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Abstract—Heterogeneous multicore platform has been widely used in various areas to achieve both power efficiency and high

performance. However, it poses significant challenges to researchers to uncover more coarse-grained task level parallelization. In order

to support automatic task parallel execution, this paper proposes a FPGA implementation of a hardware out-of-order scheduler on

heterogeneous multicore platform. The scheduler is capable of exploring potential inter-task dependency, leading to a significant

acceleration of dependence-aware applications. With the help of renaming scheme, the task dependencies are detected automatically

during execution, and then task-level Write-After-Write (WAW) and Write-After-Read (WAR) dependencies can be eliminated

dynamically. We extended the instruction level renaming techniques to perform task-level out-of-order execution, and implemented

a prototype on a state-of-art Xilinx Virtex-5 FPGA device. Given the reconfigurable characteristic of FPGA, our scheduler supports

changing accelerators at runtime to improve the flexibility. Experimental results demonstrate that our scheduler is efficient at both

performance and resources usage.

Index Terms—FPGA, dataflow, dependency analysis, out-of-order, parallel architecture
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1 INTRODUCTION

TASK-LEVEL parallelism (TLP) has motivated research
into simplified parallel programming models [1]. How-

ever, a drawback of common task-basedmodels such as Cilk
[2], OpenMP [3], MPI, Intel TBB, CUDA and OpenCL [4] is
burdening the programmer with the non-trivial assignment
of resolving inter-task data dependencies. To resolve
this problem, automatic parallelization has been widely
researched at different levels, e.g., programming model [5],
compiler and runtime library [6], and microarchitecture [7].
Most of the programming models perform well for regular
operations (e.g., loop structures [8]). However, the results
may be unacceptable satisfying formost irregular operations.
At compiler level, it poses significant challenges to detect
dependencies statically. Alternatively, using special architec-
ture to support task-level Out-of-Order (OoO) execution is
becoming effective and efficient on performance [9]. How-
ever, how tomake the architecture flexible to suite for various
systems remains unresolved, especially for heterogeneous
systemswith different types of processing elements (PEs).

Meanwhile, with diverse types of accelerators integrated,
heterogeneous multicore platform is able to achieve high
performance for a large variety of applications. However,
the software for such heterogeneous systems can be quite
complex due to the management of low-level aspects of the
computation. To maintain the correctness, the software
must decompose an application into parallel tasks and

synchronize the tasks automatically. As a consequence, data
dependences within an application may seriously affect the
overall performance. Generally data dependences are classi-
fied into three categories: read-after-write (RAW) depen-
dence, write-after-write (WAW) dependence and write-
after-read (WAR) dependence, of which WAW and WAR
can be eliminated using the renaming techniques.

To tackle this problem, in this paper we propose a hard-
ware scheduler that supports task-level OoO parallel execu-
tion. The fundamental system is an FPGA based platform
that contains different types of PEs: one or several general
purpose processor (GPPs) and a variety of Intellectual Prop-
erty (IP) cores. A earlier version of this paper is presented at
[10]. We have extended and implemented a demonstrating
hardware scheduler for heterogeneous platforms to support
OoO task execution. The scheduler detects task-level data
dependencies and eliminates WAW and WAR dependen-
cies automatically at runtime using renaming scheme. We
claim following contributions and highlights:

1) This work implements a hardware scheduler on
FPGA to support parallel dataflow execution and
dynamic accelerator reconfiguration. By eliminating
the WAW and WAR dependences among dataflow,
applications will get as much parallelism as possible.
This is especially important for dependence-aware
applications in real-time system.

2) Reconfigurability is supported so as to improve the
flexibility of heterogeneous multicore platform. Our
scheduler is as efficient as Task Superscalar [7] at the
ability to eliminate WAW and WAR dependence
while has much lower scheduling overhead due to
the FPGA efficiency. Furthermore, as our scheduler
is implemented on a practical FPGA board instead of
the simulation, therefore it is more practical com-
pared to the Task Superscalar scheme.
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The structure of the paper is organized as follows:
Section 2 summaries the related work and the motivation.
Section 3 shows a high level view of the proposed frame-
work, which includes the problem description and defini-
tion of tasks. Section 4 details the programming model
layer. Thereafter in Section 5 we illustrate the composition
of the scheduler, and Section 6 gives the hardware imple-
mentation for the scheduler. Experiments method and
results are presented in Section 7. Finally section 8 con-
cludes the paper and outlines some future works.

2 RELATED WORKS

Data dependencies and synchronization problem has
already posed a significant challenge in parallelism. Tradi-
tional algorithms, such as Scoreboarding and Tomasulo
[11], explore instruction level parallelism (ILP) with multi-
ple arithmetic units, which can dynamically schedule the
instructions for out-of-order execution. Much effort has
been made to extract task-level parallelism from programs
in the last decade. Schemes on different levels have been
proposed to solve TLP problems.

With the increasing popularity of MPSoC platform, paral-
lelism is shifting from instruction level to task level. There are
already some creditable FPGA based research platforms,
such as RAMP [12], Platune [13] and MOLEN [14]. These
studies focus on providing reconfigurable FPGA based envi-
ronments and related tools that can be utilized to construct
application specific MPSoC. Alternatively, products and pro-
totypes of processor are designed to increase TLPwith coarser
grained parallelism, such as RAMPSoC [15],MLCA [16],Mul-
tiscalar [17], Trace Processors [18], IBM CELL [19], RAW Pro-
cessor [20], Intel Terascale and Hydra [21]. These design
paradigms present thread-level or individual cores which can
split a group of applications into small speculatively indepen-
dent threads. Some other works like TRIPS [22] andWaveSca-
lar [23] combine both static and dynamic dataflow analysis in
order to exploit more parallelism. Yoga [24] is a hybrid
dynamic processor with out-of-order execution and VLIW
instructions sets. The concept of Yoga is to leverage the trade-
off between high performance OoO and low power VLIW,
therefore it can not be applied to general heterogeneous
frameworks. Furthermore, a common concept of these litera-
tures is to split a large task window into small threads that
can be executed in parallel. However, the performance is seri-
ously constrained by inter-task data dependencies.

