
1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXX 2016
 1

Service-oriented Architecture on FPGA-based MPSoC

Chao Wang, Xi Li, Yunji Chen, Youhui Zhang, Oliver Diessel and Xuehai Zhou

Abstract—The integration of software services-oriented architecture (SOA) and hardware multiprocessor system-on-chip
(MPSoC) has been pursued for several years. However, designing and implementing a service-oriented system for diverse
applications on a single chip has posed significant challenges due to the heterogeneous architectures, programming interfaces,
and software tool chains. To solve the problem, this paper proposes SoSoC, a service-oriented system-on-chip framework that
integrates both embedded processors and software defined hardware accelerators s as computing services on a single chip.
Modeling and realizing the SOA design principles, SoSoC provides well-defined programming interfaces for programmers to
utilize diverse computing resources efficiently. Furthermore, SoSoC can provide task level parallelization and significant
speedup to MPSoC chip design paradigms by providing out-of-order execution scheme with hardware accelerators. To evaluate
the performance of SoSoC, we implemented a hardware prototype on Xilinx Virtex5 FPGA board with EEMBC benchmarks.
Experimental results demonstrate that the service componentization over original version is less than 3%, while the speedup for
typical software Benchmarks is up to 372x. To show the portability of SoSoC, we implement the convolutional neural network as
a case study on both Xilinx Zynq and Altera DE5 FPGA boards. Results show the SoSoC outperforms state-of-the-art literature
with great flexibility.

Index Terms—Service-oriented architecture, multiprocessor, system on chip

——————————  ——————————

1 INTRODUCTION

Ulti-Core has been a mainstream microprocessor
implementation technique, especially for high-
performance computing. In data-intensive applica-

tion fields, it is now becoming increasingly popular to use
Field Programmable Gate Arrays to accelerate the state-
of-the-art applications, such as genome sequencing, data
mining, and deep learning algorithms [1]. As more pro-
cessors and heterogeneous Intellectual Property (IP) ac-
celerators are being integrated into a single chip to build
Multi-Processor Systems on Chip (MPSoC) platforms, the
computational capability is increasingly powerful, which
makes it possible to provide highly efficient platforms for
diverse applications [2]. For example, the Intel Quick-
Assist Technology Accelerator Abstraction Layer intro-
duces a software framework for deploying platform-level
services and abstracting the interconnect technology from
the application code. This software abstraction layer al-
lows the accelerators to be transparently shared amongst
multiple workload clients.

However, cutting‐edge MPSoC design methodologies
aim to improve the raw performance of embedded sys‐
tems, while disregarding the flexibility and portability

across different target architectures. Consequently, most
MPSoC researchers suffer from inconvenient program‐
ming models, high design complexity, and low productiv‐
ity when they design middleware and prototype chips for
diverse applications. Since instruction‐set architectures
(ISA), programming interfaces and tool‐chains of differ‐
ent processors are significantly different from each other
[3], how to improve the flexibility and portability remains
an extremely challenging problem.

To tackle this problem, we propose a method for intro‐
ducing service‐oriented architecture (SOA) concepts to
the MPSoC design paradigm [4, 5]. Traditional SOA pro‐
vides good flexibility and extensibility at low cost by
providing reusable modules. Moreover, SOA can largely
reduce the complexity of integration and application de‐
velopment by providing well‐defined package interfaces
[6]. With all these benefits, the SOA concept has been
widely applied in software services, web services, and
even operating systems design [7]. It is naturally capable
of combining different processing elements (PEs) through
the well‐defined interfaces and without concerning the
programmer with the implementation of hardware plat‐
forms, operating systems, and programming languages.
Therefore, the SOA‐based design is an efficient way of
quickly constructing prototyping systems.

As a consequence, we claim that adopting SOA con‐
cepts into MPSoC platforms has two significant ad‐
vantages. Firstly, SOA architecture can easily integrate
numerous computing resources together; therefore it fa‐
cilitates building heterogeneous research platforms. By
using this feature, MPSoC can benefit from the strengths
of each PE type so as to provide high‐performance com‐
puting capability for diverse applications. Secondly, since
the structural programming interfaces in SOA architec‐
ture are well defined, SOA can provide a unified API even

xxxx-xxxx/0x/$xx.00 © 200x IEEE

M

————————————————

 C. Wang, X.Li, and X.Zhou are with the University of Science and Tech‐
nology of China, Hefei, 230027, Anhui, China. E‐mail:
cswang,llxx,xhzhou@ustc.edu.cn

 Yunji Chen is with Institute of Computing Technology, Chinese Academy
of Sciences, Beijing, 100190, China. E‐mail: cyj@ ict.ac.cn

 Youhui Zhang is with Department of Computer Science, Tsinghua
University, Beijing, China. Email : zyh02@tsinghua.edu.cn

 Oliver Diessel is with the University of New South Wales. Email:
odiessel@cse.unsw.edu.au

Manuscript received xxxxxx, revised xxxxxxx.
For information on obtaining reprints of this article, please send e‐mail to:
tpds@computer.org, and reference IEEECS Log Number xxxxxx.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXX 2016

when the hardware is reconfigured. This feature can not
only help researchers conveniently add/remove compu‐
ting elements, but also accelerates the process of con‐
structing system prototypes and evaluating overheads.

While there are many state‐of‐the‐art research projects
related to SOA and MPSoC platforms individually, few
studies have so far been conducted into fusing SOA and
MPSoC concepts. In this paper, we propose SoSoC, which
introduces the SOA model to system‐on‐chip design par‐
adigms. Benefiting from the high computing performance
of MPSoC and the flexibility of SOA, SoSoC can provide
various services with structured application program‐
ming interfaces, based on embedded processors and
hardware IP cores as fundamental hardware resources.
Applications are divided into subtasks and are scheduled
to embedded processor or IP blocks at run‐time. To
evaluate the performance of SoSoC, we build a prototype
system on FPGA development board. We claim the fol‐
lowing contributions:

(1) A service‐oriented model for heterogeneous MPSoC:
this paper proposes a novel hierarchical SOA model con‐
sisting of multiple layers suitable for MPSoC. SOA con‐
cepts provide structured programming and well‐defined
service integration interfaces, thereby facilitating the con‐
struction of MPSoC prototypes for diverse applications.

(2) Adaptive mapping with dynamic reconfiguration:
this paper presents an adaptive service mapping and out‐
of‐order scheduling method based on an MPSoC hard‐
ware architecture. The integrated PEs of the MPSoC can
be reconfigured so as to adapt to applications. When
hardware reconfiguration is ready, tasks can be automati‐
cally remapped and spawned to IP cores for parallel exe‐
cution.

