right part of Fig.1 (b), the com-
putation of S(x, y) has (x− 1) separate intermediate calculations,
and finally, the peak value is selected. So the uth block has (u−1)
threads, a parallel reduce process is applied to find the maximum
value and its position.

If thread index exceeds the maximum number allowed by ac-
celerators, the associating block is then automatically divided into
smaller subblocks. Accordingly, the reduce process is also divided
into subsequences, and a merge process will be handled after all the
sub-tasks are finished.

2.3 Preliminary results and analysis
To evaluate the effectiveness of the MIC++ accelerators using

GPU and FPGA-based accelerators, we compare it against a CPU
with 256-bit SIMD (Intel Core i5 4460 3.3Hz, 8GB memory) over
different data scales. We take a modern GPU card (NVIDIA GTX
750, 1.04 TFlops peak, 2GB GDDR5, 80.2 GB/s memory band-
width, 28nm technology, CUDA SDK5.5) as the baseline. We use
the MovieLen1M Benchmark to evaluate the speedup and hardware
cost. 1000 movies are selected, and each movie is represented by a
6040*32bit vector.

We have evaluated four case studies for users and items in the
benchmark, with specific parts of the application offloaded to accel-
erator. Preliminary estimated results show that the GPU accelerator
achieves an average kernel speedup of 6X-14X on the SIMD CPU
implementation. By contrast, the FPGA based hardware accelera-
tor achieves 4X-13X in estimation, which is slightly lower than the
GPU-based accelerators. By the further data analysis, it can be con-
cluded that the GPU can access the data with up to 80.2 GB/s mem-
ory bandwidth while the FPGA accelerators only have a peak band-
width at 14.9GB/s. The reason that GPU and FPGA are achieving
similar speedup is that although FPGA is faster than GPU accelera-
tors, the bandwidth of the FPGA development board limits the peak
speedup. Regarding the hardware cost, simulation shows that the
area utilization for each FPGA-based accelerator is less than 5%,
which means a modern FPGA platform can accommodate about
20 accelerators. In that case, the speedup of a single FPGA chip
can achieve 260X kernel speedup against state-of-the-art proces-
sors. Meanwhile, the power consumption for a single accelerator is
only 210mW, which is much more energy-efficient than CPU and
GPU-based parallel approaches. Therefore, GPU and FPGA-based
accelerators have great potential to accelerate MIC application.

Acknowledgment. This work was supported by the NSFC No.
61379040, 61272131, Jiangsu Provincial NSF SBK201240198, An-
hui Provincial NSF 1608085QF128, State Key Lab of Computer
Architecture, and CCF-Tencent Open Research Fund. Xi Li and
Aili Wang are the corresponding authors of this paper.

3. REFERENCES
[1] Karpinets T.V., et al., Analyzing large biological datasets with

association networks. Nucleic Acids Res, 2012. 40(17):e131.
[2] Reshef, D.N., et al., Detecting Novel Associations in Large

Data Sets. Science, 2011. 334: p. 1518-1524.
[3] Tang, D., et al., RapidMic: Rapid Computation of the

Maximal Information Coefficient. Evolutionary
Bioinformatics, 2014.

[4] Wang, C., et al., Accelerating Computation of Large
Biological Datasets using MapReduce Framework,
IEEE/ACM Trans. on Computational Biology and
Bioinformatics, 2016.

288