At programming model level, MPI, Pthreads, OpenMP,
Cilk, and TBB are the state-of-the-art parallel programming
frameworks. It is now common knowledge that these non-
speculativemodels rely upon developer experiences to paral-
lelize programs. When an irregular program written in these
programming models is executed, the decomposition of par-
allel tasks could be difficult. During dynamic execution of
the statically-parallel program, a multitude of complexities
may arise that make program development onerous. Deter-
ministic, speculative models offer simple programming
models, but incur potentially significant dynamic overheads
to support recovery from mis-speculation and to dynami-
cally check for potential conflicts. Of the cutting-edge pro-
gramming paradigms, CellSs [5] and StarSs [25] are
programming models that uncover TLP in particular

supporting irregular tasks. Besides, dependency detecting
and eliminating are left to the hardware scheduler, which
greatly simplifies the design of the programming model and
runtime library. Harmony [26] is also an execution model
and runtime for heterogeneousmanycore systems. However,
it only considers the tasks that run on GPPs, while tasks that
run on accelerators (e.g., DSP, IP) are not taken into account.

Along with the prototype platforms targeting specific
hardware, there are some well-known reconfigurable hard-
ware infrastructures: ReconOS [27], for instance, demon-
strates hardware/software multithreading methodology on
a host OS running on the PowerPC core using modern
FPGA platforms. Hthreads [28], RecoBus [29] and [30] are
also state-of-the-art FPGA-based reconfigurable platforms.
Besides FPGA-based research platforms, FlexCore [9] pro-
poses a heterogeneous platform which supports run-time
monitoring and incorporates bookkeeping techniques.

At architectural level, Task Superscalar [7], Multiscalar
[17], Stanford Hydra [21] and Program Demultiplexing [31]
are hardware schedulers for multi-processor systems based
on renaming techniques. McFarlin [32] presents a specula-
tive out-of-order execution architecture support for hetero-
geneous multicore architectures. Similarly, Sridharan [33]
presents an efficient parallel execution of parallel programs,
which can be adaptive to different running applications.
But the scheduling overhead of the software speculation is
significantly higher than hardware schedulers. In summary,
none of them has been implemented as hardware circuits.

It is a trend that in foreseeable future most computing
systems will contain a considerable number of heteroge-
neous computing resources. So far in industry, GPU has
been widely used to support graphic processing and
thereby achieve speedup of performance. It will be highly
possible that more heterogeneous accelerators based on
FPGA will be integrated to the computer architecture. So
we focus on the OoO execution that supports heterogeneous
systems, trying to find an efficient way to design the pro-
gramming model, compiler and scheduler. In order to sum-
marize the differences between related works and our
approach, we list the strength and weakness of the typical
parallel scheduling algorithms and engines. The differences
are illustrated in Table 1, which includes general parallel
programming models, out-of-order programming models
and task level scheduling mechanisms.

3 HIGH LEVEL VIEW

3.1 Problem Description

It has been widely acknowledged that traditional program-
ming models for TLP such as OpenMP and MPI perform
well for regular programs, especially for loop based codes.
However, the parallelism degree of irregular programs of
OpenMP and MPI depends on the programmer, which
requires too much burden to the programmers and the per-
formance may be dramatically unsatisfied. Consequently
the motivation of this paper is to pursue the automatic OoO
task parallel execution method, especially for heteroge-
neous systems.

In order to compare the differences of three program-
ming models: serial model, OpenMP [3] and CellSs [5], we
illustrate the example code snippet respectively.

2304 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 8, AUGUST 2016



Fig. 1 illustrates the three code segments of the same
functionality. Task 1 takes ‘a’ as input parameter, and write
results to ‘b’, while task 2 takes ‘c’ as input, and also write
results to ‘b’. Fig. 1a presents the normal serialized codes, in
which task 2 cannot be issued until task 1 is done. Assuming
that task 1 and task 2 can run in parallel using different
computing resources. Fig. 1b shows the sample codes in
OpenMP pattern. Because both task 1 and task 2 write ‘b’,
the programmer must rename ‘b’ of task 2 manually to sup-
port parallel execution. Consequently all tasks after task 2
that use ‘b’ also need to rename their parameter ‘b’ to ‘c’,
which greatly limits the programmability. If ‘b’ is to be writ-
ten to non-volatile storage devices (e.g., disk), then the task
1 and task 2 cannot be executed in parallel by OpenMP. In
order to release programmers from such burden, CellSs was
proposed, as is illustrated in Fig. 1c. The first two annotated
lines of Fig. 1c inform the compiler that task 1 and task 2
can be executed simultaneously, enabling task 1 and task 2
to be sent to different computing resources for parallel exe-
cution. The programmers are only required to add the sim-
ple annotations of the tasks, and then the parallelization is
automated by compiler and hardware support.

As mentioned above, both CellSs and Task Superscalar
use renaming scheme to detect and eliminate WAW and
WAR dependencies. However, they are both designed for
CMP architecture, in which all processors are able to run all
kinds of tasks. This characteristic brings higher flexibility
and scalability, but also causes significant difficulties to
task-level OoO execution for heterogeneous systems.
Besides, Task Superscalar detects inter-task dependencies at
a fine-grained level, which makes it too sophisticated for
resources constrained systems. In order to make task-level
parallelization efficient for heterogeneous systems, in this

paper we propose a variable-based OoO framework for het-
erogeneous system.

3.2 Definition of Tasks and Task-Level
Dependencies

Throughout this paper, tasks refer to the execution of actors,
and actors can be GPPs or IP cores. Each task has a set of
input parameters and a set of output parameters, and is
defined as task_name ({the set of output parameters}, {the
set of input parameters}).