(3) Prototype implementations and experiments: To
evaluate SoSoC, we implemented an MPSoC prototype on
a state‐of‐the‐art Xilinx FPGA development board using
Microblaze processors and heterogeneous IP accelerators.
Experimental results demonstrate the service componen-
tization overheads of SoSoC are less than 3%, and the
peak speedup achieves 370x for EEMBC Benchmarks.

The remainder of the paper is organized as follows.
Section 2 summaries the related approaches. Section 3
discusses the detailed architecture and methodology of

SoSoC, including architecture, hierarchical model, sched‐
uling, interconnect, and programming interfaces. The
FPGA prototype implementation is outlined in Section 4.
Section 5 presents the experimental results and their
analysis. Section 6 illustrates a case study using convolu‐
tional neural networks on both Xilinx and Altera FPGA
platforms. Finally, we conclude the paper and pinpoint
some future directions in Section 7.

2 BACKGROUND
It is common knowledge that SOA has been successfully
exploited in high-level software models, while MPSoC is
generally utilized as multiprocessing hardware and archi-
tecture platforms. However, few studies are focusing on
integrating SOA and MPSoC together. Nevertheless, there
are lots of related works of each area which motivate our
research. Table 1 lists the main related works.

First of all, various SOA frameworks have been devel-
oped for software engineering, web services, operating
systems, such as mobile computing system [8], enterprise
architectures [9], electronic productions [10] and scientific
workflow composition frameworks [11]. From these ap-
proaches, we can summarize the major advantage of SOA
is to encapsulate different computing resources and pack-
age them into a unified service access interface. Thus
these service-based approaches provide better flexibility
and extensibility with lower cost through reusable soft-
ware modules. In particular, in [8], Thanh and Jørstad
provide a presentation of SOA for mobile services. Haki
and Forte [9] demonstrate that using the SOA concept in
an enterprise architecture (EA) framework makes the best
of the synergy existing between these two approaches.
Delamar and Lastra [10] present an array of architecture
patterns for creating distributed message frameworks,
focusing mainly on globally distributed federations and
locally distributed clusters. Meanwhile, attention has
shifted towards lower level architectures, such as to oper-
ating systems [7] and multiprocessor platforms [4]. Simi-
lar to SOA-based approaches, SWAP [22] is a component-
based parallelization framework that uses specification
compatibility graphs to abstract and model algorithms
between high-level specifications and low-level imple-

TABLE 1
BRIEF SUMMARY FOR SOA AND MPSOC RELATED RESEARCH AREAS

Type Related work & References Benefits Drawbacks

SOA

Mobile computing system [8]
Enterprise architecture [9]
Electronic productions [10]
Workflow Composition [11]
Operating Systems [7]

1) Modularity
2) Flexibility
3) Scalability
4) Programmability

1) Inadequate performance
2) Doesn’t directly apply to
MPSoC and chip design
3) No dynamic reconfiguration

MPSoC

ReconOS [12], Hthreads [13],
RecoBus [14], [15], FlexCore
[16], OneChip [17], ReMAP
[18], RAMP [19], MOLEN [20],
Accelerator [21]

1) Modest performance with
heterogeneous architecture
2) Flexible IP core integration
3) Reconfigurable feature

1) Doesn’t readily support
high‐level programming
2) Doesn’t automatically sup‐
port service substitution

SOA+MPSoC SOMP [4] Advantages of both SOA and MPSoC concepts

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

CHAO WANG ET AL.: SOSOC: SERVICE-ORIENTED SYSTEM ON CHIP 3

mentations.
In contrast to SOA, the original design goal of MPSoC

is provide an implementation platform for application-
specific designs, particularly for embedded systems. With
the rapid development of semiconductor technologies
and devices like FPGAs, MPSoC is now able to integrate
sufficient computing resources to build a supercomputing
engine on a single chip. With appropriate configuration
and optimization, MPSoC can achieve very high-
performance levels. Previous research has focussed on
hardware-software partitioning [23], scheduling [24], in-
terconnection [25], and communication mechanisms [26].
While these studies have made specific contributions on
certain aspects, the problem of how to design a flexible
and efficient platform and a prototype system is still
worth pursuing.

Experimental MPSoC platforms have been verified on
heterogeneous computing platform, such as OneChip [17],
ReMAP [18], RAMP [19], MOLEN [20] and Accelerator
[21]. These studies focus on reconfigurable and heteroge-
neous computing -paradigms including maximizing raw
performance along with softer evaluation metrics such as
flexibility, programmability, and power utilization. How-
ever, each platform is constructed using specific hard-
ware resources and a specific toolchain, which makes it
rather difficult to port the applications from one to anoth-
er. Moreover, most of these studies aim at application-
specific hardware design, which means programmers
need to acquire detailed knowledge of the system specifi-
cation and implementation to be able to handle the tasks
mapping, scheduling, and distribution manually. The
degree of automatic parallelization is therefore still worth
investigating.

Along with the prototype platforms targeting specific
hardware, there are some well-known reconfigurable
hardware infrastructures: ReconOS [12], for instance,
demonstrates hardware/software multithreading
methodology on a host OS running on the PowerPC core
of modern FPGA platforms. Hthreads [13], RecoBus [14]
and [15] are also state-of-the-art FPGA-based reconfigu-
rable platforms. Besides FPGA-based research platforms,
FlexCore [16] is an alternative approach based on a gen-
eral-purpose multicore platform that is similar to the one
used in our SoSoC study.

In contrast to the application constraints of the
bookkeeping techniques of FlexCore, SoSoC proposed in
this paper, is a general-purpose framework supporting a
wide range of task acceleration engines. In particular, to
enhance the scalability and modularity beyond simply
incorporating a diversity of IP accelerators, this work in-
troduces SOA concepts into reconfigurable MPSoC de-
sign. Since SOA can provide flexibility and extensibility
for MPSoC chip design at lower cost in the design process,
thus SoSoC can decrease the MPSoC design complexity
across a wide range of hardware accelerators with negli-
gible overheads. Based on SoSoC, researchers could focus
on further studies of scheduling algorithms, interconnec-
tion schemes, and reconfigurable technologies, etc. Fur-
thermore, SoSoC can also reduce the burden of MPSoC
architects and shorten the time to market of chips.

Before introducing the SoSoC architecture, we first de‐
fine the following terms.
Tasks: Throughout this paper, we use the term tasks to

refer to pure functional instances such as an IDCT and
AES running on specific hardware IP modules. Note that
the granularity of a task as defined in this paper is differ‐
ent from general task definitions with threads. When
SoSoC processes a task, it will be treated as a specific ser‐
vice. Control information (e.g. task ID, target servant, etc.)
as well as the requisite operands are transferred through
first‐in‐first‐out (FIFO) based hardware links between the
scheduler and servants.
Services: Services are defined as different functionali‐

ties that are accessible to users. All services are packaged
in a function library and invoked by standard function
calls. All the services are launched and provided by serv‐
ants.
Servants: Servants refer to functional modules dedicat‐

ing to provide one or several services. Servants are classi‐
fied into different categories as follows:
Application Servants: Application servants are re‐

sponsible for providing application programming inter‐
face (API) and the run‐time environment. Moreover, ap‐
plication servants are also in charge of task profiling to
locate the hotspots of applications. The profiling infor‐
mation can facilitate the dynamic re‐mapping and re‐
scheduling of a task.
Scheduling Servants: Scheduling servants are

employed in task partitioning, mapping, and run‐time
scheduling. Regarded as the kernel component, a sched‐
uling servant plays a key role in the online exploration for
task level parallelism. It receives the task sequence from
application servants and then detects inter‐task data de‐
pendencies. Whenever input parameters and hardware
are available, the task can be immediately issued.
Computing Servants: Computing servants are de‐

signed to run computing services and can be further
classified into hardware or software computing servants.
On the one hand, each software computing servant runs
on a microprocessor with dynamic software function li‐
braries. On the other hand, a hardware servant is imple‐
mented at register transfer level (RTL) and then packaged
as an IP core that can only do a very specific kind of ser‐
vice.

3 ARCHITECTURE AND CONCEPTS
3.1 Introducing SOA to MPSoC architecture

 By introducing SOA into MPSoC architecture design,
the traditional primitives are abstracted as below: 1) Each
task can be regarded as an extended special instruction.
By that means, the original application consisting of mul-
tiple tasks can be abstracted as an instruction sequence. 2)
Each processor or IP core can be regarded as a dedicated
functional unit to run an abstract instruction. Each ab-
stract instruction is scheduled to a certain functional unit
by the SoSoC middleware, either in static or dynamic
ways.

Fig. 1 [a] illustrates the typical framework of tradition-
al SOA concepts. The front-end terminal users access the

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXX 2016

services via a uniform interface with service definitions,
whereby each service is packaged and exposed in an API-
like manner. Meanwhile, in the back-end, each service is
composed of specific functionalities provided by software
libraries and databases through uniform service interfaces.
The functionality for each service is composed or com-
bined from multiple data resources with a service sched-
uling mechanism. It should be noted that the service
composition and scheduling are invisible to front-end
terminal programmers.

The proposed SOA mapping onto an MPSoC hardware
platform is illustrated in Fig. 1 [b], where the service defi-
nition interfaces are realized as APIs, and microproces-
sors, DSPs and hardware IP core function as service pro-
viders. The application is first decomposed into multiple
services, which are then scheduled at runtime. Whenever
a pending service has obtained its requisite input parame-
ters, it can be offloaded to a certain PE for immediate exe-
cution.

Fig. 2 SoSoC architecture is based on MPSoC architectures.

3.2 SoSoC Architecture and Components
The SoSoC architecture is illustrated in Fig. 2. SoSoC is

based on a hardware platform that can provide heteroge-
neous multi-core resources such as processors, DSPs,
FPGAs and others. In particular, SoSoC is composed of
the following components: an application servant, a ker-

nel scheduling servant, and several embedded processors
as software computing servants, intellectual property (IP)
cores as hardware servants, interconnect modules, buses,
memory blocks, and various peripheral modules. In par-
ticular, the responsibilities for each type of modules are as
follows:

1. An application servant runs on a general-purpose
processor to provide the basic run-time environment and
APIs to tasks. Moreover, it also profiles and traces the
application runtime information and sends all service
requests to a scheduling servant for further processing.

2. A scheduling servant is in charge of task partitioning,
mapping, distribution, scheduling and task transmission.

3. Software servants: each task should be distributed to
either a software or hardware servant at run-time. Of the
two types of manifestations, all the software services are
provided by general-purpose processors with function
libraries. In general, this type of servant can run different
kinds of tasks. Every software servant has access to a ho-
mogeneous service library which contains the available
services for the system. The scheduler can dispatch the
tasks to different computing servants considering the cur-
rent workload of the system.

4. Hardware servants: in contrast to the software serv-
ants, each hardware servant accelerates only one specific
kind of task. SoSoC can integrate a variety of heterogene-
ous hardware IP or ASIP cores at a time, depending on
the available hardware resources on the chip. Also, IP
cores can be dynamically reconfigured according to ap-
plication demands.

5. Interconnect modules: on-chip interconnect utilized
for data transfer between the scheduling servant and
computing servants. The data includes service control
requests and input/output results. When the underlying
platform is FPGA-like, a variety of interconnect topolo-
gies can be implemented.

6. Memory and peripherals, such as I/O, debugging
interface, UART controller, timer controller and interrupt
controller, are connected to the scheduler via a bus.
These peripheral devices can realize a complete system
and aid programmers in operating a debug interface.

[a] Typical Service-Oriented Architecture [b] Mapping Services to MPSoC

Fig. 1 Typical SOA concepts and the corresponding services in MPSoC.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

CHAO WANG ET AL.: SOSOC: SERVICE-ORIENTED SYSTEM ON CHIP 5

3.3 Hierarchical Model
Each computing servant is either implemented
as software to be executed on a GPP or as hardware on
accelerators via IP cores. Based on the SoSoC hardware,
we construct an SOA hierarchical model, as illustrated in
Fig. 3. This model consists of three layers: services layer,
servants layer and physical layer, which will be detailed
respectively.

(1) Services Layer
The services layer is composed of three modules: ser-

vices provider, scheduler and transmitter.
First of all, the services provider exposes application

programming interfaces and run-time application analy-
sis services to programmers. The API is invoked by users
for sending task requests during execution and returns
the status of the currently running task as feedback. The
run-time application analysis includes trace and profiling.
A trace module is used for keeping track of the services
requests. Meanwhile, a dynamic profiler can be activated
to locate and store the hotspots of the program. The in-
formation of hotspots can guide the reconfiguration of
different IP engines for performance acceleration. What’s
more, to improve the task level parallelism, inter-task
hazards are detected and eliminated.

Fig. 3 Hierarchical level model of SoSoC is comprising three layers.

Second, the service scheduler is in charge of allocating
the application to services and mapping each service to a
target computing servant. Firstly, during execution, one
application is divided into several sub-tasks, each of
which is abstracted to a specific service and is dynamical-
ly mapped and scheduled either to a software or hard-
ware servant, according to the system requirements and
computing servants’ status. The status of all computing
servants is recorded in a status lookup table. We use a
task queue for hardware and software services. When a
task is mapped, it first looks up the queue and calculates
the expected execution time for execution in either hard-

ware or software: 1) the time waiting to be scheduled as
software, 2) the communication overheads between the
scheduling processor and hardware computing services.
The algorithm can thereby make a wiser choice before the
task is dispatched to a certain service.