Exploiting task-level concurrency is especially impor-
tant in a heterogeneous environment due to the require-
ment to match the execution requirements of different
parts in the program with computational capabilities of
the different platforms. Some tasks may require special-
purpose hardware, either because the hardware can exe-
cute that task more efficiently or because the hardware
has some unique functionality that the task requires. Con-
sequently the motivation of this paper is to pursue the
automatic OoO task parallel execution method especially
for heterogeneous systems.

In Table 2 we define three types of task-level dependen-
cies. The bold parameters indicate the parameters those
lead to data dependencies. Tasks have RAW dependency
should always run in order, meanwhile, WAW and WAR
dependencies can be eliminated using renaming scheme.

Fig. 1. Sample code snippet of different programming models.

TABLE 1
Summary for State-of-the-Art Parallel Execution Engines on FPGA

Types Typical Strength Weakness

General parallel
programming models

OpenMP [3] Intel’s TBB, Ct,
CnCMapReduce OpenCL [34] Cilk [35]

General model for CMP
processors

Bring burden
to programmers

Out-of-order
programming models

StarSs [25], CellSs [36], Oscar [37] Support automatic
OoO execution

Applied only to CellBE architecture
and SMP servers

Task Level Out-
of-order Scheduling

CEDAR [38], MLCA [16], Multiscalar [17],
Trace [18], IBM CELL [19],
RAW [20], Hydra [39],
Wave Scalar [23], TRIPS [22]

Perform well for traditional
superscalar machines, run tasks
in parallel on different
processor cores

OoO not supported,
programmers handle
the task data dependency manually

Dataflow Based
OoO Execution Model

TaskSuperscalar[40], Yoga[24] Support OoO automatic
parallel execution

Not applicable to FPGA
with reconfiguration

DSP [41] With register renaming
technologies of Tomasulo

Limited to
DSP architectures

OoOJava [42], Dataflow [1] An OoO compiler for Java runtime
with determinate parallel execution

Not applicable to
hardware execution
engines

TABLE 2
Definitions of Task-Level Dependencies

Type Definition Example

RAW

When an issuing task reads
a parameter in the output
set of an issued task, a RAW
dependency occurs.

task_1({b}{a});
task_2({c},{b});

WAW

When an issuing task writes
a parameter in the output
set of an issued task, a
WAW dependency occurs.

task_1({c},{a});
task_2({c},{b});

WAR

When an issuing task writes
a parameter in the input set
of an issued task, a WAR
dependency occurs.

task_1({b},{a});
task_2({a},{c});
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Fig. 2 presents the framework that is composed of four
layers. The top layer is the programming model layer which
makes the details of the scheduler and the hardware plat-
form transparent to the programmer. The second layer is
the library layer that consists of the software library and the
hardware library. The software library includes all the tasks
interface definitions, while the hardware library contains
the bit files of the IP cores. The third layer is the scheduler
which is in charge of task mapping, task-level OoO schedul-
ing and reconfiguration. The bottom layer is the hardware
platform layer which is composed of interconnections and
processing elements. The PEs includes GPPs and IP cores,
and each IP core can do only a specific type of task.

4 PROGRAMMING MODEL LAYER

In this section, we first introduce the programming model
layer, which is able to facilitate software developers for
high level programming. The programming model uses
annotations to define tasks. In our framework, computing
resources are divided into two categories: hardware com-
puting resources and software computing resources. Each
type hardware computing resource can only do a specific
kind of task, while software computing resources have the
capability to do all kinds of tasks. In our framework, the
interfaces to call hardware computing resources are regu-
lated in runtime libraries. To use software computing
resources, programmers need to define the tasks in prior to
the hardware execution.

The programming model layer makes all the details of
the platform transparent to the programmers. In order to
simplify the programming, programmers only have a
sequential view of the systems, in other words, the pro-
grammers do not need to know what the underlying plat-
form is composed of or how tasks execute in parallel.

In order to reduce the burden of the scheduler, tasks are
divided into two categories: those that pass through the
scheduler and those that execute on the local GPP. Thus the
program is divided into two parts: kernel part and non-
kernel part. A kernel is defined as a sequence of tasks that
all pass through the scheduler while the non-kernel part is
defined as a sequence of tasks that all run locally.

When compiling the program, the compiler identifies the
kernel parts at first. Then synchronizations are inserted to

the head and the end of each kernel part. The synchroni-
zations make sure that the data used by tasks has the lat-
est value. The synchronizations are inserted to the code
by a source-to-source compiler automatically, and thereby
programmers do not have the burden to do such things
by themselves.

After the source-to-source compilation, the program then
is compiled into executable binaries. Tasks in the kernel parts
are sent to the scheduler for OoO execution. Fig. 3 illustrates
sample code snippet in our programming model. The codes
are divided into two segments: declaration segment and nor-
mal segment. The declaration segment (Line 2 - Line 6) con-
tains header files inclusion (Line 2) and task definitions (Line
3 - Line 6). All interfaces to call hardware computing resour-
ces are included in Hardware.h. When hardware computing
resources are designed, the corresponding interfaces should
be added to Hardware.h. Tasks defined by programmers are
started with annotations, as Line 3 shows. Each annotation
includes three aspects of parameters: direction, type and
size. The direction can be chosen from input, output, and
inout, which is detailed as follows:

Input: The parameter will be read by the task, and when
the task is completed, the parameter will not be updated.

Output: The task starts without considering the value of
the parameter, and when the task is completed, the parame-
ter will be updated.

Inout: The task will use the data stored in the parameter,
when the task is finished, the parameter will be updated.
Line 4 and Line 6 are normal task definitions written in
C language. Line 8 to Line 15 presents sample codes of main
function. Hd_idct and Hd_aes are tasks defined in Hardware.
h, while Idct and Aes are defined by the programmer.