Finally, a service transmitter dispatches the service re-
quest to heterogeneous computing servants including
embedded processors and IP hardware accelerators. The
service distribution has a consistent interface irrespective
of the service type or target servant. When the service is
finished, results are also collected by the service transmit-
ter. Furthermore, to maintain the runtime status, a syn-
chronization module has been integrated to obtain the
traces for the hardware platform.

(2) Servants Layer
As described above, services are dynamically mapped

to different computing servants for parallel execution. All
the servants are managed for efficient use and load bal-
ancing. The data transmitted between the servants layer
and the services layer include services requests, in-
put/output parameters, and execution results. A status
checking interface is provided to the service layer for syn-
chronization.

Computing servants include hardware and software
computing servants. Because hardware servants can ob-
tain higher performance than software servants in most
cases, so the tasks are always scheduled to hardware if
there are free hardware IP cores.

(3) Physical Layer
Finally, all the servants are implemented in software

resources executed by processors or hardware resources
executed by IP accelerators. On one hand, a software
servant mainly consists of two parts: a general purpose
processor core or ASIP (ARM, PowerPC, MicroBlaze, etc.)
and a software library loaded into the processor.
Consequently, every computing servant is capable of
supplying different kinds of services that SoSoC provides
to programmers. On the other hand, hardware servants
are implemented as IP cores, coarse-grained reconfigura-
ble arrays (CGRA), or reconfigurable logic units (RLU).
Each IP core or RLU can be reconfigured for specific ap-
plications.

3.4 Hardware Tasks-to-servants Arbitration
Task partitioning and scheduling methods play a vital
role in architectural supports. Before tasks are offloaded
to IP cores, OoO middleware should identify the target
processor to run the current task, and also decide when
the task can be issued.
1) Task to Servants Mapping

In this paper, static core modules and reconfiguration
modules (RMs) are implemented separately, of which
only RMs are reconfigured at run-time to reduce the bit-
stream downloading overheads. In task partition and
scheduling layer, reconfiguration libraries are integrated.
After IP cores are reconfigured, tasks mapping and
scheduling strategies need to be reconsidered. Therefore a
task-to-core table is employed to identify the target IP
core, as described in Fig. 4. The table maintains a map-
ping of tasks to cores to virtualize the selection of the des-

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXX 2016

tination core. Each table entry contains the task ID cur-
rently running on that core as well as a count of the num-
ber of issued tasks destined for that core. When a new IP
core is deployed, the table elements will be flushed and
updated.

Fig. 4 Task to Servant Table and Arbitration Module.

When a task is issued, it obtains the core currently as-
signed as its destination core in the table; and it stores its
results to the appropriate output queue upon completion.
A side effect of this table based approach is that instruc-
tions will not issue to the fabric if the destination core is
not available. This prevents the producing task from fill-
ing up the fabric if the consumer is not present. Even with
the table, however, spawned tasks could accumulate in
the fabric if the current task forces are switched out while
data is in flight to it, which would require the consumer
to be switched back into the same core to receive the val-
ues. To prevent this situation, the task-to-core mapping
table maintains a counter for the number of in-flight tasks
destined for each core. On a request to switch out, the
scheduler checks the number of in-flight tasks bound to
its core. If this is greater than zero, the fabric is blocked
from accepting any new tasks destined for that core and
the core continues to execute until the in-flight counter
reaches zero. At this point, the application can be stalled
and the fabric unblocked.

For each IP core, the specific task execution time,
speedup, area cost and power consumption information
are also maintained by the scheduler. The information
will assist scheduler to make task partition decisions and
to achieve better load-balancing status and higher
throughputs. Since FPGA is an area-constrained platform,
different IP cores are competing for the limited hardware
resources. For task scheduling, tasks are also considered
to be arranged in sequences, which should improve the
throughput as well as FPGA area efficiency.
2) Barrier Synchronization

Barriers are one of the most common synchronization
operations. However, with a typical memory-based im-
plementation, the overhead of executing a barrier can be
significant, especially as the number of cores increases.
This overhead prevents the use of barriers at fine granu-
larities. In cases where a barrier is followed by a serial
function that is performed by one of the tasks and the
output communicated to all participating tasks, the
scheduler may directly synthesize the function into the
fabric with the output communicated to the participants’
output parameters.

To implement barriers for synchronization, a barrier
table is integrated to ensure that all the returning tasks
must not be allowed to issue to the fabric until all partici-
pating cores have arrived at the barrier, as presented in
Fig. 4. To achieve this, each core participating in the barri-
er loads some value(s) into its input queue. Once the
loads from all of the cores have reached the head of their
respective input queues and all tasks, have indicated arri-
val at the barrier. The Barrier Table also determines that
all tasks have arrived at the barrier, with information re-
lated to each active barrier. Each table contains as many
entries as cores attached to a PE cluster, which includes
both general processors (denoted in the central white
block), and heterogeneous accelerators (described in
colored blocks). The table keeps track of the total number
of tasks, the number of arrived tasks, and the cores that
are participating in the barrier. The number of arrived
tasks and participating cores are updated whenever a task
arrives, meanwhile the total and arrived task counts are
compared to determine when to issue a task. In a system
with multiple PE clusters, a dedicated bus communicates
barrier updates among clusters. The bus transmits the
barrier ID as well as the associated application ID. All
tasks participating in a barrier must be actively running
for all input data to be available. Each table entry main-
tains a list of the IDs of the local tasks that are participat-
ing in the barrier as well as a bit indicating if they are ac-
tively running. If a barrier is ready to be released but not
all participating tasks are active, the scheduler controller
triggers an exception to switch the missing tasks back in.
Once all tasks are available, the barrier can proceed

3.5 Service Out-of-Order Scheduling
The compiler ensures that the hardware scheduler only
deals with task sequences without control dependencies.
Based on the programming model described in the previ-
ous section, an out-of-order task scheduler is implement-
ed in the middleware layer to uncover task-level parallel-
ism. For demonstration, we have implemented an MP-
Tomasulo algorithm, which dynamically detects and
eliminates inter-task write after write (WAW) and write
after read (WAR) dependencies, and thus speeds up the
execution of the whole program. With the help of our
MP-Tomasulo algorithm, programmers need not take
care of the data dependencies between tasks as these are
automatically eliminated for them. Listing 1 shows the
formal description of the MP-Tomasulo algorithm, which
is divided into four stages as follows:

Issue: The head task of Task Issuing Queue is in Issue
stage if an RS-table entry and an ROB entry are both
available. If yes, they may be stored in an ROB entry (Line
5 - Line 6) or the VS-table (Line 9). In these cases, just
copy the variables to the allocated RS-table entry. Other-
wise the input variables may not be available due to
RAW dependency; in this case, the task records which
task will produce the needed variables (Line 7). For all
output variables, VS-table is updated indicating that the
newest value of the output variables will be produced by
the issuing task (Line 11 - Line 15). Besides, the infor-
mation of the allocated ROB entry and the RS-table entry

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

CHAO WANG ET AL.: SOSOC: SERVICE-ORIENTED SYSTEM ON CHIP 7

will be updated (Line 13 and Line 16 - Line 17).

Listing 1. MP-Tomasulo algorithm in pseudocode.

Execute: If all the input variables of a task are prepared,

then the task can be distributed to the associated PE for
execution immediately. Otherwise, the RS-table builds an
implicit data dependency graph indicating which task
will produce needed variable. Once all the input variables
of a task are ready, the task is spawned to the correspond-
ing PE. If there is more than one task that satisfies the
Execute stage requirement, an FCFS strategy is applied.

Write Results: When a PE completes a task, it sends re-
sults back to the Task Receiving Queue of MP-Tomasulo
module, updates ROB and RS-table. For each task in RS-
table, if the input variables are produced by the
completed task, the associated RS-table entry is updated
with the results (Line 5 - Line 6).

Commit: Update VS-Table and write results to disks in
the order as tasks are issued. The tasks stored in ROB are
in the same order as they are issued, so the consistency of
data stored on disks is kept.

To add or remove IP cores conveniently, we introduce
a software/hardware co-design methodology. All IP
cores are packaged within a structural interface based on
the requirements of the physical on-chip interconnect.
Whenever the architecture changes, the interfaces in the
header file need to be changed accordingly, but the user
applications do not need to be modified or recompiled.

3.6 Programming Interfaces
SoSoC provides two types of programming interfaces:
both blocking and non-blocking. The principles of each
kind of programming interface are described in Listing 2.

/*-- # SoSoCLib.h –SoSoC Lib Description -- */
#pragma input(idct in) output(idct_out)
void do_T_idct(int idct_out[N], idct_in[N]);
#pragma input (aes_in1,aes_in2) output(aes_out)
void do_T_aes(int aes_out[M], aes_in1[M], aes_in2[M]);

/*--#Main Program on Scheduler Processor-- */
#include “SoSoCLib.h”
main (){
……
do_T_idct(idct_out, idct_in);
do_T_aes (aes_out, aes_in1, aes_in2);
……
}

Listing 2. An example of annotated codes in the programming model.

Listing 2 outlines an example of annotated codes in the
programming model. Generally, there are two parts in-
side the example:

1) The top part of Listing 2 gives an example of a
SoSoC library that provides dedicated internal service
functions. The annotation indicates the do_T_idct and
do_T_aes functions can be executed on IP cores, with the
directionality described for each operand.

2) The bottom part of Listing 2 illustrates an example
of the main program running on a scheduling processor.
The main application code is identical to a sequential im-
plementation using library functions. What’s required by

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXX 2016

the programmer is only to include the SoSoC library as
header files. The programming model maps the annotat-
ed functions to the target processor or IP core. The codes
in automatically parallelized regions work as normal
codes without annotations using the functions already
defined in the included library.

At runtime, whenever the user application reaches a
call site to one of the internal functions, the main program
packs all the task operand values and transfers the data to
the middleware layer for mapping and scheduling. As the
execution of the main program is decoupled from the ex-
ecution of the tasks, it can resume execution to continue
spawning the following tasks. The middleware layer, on
the other hand, asynchronously detects the task depend-
encies, and schedules tasks when they are ready.

As the task executes, a run-time profiling mechanism is
integrated into the system to locate the hot spots of each
application. The hot spot information helps the pro-
grammers locate which parts are running with most fre-
quently and for how long. The hotspot information can be
used to guide the selection of task accelerators for per-
formance optimization.

Fig. 5. SoSoC Prototype in FPGA.

4 PROTOTYPE SYSTEM IMPLEMENTATION

4.1 Platform Setup
To measure the performance and overheads of SoSoC, we
implemented a prototype system on a Xilinx XUPV5
board equipped with a Virtex-5 XC5VLX110T FPGA. We
utilized MicroBlaze (MB) version 7.20.A (with a clock fre-

quency of 125MHz, the local memory of 8KB, no configu-
rable instruction or data cache) as our general purpose
processor. The whole environment was built and set up
using Xilinx ISE Design Suite. The SoSoC prototype, con-
structed in the FPGA, is illustrated in Fig. 5. The proto-
type system was implemented on a single FPGA. Two MB
processors were utilized; one was employed as the
scheduling servant, and the other was used as a compu-
ting servant. In total, we implemented 9 hardware IP
cores as hardware servants (Fig. 5 illustrates a demonstra-
tion system with 4 computing servants). Each computing
servants was connected with the scheduling servant
through a pair of FSL links. Each MB had its instruction
and data cache implemented in BlockRAM. We used a
processor local bus (PLB) to connect peripherals, includ-
ing an interrupt controller, a UART controller, and a tim-
er controller. We implemented the SoSoC with the follow-
ing components:

(1) A scheduling servant is implemented on an MB
processor. The scheduling algorithm and mapping
schemes were implemented in a software kernel.

(2) Software computing servants were also constructed
on individual MB processors. Service functions were
encapsulated in standard C libraries. APIs in the C lan-
guage were provided to users.

(3) Hardware computing servants were implemented
in function blocks implemented in HDL and packaged as
standalone IP cores.

(4) The scheduling servant was connected to the soft-
ware computing MB and IP cores via FSL links. Task re-
quests and results were transferred via FSL buses.

Synplify Pro and Xilinx ISE were employed to estimate
the area utilization and power consumption for the FPGA
fabric. To compute a rough estimate of the area, we
adopted a metric of CLB tile area from the model by
Kuon and Rose [28]. The model reports that the area of a
CLB tile with 10 6-input LUTs in the 65nm technology
node is approximately 8,069μm2. We used this estimate of
807μm2 per LUT and multiplied it by the total number of
LUTs occupied by our design to generate an area estimate.
Furthermore, we utilized the associated XPower Analyzer
of the Xilinx FPGA toolchain to estimate the power con-
sumption.

4.2 Integrated Services
After the general purpose processor is selected, we de-
signed 9 services from EEMBC, as shown in Table 2, to
measure the functionality and performance. For each ser-
vice, software and hardware servants were both imple-
mented. The high-level block diagrams of the hardware
servants are illustrated in Fig. 6. To support dynamic par-
tial reconfiguration, different services are packaged in a
similar manner and attached to the FIFO interfaces via the
same group of FSL signals. Both input buffer and output
buffer data structures are employed to store the I/O pa-
rameters locally as they are transferred one by one in the
FIFO channels. As the data in a FIFO can only be read
using a stream-like pattern, it was possible to implement
a common control logic module the control logic module
handled the standard service operations including: 1)

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

CHAO WANG ET AL.: SOSOC: SERVICE-ORIENTED SYSTEM ON CHIP 9

read input from FIFO to input buffer, 2) execute service, 3)
store results to output buffer, and 4) write results from
output buffer to FIFO. This common structure provided a
universal interface pattern to allow servants to be
reconfigured at run-time. On the distinct functionalities,
data accumulation is responsible for summing the input
digits, IDCT module includes a multiply operation fol-
lowed by an accumulation, while AES includes one key
expansion module and 10 rounds of encryp-
tion/decryption steps.