In this paper, we bring the instruction-level dependency
analysis concepts to task-level. Each task is treated as an
abstract instruction, and the parameters of a task is equiva-
lent to operands at instruction level, with the expansion that
each task can have more than three parameters (In a stan-
dard x86 instruction set, an instruction has three operands
at most). All the parameters must be defined as variables.
Fig. 4a describes a sample code pattern, in which wr_set and
rd_set stand for write set and read set of the function, respec-
tively. Each function in the loop is viewed as a task, i.e.,
wr_set contains variables defined as Input and Inout, while

Fig. 2. Task-level OoO framework. The framework is divided into soft-
ware part and hardware part, and both parts have two individual layers. Fig. 3. Codes snippet in our programming models.
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rd_set contains variables defined as Output and Inout. Fig. 4b
is a task sequence when the codes in Fig. 4a actually exe-
cute. Fig. 4c shows all inter-task dependencies, in which dif-
ferent shapes of edges stand for different types of
dependencies, in particular direction of an edge is from the
task that brings about the dependency to the task that is
affected. In particular, inter-task dependencies are divided
into three categories as follows:

RAW: The solid edges indicate RAW dependencies. All
solid edges compose a normal Directed Acyclic Graph
(DAG). When an issuing task reads a variable in the wr set
of an issued task, a RAW dependency occurs, for example,
task 4 takes variable D as input while task 2 writes D, so
there is a solid edge from task 2 to task 4.

WAW: The dashed edges indicate WAW dependencies.
When an issuing task writes a variable in the wr set of an
issued task, a WAW dependency occurs. Task 4 and task 1
both write variable B so that there is a dashed edge.

WAR: The dotted edges indicate WAR dependencies.
When an issuing task writes a variable in the rd set of an
issued task, there is a WAR dependency. Task 3 writes vari-
able A while task 1 reads A, therefore a dotted edge is from
task 3 to task 1.

It must be noted that tasks that have RAW dependency
should always run in order. Meanwhile, WAW and WAR
dependencies can be eliminated using special techniques.
Fig. 5 illustrates two different executing models for the tasks
in Fig. 4b. The bottom refers to the mode used in [1], where
WAW and WAR dependencies are detected but not elimi-
nated, while the top stands for the ideal OoO mode pre-
sented in our scheduler, in which only RAW dependency
will affect the parallelism. It can be obviously derived that
the OoO mode will gain great performance improvement
(the time between FT1 and FT2). In this paper, we are to
propose a scheduling algorithm that automatically elimi-
nates task-level WAW and WAR dependencies, especially
for heterogeneous platforms.

5 SCHEDULER LAYER

The scheduler layer is in charge of scheduling tasks to
exploit the potential parallelism. In this paper, OoO task
scheduler is implemented as a hardware layer to uncover
TLP. For demonstration we have implemented MP-

Tomasulo algorithm in hardware, which extends the
instruction level Tomasulo algorithm to task level for paral-
lel execution. The MP-Tomasulo algorithm is able to
dynamically detect and eliminate inter-task WAW and
WAR dependencies, and thus speeds up the execution of
the whole program. With the help of MP-Tomasulo algo-
rithm, programmers need not to take care of the inter-task
data dependencies.

5.1 Hardware Scheduler Structure

At instruction level, each instruction has one destination
operand and two source operands at most. However, a
task may have more than one output parameter, or more
than two input parameters. We extend the traditional
Tomasulo algorithm to support multi outputs and more
than two inputs. MP-Tomasulo algorithm is designed as
a hardware module so that the maximum of outputs and
inputs are limited to a certain number. Assuming that
wr_set refers to the output set, rd_set represents the input
set, while num_wr_set and num_rd_set stand for the maxi-
mum of output and input, respectively. Fig. 6 illustrates
MP-Tomasulo module that is composed of the following
components:

Fig. 4. Task-level data dependencies.

Fig. 5. Execution comparison. The bottom part is the execution time
chart in [1], which finishes at time FT2, while the top part is the OoO
mode presented in our scheduler, which finishes at time FT1.

Fig. 6. High level structures of MP-Tomasulo module. The part sur-
rounded by the dashed line is named MP-Tomasulo module, which is the
critical part of the framework.
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Task issuing queue. In our prototype, each task has
num_wr_set outputs and num_ rd_set inputs, so each task in
Task Issue Queue can be formally regulated as< Type;wr_set
[num_wr_set]; rd_set[num_rd_set] >, in which Type identifies
the type of the task, wr_set and rd_set stand for the set of out-
put parameters and the set of input parameters, respectively.

Mapper. The Mapper sends tasks to different RS-Tables
according to Type of each tuple stored in Task Issuing
Queue. The Mapper works as a black box, and therefore sys-
tem designers can design other alternative mapping algo-
rithms. If the RS-Tables do not have enough entries to store
the task, the system will be blocked until some RS-Table
entry is free.

RS-Table. RS-Table refers to reservation station table,
which contains an implicit dependency graph of tasks and
uses automatic renaming scheme to eliminate WAW and
WAR dependencies. In order to send different tasks simul-
taneously, each PE has a private RS-Table. Once all the
input parameters of a task are prepared, the task is off-
loaded to the associated PE for execution. Each entry of RS-
Table is a tuple of < ID;Busy; V [num_rd_set];Q[num_rd_set]
>, in which ID is used to identify different entries, Busy
indicates whether the entry is in use or not, V is used to tem-
porarily store input parameters of a task, Q indicates if the
value in V is valid.

Task receiving queue. The Task Receiving Queue buffers
the finished tasks.

VS-Table. VS-Table is regarded as register status table
that holds the status of variables used in applications. Each
variable is mapped to an entry of VS-Table. Each entry of
VS-Vable is a tuple of < ID;PE_ID;Value >. ID stands for the
primary unique key. PE_ID represents the PE that will pro-
duce the latest value of the variable. Value storages the
actual value.