TABLE 2

SERVICES AND RELATED APPLICATIONS IN EEMBC

Services App Description EEMBC

Adder Adder Data Accumulation AutoBench

IDCT IDCT Inverse DCT AutoBench

RGB2YUV JPEG Color Space Converter ConsumerBench

2DIDCT JPEG 2D Inverse DCT ConsumerBench

Quant JPEG Quantization ConsumerBench

AES ENC AES AES encryption module DENBench

AES DEC AES AES decryption DENBench

DES ENC DES DES encryption DENBench

DES DEC DES DES decryption DEN Bench

5 EXPERIMENTAL RESULTS AND ANALYSIS
Based on the prototype, we used parts of the EEMBC
benchmarks to measure the scheduling overheads of the

SoSoC architecture. Different servants were integrated
into the platform to measure the speedup under different
circumstances. The number of processors and IP cores
were reconfigured according to application needs. We
used similar evaluation criteria to those of [22], which
included componentization overheads, speedup and
hardware costs.

0.24

1.61 1.60
1.76

2.00 2.00

1.69

0.54

2.89

1.59

0

0.5

1

1.5

2

2.5

3

3.5

4

O
ve

rh
ea

d
 (

%
)

Fig. 7. Overhead of componentization over the original version.

5.1 Overhead of service componentization
We first investigated the performance overhead of ser-

vice componentization. For this purpose, we compared
the performance of the original (unmodified) sequential
application on the componentized software services and
the original uncomponentized software. We define the
overhead as the percentage increase in execution time of

(a) Data accumulation (b) IDCT

(c) AES encryption/decryption

Fig. 6 Data accumulation, IDCT, and AES hardware servants.

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXX 2016

the componentized version over the original version. Fig.
7 presents the measurements we took. The highest over-
head was 2.89% for Quant, and all other programs exhib-
ited only negligible overheads.

5.2 Speedup of Parallel Hardware Services
1) Speedup for Sequential Applications

To evaluate the speedup achieved by the SoSoC hard-
ware services, we evaluated the hardware speedup over
the software execution and the task sequences including
batches of tasks.

1.55

300.53 298.48

1.96

372.66 372.35

124.10

37.82

114.29
180.42

1

10

100

1000

Add
er

AES-E
nc

AES-D
ec

ID
CT

DES-E
nc

DES-D
ec

RGB2Y
UV

2D
ID

CT

Quan
t

Ave
ra

ge

S
p

ee
d

u
p

Fig. 8. Performance improvement due to service substitution.

Using SoSoC, we generated hardware versions corre-
sponding to nine EEMBC software programs (Adder,
AES_Enc, AES_Dec, IDCT, DES_Enc, DES_Dec,
RGB2YUV, 2DIDCT, and Quant). The hardware speedups
were computed on the original (unmodified) software
version, and were found to range from 1.55x to 373x (see
Fig. 8). Each hardware service was attached to an MB
processor with a pair of FSL bus channels. As the AES
and DES have large-scale computational complexity they
achieved the highest speedup.
2) Speedup for Parallel Applications against Sequences
To measure the maximum speedup for SoSoC, we inte-
grated up to 4 identical computing servants simultane-
ously. We investigated the parallel execution mode and
sequential mode, as plotted in Fig. 9.

3.74

3.13

0.95

0.96

0.0

1.0

2.0

3.0

4.0

5.0

4 8 16 32 64 128 256 512 1024 2048 4096

Number of Executed Tasks

S
p

e
e

d
u

p

Parallel Sequential

Fig. 9. Peak speedup against execution in a single core.

For the parallel execution mode, the execution time on
each servant was able to be completely overlapped; there-
fore the ideal speedup is 4.0x. For the sequential mode,
data hazards such as read-after-write (RAW) could not be
resolved by scheduling, which results in the speedup <
1.0x.

The X-axis refers to the total number of tasks. As the

number of executed tasks grows, the speedups asymptot-
ically reach their maximums. The maximum speedup for
the 4-unit system is 3.74x, and the result for a single unit
is 0.957x, which means that even with the scheduling and
communication overheads, the experimental values can
achieve 93.6% and 95.7% of the ideal peak values.

5.3 Scalability Analysis
In this Section, we analyze the scalability of the SoSoC

platform, which includes two parts: 1) How SoSoC per-
formed when the hardware service became increasingly
powerful, and 2) How SoSoC performed when more
hardware computational kernels were integrated.
1) Services at Different Speedup

To measure the influence of hardware IP cores with dif-
ferent efficiencies, we constructed a platform consisting of
two modules: one scheduling MB with one IDCT hard-
ware module. The speedup of the system was assessed as
the relative hardware/software execution time was var-
ied. The task scale 8~256 indicates the total number of the
IDCT tasks.

Fig. 10 demonstrates the experimental results of differ-
ent hybrid systems. As the relative execution time of
hardware to software was increased from 1:1 to 1:10, the
observed speedup also increased in a roughly linear rela-
tion. When the integrated hardware computing servant
had the same efficiency as software (speedup of 1.0x), the
speedup of the SoSoC system was found to be 0.94x, due
to the scheduling overheads, while when the hardware
was set to operate at 10.0x the software speed, the
speedup of the SoSoC system was found to be 8.01x. The
experimental results demonstrate that the SoSoC system
is very stable and that the performance scales with hard-
ware computational kernels of diverse performance.

Max Speedup

8.01

0.94

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

1:1 1:2 1:3 1:4 1:5 1:6 1:7 1:8 1:9 1:10

Hardware/Software Execution Time Rate

S
p

e
e

d
u

p

8 16 32

64 128 256

Task
Scale

Fig. 10. The impact of Different Hardware Execution Time.

2) Scalability Analysis with Number of Services
Given that the prototype was built on a reconfigurable

FPGA platform, we were also able to measure the scala-
bility with different numbers of hardware computing
servants. We integrated 1 software computing servant
and N hardware IP cores (N =0, 1, 2, 3, 4…). We used real
data from Fig. 10 to assess the scalability with all 9 hard-
ware services. For each hardware service, we included the
hardware services incrementally into the platform by
reconfiguring the FPGA (with from one to four replica

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

CHAO WANG ET AL.: SOSOC: SERVICE-ORIENTED SYSTEM ON CHIP 11

modules), and measured the speedup, respectively.
Fig. 11 reports the speedup with a different number of

hardware IP cores. We considered the execution time on a
single IP core as the baseline. When there was one Micro-
blaze with one IP core, the speedup was found to be less
than 1.0x due to the scheduling and communication
overheads. When four identical hardware servants were
integrated, the speedup increased to as much as 3.54x.
The experimental results demonstrate that our SoSoC
system could provide good scalability when more com-
putational kernels are involved.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

uB+1IP uB+2IP uB+3IP uB+4IP
Number of Hardware IP Cores

S
p

ee
d

u
p

Adder AES-Enc
AES-Dec IDCT
DES-Enc DES-Dec
RGB2YUV 2DIDCT
Quant

Fig. 11. Speedup with different number of hardware IP Cores

5.4 Discussion of the Out-of-order Scheduling
In this subsection, we use a simple case study to illus-

trate the processing flow of our out-of-order scheduling
method MP-Tomasulo. The test case is described in Table
3, and the experimental timing diagram is described in
Fig. 12.

TABLE 3
SAMPLE TASK SEQUENCE

Task
number

Task type Source
variables

Destination
variable

T1 DCT a b
T2 AES_DEC e d
T3 IDCT b f
T4 AES_ENC d, g h
T5 QUANT b, c g
T6 DES ENC g i

At the model start-up, the token representing the task

T1 is generated and is then dispatched. The transition
checks the state of computational kernels in the modeled
system and assigns the DCT services to the task T1.

In the second time unit, task T2 is generated. As T2 has
no task dependencies with T1, it can immediately be as-
signed to the AES_DES computational kernel.

In the third time unit, the task T3 is generated. At that
time, the sources variable “b” is not ready due to T1 is not
finished. Thus a read-after-write (RAW) data dependence
is identified and the task T3 stalls.

As time goes on, the first task T1 will accomplish its
execution and write the result back into its destination
variable ”b”. Upon detecting the presence of the “b”, the
RAW data dependency is resolved. In Fig. 12, RAW data
dependence is represented by the arrowed line which

connects T1 and T3, while the stall period caused by it is
represented by the bar tagged with Stall-1 in Fig. 12.

When T4 enters the Issue stage, the source variable ”d”
is found not ready yet. It indicates that there is
dependency between the tasks T2 and T4. The latter task
T4 will be stalled until T2 has returned the variable ”d”
during its Commit stage. Similar to T3, the stall period
Stall-3 in T5 is caused by the RAW data dependencies.
The task T5 can begin to execute in before the task T4
since it is not dependent on other tasks. When T5 accom-
plishes the execution and intends to write its result, the
Write Result will check the absence of its destination vari-
able ”g”. Since the task T4 has stalled and the variable “g”
is not read by T4, the task T5 is stalled. It indicates the
existence of anti-dependence. The stall period will last
until the task T4 has fetched its input data. After the task
T5 issues, T6 is allowed to enter the scheduler. However,
T6 cannot be executed due to the RAW data dependence.
As the result, the task T6 stalls. The stall period will last
until the task T5 has written the result. After that, the task
T6 will accomplish its execution.

By investigating the timing diagram, we can get an
overview on how tasks interact with each other and main-
tain the data dependencies in our scheme. To this end, we
confirm that our Out-of-order scheduling scheme can
correctly schedule tasks with data dependencies to ex-
ploit parallelism.

Fig. 12 Timing Diagram of the sample task sequence in Table 3

5.5 Evaluation of Hardware Arbitration
To evaluate the performance of hardware arbitration, we
measured the speedup, power, and energy for hardware
arbitration and traditional software arbitration schemes.
Furthermore, these metrics are evaluated with different
data sizes and task scales.
Figure 13 illustrates the speedup, power, and energy con-
sumption with different data scales. First, the hardware
arbitration can achieve about 2.1x speedup comparing to
the software arbitration. The speedup remains flat when
the data size increases from 10 to 100,000. In comparison,
the power and energy consumption increase with the da-
ta size. For example, the hardware arbitration can take
93.8x less power and 209x energy at 10 data size, and in-
creases to 155.9x and 300.8x at 100,000, respectively. Re-
sults show that the software arbitration consumes 160x
more power and 300x more energy than the hardware
arbitration. Similarly, Fig. 15 also presents the evaluation

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXX 2016

metrics on different task scales. The speedup increase
from 1.3x to 2.7x when the task scale increases from 64 to
4096, while the power consumption remains flat from
150.3x to 162.1x. The energy cost also increases from
204.8x to 427.6x accordingly. Above all, experimental re-
sults for both cases demonstrate the SoSoC architecture
can improve the speedup as well as save significant pro-
portion of power/energy consumption in a scalable man-
ner.

2.2 2.1 1.9 1.9 1.9

93.8 112.3
160.0 159.5 155.9

209.0 237.3 309.6 308.0 300.8

1

10

100

1000
Speedup Power Energy

1.3 1.5 1.9 1.9 1.9 2.0 2.7

162.1 159.5 155.4 159.5 158.5 150.3 159.0
204.8 233.7 302.0 308.1 306.2 307.0 427.6

1

10

100

1000

Speedup Power Energy

Fig. 13. Experimental results of hardware arbitration with different
data sizes and task scales

5.6 Hardware Costs and Power Consumption
For the prototype system, we integrated 2 MBs, 1 adder
module, 1 AES encoder, 1 AES decoder, 1 DES encoder, 1
DES decoder, 1 JPEG (2D-DCT) modules, and other pe-
ripheral blocks. Of the 2 MBs, one is used for scheduling,
and the other is used as a computing servant. The hard-
ware cost of the implemented system was evaluated. By
looking into the modules of the system, we obtained the
area and power consumption for each module.

In Table 4 the MB processor is the area consuming part
(21.5%). The servants (e.g. Data Accumulation and AES
cores) take 0.14~1.28 mm2 of the fabric, which represent
2.4% ~ 21.3% of the total area, depending on the complex-
ity of each servant. Consequently, the additional power
consumption is 2.0 mW ~ 17.8 mW, which takes 2.6%
~23.2% of the SoSoC prototype. Beyond the hardware
cost and area utilization, the power consumption of the
system only takes 118.0 mW, which demonstrates that
SoSoC costs moderate energy and power consumptions.