MP-Tomasulo algorithm is divided into three stages as
follows:

Issue. The head task of Task Issuing Queue is in Issue
stage if a RS-table entry is available.

Execute. If all the input parameters of a task are prepared,
then the task can be distributed to the associated PE for execu-
tion immediately. Otherwise the RS-Table builds an implicit
data dependency graph indicating which task will produce
needed parameters. Once all the input parameters of a task
are ready, the task is spawned to the corresponding PE.

Write results. When a PE completes a task, it sends results
back to the Task Receiving Queue of MP-Tomasulo module,
and updates RS-Table. For each task in RS-table, if the input
parameters are produced by the completed task, the associ-
ated RS-Table entry is updated with the results.

Compared to the software scheduler in presented in [43],
we remove the reorder buffer (ROB) in this hardware imple-
mentation. We have following concerns:

1) The ROB structure is designed for speculation. In
fact, due to the scheduler only deals with task
sequences that always should execute, thus there is
no need to make any speculation.

2) The ROB structure will make a significant contribu-
tion to the hardware utilization. Therefore we save
the ROB area considering the area and cost of the
FPGA chip.

Furthermore, in order to make the scheduler flexible, the
size of the VS-Table, RS-Table and the number of PEs can be
configured according the characteristics of applications.
These configurations can be changed when the system starts
and remain fixed during execution. To make efficient use of
the on-chip resources, the IP cores are allowed to be dynam-
ically reconfigured at run time.

5.2 Adaptive Task Mapping

The scheduling module decides when the task can be exe-
cuted due to data dependencies, furthermore, when a task
is ready, only one target function units is selected from mul-
tiple options. The task mapping scheme should decide the
target for each task, as is described in Algorithm 1.

Algorithm 1. Task Scheduling and Mapping Algorithm

Input: Generated Task Set T
Output: IP Core ID set for each task S
1 Foreach t 2 T do
2 snum ¼ ValidIPCoreNumber(t.opcode)

// get candidate IP Cores
3 switch (snum)
4 case: snum ¼ 0 //no available IP Cores
5 return null;
6 case: snum ¼ 1 //only one available
7 add s to the IP Core ID set
8 return s;
9 default:
10 for j ¼ 0 to snum do
11 Tfinish ¼ TwaitingþTexecutionþTtransfer // Calcu-

late execution time
12 end
13 TNum ¼ number of minimum Toverall

14 If TNum>1
15 Select the s using Round-Robin
16 Else
17 Select the s with minimum Toverall

// Select a target IP Core
17 add s to the IP Core ID set
18 end

5.3 FCFS Queue Based Scheduling

The task scheduler architecture is shown in Fig. 7. We
implement a queue-based task scheduling algorithm using
first come first serve (FCFS) policy. Scheduler is responsible
for tasks partition, scheduling and distributing to different
computing resources. The major work includes the follow-
ing subjects:

1. Receive task requests. Task requests are transferred
to scheduler during execution. Furthermore, the cur-
rent status of each task is rendered by scheduler to
programming models. Status checking interface can
obtain the status of each IP core of the system.

2. Task partitioning and allocation among hardware and
software: scheduler classified tasks into two types: ker-
nel part and non-kernel part. As to the sub tasks
requesting for the kernel part, scheduler needs to dis-
tribute data to related hardware IP cores through on
chip interconnection. Otherwise, the control tasks and
glue functions are executed on local scheduler.
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6 HARDWARE SCHEDULER DETAILS

In order to make dataflow run in parallel, renaming method
is introduced to eliminate WAW and WAR dependences.
The main reason for causing WAW and WAR dependences
is that a sub-flow may update its write set before a previous
sub-flow reads or writes part of it. The critical idea of
renaming method is to make a copy of the data that may
cause dependences.

Fig. 8 illustrates the hardware implementation of the
scheduler, which is redesigned from the high level structure
in Fig. 6. Applications always start from GPP that is in
gray color, and the dataflow of execution is sent to Data-
flow FIFO (DF). The critical part of the hardware sched-
uler is the Dataflow Mapper (DM). The DM receives
dataflow from DF, identifies the write set and read set of
each sub-flow, searches for a proper PE to execute the
sub-flow and updates Variable Set (VS) and the found
PE’s Map Table (MT). A MT contains the parameters of
the sub-flow, or which PE will produce the needed
parameters. When a PE finishes a sub-flow, an interrupt
occurs and the Interrupt Controller (ICtr) reports it to
DM. The DM updates MTs and writes results to Ordering
Unit (OU). OU writes results to the memory in the order
as sub-flows’ order in DF. These modules will be detailed
respectively.

6.1 Dataflow FIFO (DF)

The DF stores the dataflow which consists of a series of sub-
flows. The detailed structure of DF is illustrated in Fig. 9. The
communication interfaces between DF and GPP contains a
1-bit DF_not_full indicating the status of DF and a 32-bit data
for transmission. The communication interface between DF
and DM contains a 1-bit DM_enable indicating the status of
DM and a 32-bit data. Each sub-flow starts with start_flag and
ends with end_flag.Out_num and in_num refer to the number
of write set and read set, respectively, both measured by 32-
bit. Between in_num and end_flag are actual parameters.

6.2 Variable Set and Ordering Unit

Variable Set keeps the latest value of a certain parameter
that the sub-flow in OU produces. When a sub-flow passes
through DM, the information of its parameters in write set
will be updated in VS, indicating a new producer of these
parameters. Assuming that each entry of VS has N bits, and
OU has 2N entries.

OU is a FIFO stores all the executing sub-flows as the
order they pass through DM. As long as the head sub-flow
in OU finishes, the entry is released and VS is updated. The
results of the head entry of OU are written to the memory.
Communication between VS and OU is controlled by DM.

Fig. 10a describes the detailed view of VS and OU. VS
and OU are both composed of Block RAM (BRAM) and
BRAM controllers. Assuming that VS has 256 entries and
OU has 64 entries (throughout this paper we all use this
configuration), so the widths of Addr wires of VS and OU
are 8 and 6 bits, respectively. As the content of each entry of
VS is associated with a certain position of OU, so the content
with of VS is 6 bits. Supposing that each sub-flow has no
more than 16 parameters (parameters in write set and read
set are both limited to no more than 8), each of which is no
more than 32 bits (usually used as 32-, 16- or 8-bit), then the
width of a OU entry is 256 bits because only the write set
need to be stored while the read set is ignored. Fig. 10b
presents how VS and OU are updated when the head sub-
flow of OU finishes. In the left part of Fig. 9b, the head sub-
flow of OU is the latest producer of No.1 entry of VS. After
communication through DM, both VS and OU are updated.
The content of No.1 entry of VS is changed to N, meaning
that the entry is free. The content of No.0 entry of OU is also
changed to N. Besides, the head of OU is back to No.1 entry.

Fig. 7. Queue based task scheduling.

Fig. 8. Hardware implementation of the scheduler.

Fig. 9. Dataflow FIFO hardware implementation.
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6.3 Map Table (MT)

The MTs hold an implicit DAG of all the executing sub-
flows and eliminate WAW and WAR dependences
through copies of sub-flows’ parameters. Fig. 11 shows
the detailed view of a MT. In the proposed design, each
PE has a separate MT and there are four entries in each
MT. An entry of a MT consists of a 6-bit OU_ID, a 72-bit
Read_Set_Status and a 256-bit Parameters_Value. OU_ID
indicates the location of sub-flow in OU. The parameters
in the read set of a sub-flow are recorded in the MT.
Each parameter has 9-bit Read_Set_Status, of which the
first 8 bits represent the parameter ID and the last bit
indicates whether the parameter is prepared. If the last
bit is 1, then the associated Parameters_Value contains the
exact value of the parameter. Otherwise, Parameter-
s_Value contains the OU entry ID which will produce the
actual value.

The address of a MT has three components. The first 2
bits index the entry, the flowing bit is a tag indicating
write Read_Set_Status or Parameters_Value, and the last
three bits shows which part of Parameters_Value is to be
updated.

6.4 Interrupt Controller (ICtr)

When a PE finishes the execution of a sub-flow, an inter-
rupt occurs and the ICtr handles the interrupt. The inter-
rupt results will be transferred to DM. Each PE is indexed
by a unique PE_ID and has a fixed priority in ICtr. A PE
with a smaller PE_ID has a higher interrupt priority. In
order to get better overall performance, IP cores always
have higher interrupt priority than GPPs, meaning that
when occurring simultaneously, IP interrupt request
(IPR) are always handled in prior to GPP interrupt
request (GPPR). When all interrupt requests pass through
ICtr, only one output wire is set to 1, indicating that the
associated interrupt has the highest priority and results
can be received while others are pending. Interrupt nest-
ing is not supported due to that interrupt nesting needs
extra hardware resources to store the interrupt stack. An
entry of MT or the OU is released upon finished for the
DM to receive sub-flows.

6.5 Dataflow Mapper (DM)

DM is the critical part of the hardware scheduler connecting
DF, VS, MTs, ICtr and OU. The DM is called (x,y)-channel if
it supports x IP cores and y GPPs at most. Fig. 11 illustrates
the details of DM. On receiving sub-flows from DF, the DM
first generates the address of VS, OU and MT. VS_addr is
included in the sub-flow so that VS can be easily updated. In
order to accelerate the generation of OU_addr, a register
named Tail Reg is utilized to keep the address of the first free
entry of OU. Head Reg indicates the first used entry of OU,
and together with Tail Reg it is easy to check whether OU is
full. DM is responsible for mapping sub-flows to different
PEs. The strategy for mapping is summarized in Algorithm
2. Please note that the Mapper works as a black box, and the
systemdesigner can design their ownmapping algorithm.

Algorithm 2.Mapping Algorithm

input: a sub-flow
output: a PE ID
1: if (a IP core p can execute the sub-flow)
2: if (the MT of p has a free entry)
3: update MT,OU,VS;
4: return p;
5: else select the GPP g that has the most free entries N
6: if (N is larger than 0)
7: update MT,OU,VS;
8: return g;
9: else pending the sub-flow;

It can be seen that IP cores have higher priority than GPPs
for executing sub-flows. In order to record the number of
free entries in MTs, each MT has an associated 3-bit counter.
When DM sends a sub-flow to a PE the counter increments
by 1, and when an interrupt from a PE is accepted the associ-
ated counter decrements by 1. A decoder is used to identify
if a sub-flow can be executed by some IP cores of the plat-
form. To avoid dead locks, a sub-flow can be sent to DM only
when MTs, VS and OU all have a free entry, as presented in
the bottom part of Fig. 12. The MT_full is set to 1 if none of
PEs that can execute the sub-flow has a free entry.

The multi-channel design of DM can easily support the
reconfigurability of FPGA platform using Xilinx Early
Access Partial Reconfiguration (EAPR) technology. For
example a (4, 4)-channel DM, when replacing an IP core, the
associated counter is set to the number of entries of a MT,
meaning that it can accommodate no more sub-flows. The
only logic needs to be changed is the decoder. Fig. 13 illus-
trates the reconfigurable flow in which bitstream0 is
replaced by other bitstreams (a bitstream is routed circuits
for a PE).

Fig. 11. Circuit implementation of mapping table.

Fig. 10. Circuit Implementation of variable set and ordering unit.
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7 EXPERIMENTS AND RESULTS

Our experimental platform is built on Xilinx Virtex-5
XC5VLX110T FPGA. The structure of the platform is pre-
sented in Fig. 14, including four PEs, one scheduler and
peripherals. The PEs can be classified into three types:
(1) the upper left part is a MicroBlaze processor that is
responsible for issuing tasks and receiving data. Besides,
it is also used as computing resources. (2) The upper
right part is a MicroBlaze processor only used for com-
puting. (3) The lower middle part contains two IP cores
used as accelerators, which are used to accelerate the
execution of the CC/DCT/Quant of JPEG application.
The upper middle part is a hardware scheduler that
detects RAW/WAW/WAR dependencies and eliminates
WAW/WAR dependencies using renaming scheme. The
lower left part is peripherals including timer, interrupt
controller (intc), etc.

7.1 JPEG Case Study

We first use JPEG to test the efficiency of our framework.
JPEG can be divided into four stages: Color space Convert
(CC), two-dimensional Discrete Cosine Transform (DCT),
Quantization (Quant) and Entropy coding (Huffman). The
first three stages have fixed amount input parameters and
output parameters; therefore they are appropriate to be
implemented as a hardware IP core. In contrast, theHuffman
stage runs onMB because it does not have fixed amount out-
put parameters and only takes 1.94 percent of the total execu-
tion time of the whole program on average. There are two IP
cores on our platform, both are named CC-DCT-Quant and
used to accelerate the execution the first three stages of JPEG
application. The JPEG algorithm takes a BMP picture as
input, and output a picture in JPEG format. The whole pic-
ture is divided into 8�8 bits blocks, each time only one block
is processed. The configuration of the scheduler can be con-
figured according to different applications.

With the help of MP-Tomasulo module, the sequential
execution mode of JPEG program is converted to an OoO
mode, only tasks that have RAW dependency with others
need to run in order, while the WAW dependency will be
dynamically eliminated by MP-Tomasulo module. We
select 30 pictures of 6 different sizes for experiments, for
each size we randomly picked five pictures in BMP format.
Fig. 15 presents the experimental results [43]. We use the
sequential execution time on a GPP as the basis, and

Fig. 12. Hardware implementation of dataflow mapper.

Fig. 13. Reconfigurable flow.

Fig. 14. Experimental platform built on Xilinx Virtex-5 FPGA.

Fig. 15. Experimental results. The X-axis refers to the picture size, and
the Y-axis is average speedup. The blue (first) bar is the average
speedup if the WAW dependency is not eliminated. The red (second)
bar is the actual speedup using our proposed method. The green (third)
bar is the ideal speedup ignoring the scheduling time.
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compute the speedup using different strategies. It can be
easily concluded that our algorithm actually eliminates
the WAW/WAR dependencies, and achieves more than
95 percent of the ideal speedup.

7.2 Comparison Using Parallel and Sequential
Applications

By reviewing the data dependencies problems (RAW,
WAW and WAR) at instruction level, Scoreboarding and
Tomasulo are both effective methods used in superscalar
pipeline machines for out-of-order instruction execution. Of
these two methods, Tomasulo is more widely used because
it can eliminate WAW andWAR dependencies, while Score-
boarding only solves it by run tasks in sequence. Therefore,
in this paper we choose Tomasulo instead of Scoreboarding
at task level. In particular, we have compared our approach
with the Scoreboarding techniques that has been applied in
the reference [44].

We evaluated the speedup of Tomasulo algorithm and
compared with the Scoreboarding techniques proposed in
[43]. Both sequential and parallel applications in [43] are
used as benchmarks, and the execution of the applications
is configured from 5,000 to 100,000 cycles. It is clearly illus-
trated from Fig. 16 that the peak speedup of the Tomasulo
algorithm on parallel applications achieves 3.74X, which sig-
nificantly higher than that of the Scoreboarding (0.97X). The
reason is that due to the renaming techniques employed by
the Tomasulo, the WAW and WAR dependencies can
be automatically eliminated. In contrast, Scoreboarding
scheme is only able to detect the dependency.

Regarding the speedup of sequential applications, Toma-
sulo and Scoreboarding has similar performance as the
data dependency cannot be eliminated, which are 0.95X
and 0.98X respectively.

7.3 Comparison on Regular Tasks

We measured speedups of the typical task sequences
through partitioning the test tasks in [2]. In this test case, we
select regular test with 11 different random tasks. The sam-
ple task sequence is presented in Table 3.

Fig. 17 depicts the comparison between theoretical and
experimental results of the task sequence. The length of the
sequence increases from 1 to 11, and the curve of experi-
mental value is consistent with theoretical value, but
slightly larger. This is because theoretical value has not con-
sidered of scheduling and communication overheads. The

average of overheads is less than 4.9 percent of task running
time itself. The execution time remains flat when the length
of the queue increases from 2 to 6. The result is caused by
out-of-order execution and completion. Taking task No.2
and No.4 for instances, No.2 takes more clock cycles to fin-
ish than No.4. As there are not data dependencies among
these tasks, they can be issued at the same time. After task
No.4 is finished, it must wait until all the predecessor tasks
are finished.

Compared to Scoreboarding, Tomasulo has higher
scheduling overheads, which leads to a bigger gap between
experimental and theoretical value. However, since MP-
Tomasulo can not only detect WAW and WAR hazards but
also eliminate them by register renaming, the overall
speedup is significantly larger than Scoreboarding.

7.4 Discussion

In this section we use the timing diagram to show the inter-
task data dependencies, and how it is solved.

Fig. 18 illustrates the timing diagraph for both with
Tomasulo scheduling and without Tomasulo scheduling
algorithms. [a] presents the timing graph with Tomasulo
schedulers. At the model start-up, the token representing
the task T1 is generated and then can be dispatched. The
transition checks the state of computational kernels in the
modeled system, and assigns the JPEG IP core to the task
T1. In the second time unit, the task T2 is generated. At that
time, the sources variable “a” is not ready due to T1 is not
finished, thus a read-after-write structural dependence is
identified and the task T2 stalls. In the third time unit, task
T3 is generated. As T3 has no data dependencies with T1,

Fig. 16. Speedup using parallel and sequential applications.

TABLE 3
Sample Task Sequence

Task
number

Task type Source
variables

Destination
variable

T1 JPEG a c
T2 IDCT b a
T3 JPEG J i
T4 AES_ENC d, e F
T5 AES_ENC h,e d
T6 DES_DEC E,e, g
T7 JPEG a c
T8 DES_DEC H,e g
T9 DES_DEC H,e a
T10 JPEG f e
T11 IDCT b a

Fig. 17. Experimental results of regular tasks.
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therefore it could be assigned to the GPP for computational
kernel immediately. Similarly, task T4 and T6 can also be
issued immediately due to there are no inter-task depen-
dencies while other tasks should be stalled until the depen-
dencies are eliminated. Finally, all the tasks are finished at
the time 300k cycles.

By contrast, [b] illustrates the timing graph without the
Tomasulo scheduling algorithm. Due to there is no OoO
scheduling methods, all the tasks have to be issued in
sequential. As is clearly described in Fig. 19 [b], all the tasks
are finished at 450k cycles, which means the Tomasulo algo-
rithm can efficiently reduce the execution time of the task
sequencing by about 33 percent.

By investigating the timing diagram, we gain a deep
insight on how tasks interact with each other and maintain
the data dependences in our scheme. Furthermore, we
can verify the correctness of simulation result through

comparing the timing diagram with task execution flow on
a prototype system. We have studied simulation results in a
number of cases. The simulation results are exactly consis-
tent with the actual results obtained from prototype sys-
tems. To this end, we confirm that our Out-of-order
scheduling scheme can correctly schedule tasks with vari-
ous dependences to exploit parallelism.

Fig. 19 depicts the gap between theoretical and experi-
mental results of a regular task sequence. In this case we
use the same benchmark as the regular tasks used in Section
7.3. When the length of the sequence increases from 1 to 11,
the gap between the experimental and actual results keeps
at 10 percent. The gap includes both communication over-
heads and scheduling overheads. In particular, the commu-
nication overheads keep stable approximately at 6 percent,
while the scheduling overheads fluctuate from 0.15 to 7.13
percent, respectively.

7.5 Hardware Utilization

Our experimental platform is constructed on Xilinx Virtex-5
XC5VLX110T FPGA. A (4,4)-channel hardware scheduler is
prototyped, the results are shown in the following tables.

Table 4 illustrates the scheduler configuration. In the
JPEG case, we integrate 1 DF, 1 VS, 1 OU and 8 MT mod-
ules. Each DF has 64 entries and data width is configured at
32 bits. In order to improve the task level parallelism, we
use eight MT in total, each of which contains four entries at
334-bit width.

Table 5 illustrates the resources consumption for our
hardware scheduler and the MicroBlaze processor. Our
scheduler takes about the same Look-Up Tables (LUTs)
as a MicroBlaze while significantly less number of less
registers. Most of the LUTs in a MicroBlaze are used as
logic, while about one third are used as RAM in our
scheduler. Furthermore, to calculate the area cost, we use
the area utilization model that is presented by Jonathan
Rose in [45]. The area cost of the hardware scheduler is
similar to the Microblaze processor based on the LUTs
consumption.

Fig. 18. Timing Diagraph. The horizontal axis denotes the model time,
while the vertical axis denotes the execution flow of tasks. The events
executing and writing result of each task are represented by bars out-
lined with solid lines, while the stalls of tasks are represented by the bars
outlined with dashed lines. The length of a bar represents the duration
time of each event. Besides, the arrowed lines are used to represent dif-
ferent types of inter-task dependences.

Fig. 19. Gap between theoretical execution time and actual execution
time.

TABLE 4
Scheduler Configuration

Number of
Units

Number of
Entries

Entry Width
(bits)

DF 1 64 32
VS 1 256 6
OU 1 64 256
MT 8 4 334

TABLE 5
Resources Usage

Hardware
Scheduler

MicroBlaze

Registers 295(0.4%) 1,445(2.1%)
LUTs used as Logic 1,158(1.7%) 1,434(2.1%)
LUTs used as RAM 510(0.7%) 84(0.1%)
Total LUTs 1,668(2.4%) 1,518(2.2%)
Area Utilization 1.35 MM2 1.23 MM2

(�%): Resources used/Total on-chip resources.
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In order to show the performance of our scheduler,
Table 6 compares our work with software MP-Tomasulo
scheduler, which runs at the Microblaze microprocessor at
100 MHz. On average, the software scheduler takes more
than 10,000 cycles for scheduling while our hardware sched-
uler only takes about 20 cycles, which means the speedup of
the scheduling achieves up to 500X. Furthermore, we have
evaluated the scheduling time at Intel Core i5 4460 process-
ors at 3.2 GHz. The speedup of the HW scheduler against
Intel SW scheduler on Core i5 is 15.65X approximately.

8 CONCLUSIONS

Out-of-order scheduling is playing a key role in exploit task
level parallelization. In this paper, we focused on the hard-
ware implementation of automatic out-of-order execution
engines on a FPGA based heterogeneous platforms.We have
proposed a flexible hardware scheduler to fit reconfigurable
heterogeneous systems, and then we detail one of the OoO
task execution methods. WAW and WAR dependences can
be dynamically eliminated so as to greatly accelerate the exe-
cution of applications on heterogeneous platforms. Experi-
mental results demonstrate that our framework is efficient
and the average performance achieves 95 percent of theoreti-
cal speedup. Furthermore, experimental results also show
that our design is efficient on both performance and resour-
ces usage. The performance is 500X faster than the software
scheduler, while the resources usage in not more than a
MicroBlaze. Besides, our hardware scheduler supports the
dynamic reconfiguration of the FPGA platform by changing
a small part of logic.

Although the experimental results are promising, there
are a few future directions worth pursuing. First, improved
task partitioning and further adaptive mapping schemes
are essential to support automatic task-level parallelization.
Second, we also plan to study the out-of-order task execu-
tion paradigm to explore the potential parallelism in data-
intensive applications.
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