6 CONVOLUTIONAL NEURAL NETWORKS AS A

CASE STUDY

To demonstrate the efficiency of our SoSoC architec-

ture in real applications, we use one typical case study,
convolutional neural networks (CNN) in deep learning.
Deep Learning has recently gained great popularity in the
machine learning community due to their potential in
solving previously difficult learning problems. Even
though Deep and Convolutional Neural Networks have

TABLE 4
HARDWARE COSTS, AREA AND POWER OF SOSOC ARCHITECTURE

IP cores Description LUTs Area(uM2) FFs BRAMs Power(mW)
Scheduler MB Scheduler 1650 1331,550 1489 0 9.7
Adder Data aggregation 182 146,874 82 0 2.0
IDCT Inverse Discrete Cosine Transform 215 173,505 85 0 14.8
AES ENC AES encryption 1413 1140,291 790 3 17.8
AES DEC AES decryption 1587 1280,709 788 3 16.8
DES ENC DES encryption 597 481,779 537 0 17.4
DES DEC DES decryption 525 423,675 537 0 15.5
RGB2YUV Color Space Converter 104 83,928 116 0 3.8
2D DCT 2D Inverse Discrete Cosine Transform 314 253,398 191 0 11.5
QUANT Quantization 125 100,875 124 0 8.7
Block RAM On chip cache 26 20,982 24 32 25.0
Peripherals UART, interrupt ,timer 853 688,371 773 0 0.9
In Total 7675 6193,725 5295 38

App Architecture Description Power(mW) Time(ns) Energy(pJ)

Adder Microblaze+Adder+FSL+Cache+Peripherals 39.1 8.5 331.1

IDCT Microblaze+IDCT+FSL+Cache+Peripherals 51.9 16.0 830.7

JPEG Microblaze+ RGB2YUV +IDCT+Q+ FSL+Cache+Peripherals 61.0 31.4 1912.4

AES Microblaze+AES_ENC+AES_DEC+FSL+Cache+Peripherals 71.7 39.8 2852.1

DES Microblaze+DES_ENC+DES_DEC+FSL+Cache+Peripherals 70.0 25.1 1756.0

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

CHAO WANG ET AL.: SOSOC: SERVICE-ORIENTED SYSTEM ON CHIP 13

diverse forms, they share similar properties that a generic
description can be formalized. First, these algorithms con-
sist of a large number of layers, which are normally exe-
cuted in sequence so they can be implemented and evalu-
ated separately. Second, each layer usually contains sev-
eral sub-layers called feature maps; we then use the terms
input feature maps and output feature maps. Overall,
there are three main kinds of layers: most of the hierarchy
is composed of convolutional and pooling layers, and
there is a classifier at the top of the network consisting of
one or multiple layers. The role of convolutional layers is
to apply one or several local filters to data from the input
layer. Consequently, the connectivity between the input
and output feature map is local. Consider the case where
the input is an image, the convolution is a 2D transform
between a subset of the input layer and a kernel of the
same dimensions, as illustrated in Fig. 14. Specifically, we
implement services for convolutional neural networks
(CNN), using both Xilinx Zynq (integrated with ARM
Cortex hard processor) and Altera DE5 (integrated with
NIOS processor) development boards. Table 5 illustrates
the comparison between our experimental results to the
state-of-the-art literature.

28x28 24x24

6

12x12

6

8x8

12

4x4

12

10

Input

COV1 POL2 COV3 POL4 CSF5

...

Fig. 14. Neural network hierarchy is containing different layers.

Experimental results demonstrate that our implemen-
tation can achieve 7.7GFLOPS using Xilinx Zynq board
with 43200 slices+220 DSPs, and 12.95GFLOPS using Al-
tera DE5 board with 234,720 ALMs+256DSPs. The major
difference between the development boards is the num-
ber of DSP blocks. The Xilinx Zynq board and Altera DE5

board have only 220 and 256 DSPs respectively, while
Xilinx Virtex-5/7 have 1056/2800 DSP blocks, which can
optimize the matrix multiplication operations in CNN
computation. Consequently, the performance density of
our approach, especially for DSP resources, significantly
outperforms the related studies.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we have introduced SOA into MPSoC de-
sign and proposed SoSoC, which consists of an applica-
tion servant, a scheduling servant, multiple heterogene-
ous software and hardware computing servants. Through
a well-defined programming interface and diverse com-
puting resources, a specific application can be dynamical-
ly scheduled and offloaded to either soft or hardware
computing servants at run-time. A prototype system of
SoSoC has been implemented in a single FPGA chip.
Evaluation and experimental results demonstrate that
SoSoC can achieve great data parallelism with minimal
componentization overhead and hardware costs. From
the experimental results, we conclude that by integrating
the SOA concept with MPSoC architecture design, differ-
ent MPSoC prototype systems targeted at various appli-
cations can easily be constructed and utilized. SOA can
usefully enhance flexibility. The reduction in design com-
plexity can accelerate the process of prototype system
construction and evaluation, and thus significantly short-
en time to market.

There are numerous future directions worth pursuing.
First, improved task partitioning and further adaptive
mapping schemes are essential to support automatic task-
level parallelization. Second, we also plan to study the
out-of-order task execution paradigm, exploring the po-
tential exploitation of parallelism in sequential programs.
Finally, we feel that the SoSoC concepts should also be
applied to clusters and supercomputing machines.

TABLE 5
HARDWARE COSTS, AREA AND POWER OF SOSOC ARCHITECTURE (CNN CASE STUDY)

Metrics ICCD13[29] ASAP09[30] FPL09[31] FPL09[31] PACT10[32] ISCA10[33] Xilinx Zynq Altera DE5

Precision fixed point 16bits fixed 48bits fixed 48bits fixed fixed point 48bits fixed 32bits float 32bits float

Frequency 150 MHz 115 MHz 125 MHz 125 MHz 125 MHz 200 MHz 100MHz 200MHz

FPGA chip
Virtex6

VLX240T
Virtex5
LX330T

Spartan-3A
DSP3400

Virtex4
SX35

Virtex5
SX240T

Virtex5
SX240T

Zynq
Zedboard

Stratix V

FPGA Capaci-
ty

37,680 slices
768 DSP

51,840 slices
192 DSP

23,872 slices
126 DSP

15,360
slices 192

DSP

37,440 slices
1056 DSP

37,440 slices
1056 DSP

53,200 slices
220 DSP

234,720 ALMs
256 DSP

LUT type 6-input LUT 6-input LUT 4-input LUT
4-input
LUT

6-input LUT 6-input LUT 6-input LUT 8-input LUT

CNN Size 2.74 GMAC 0.53 GMAC 0.26 GMAC
0.26

GMAC
0.53 GMAC 0.26 GMAC

0.8447
GFLOP

2.27GFLOP

Performance
8.5 GMACS

3.37
GMACS

2.6 GMACS
2.6

GMACS
3.5 GMACS 8 GMACS 7.7 GFLOPS 12.95 GFLOPS

17 GOPS 6.74 GOPS 5.25 GOPS 5.25 GOPS 7.0 GOPS 16 GOPS 7.7 GOPS 12.95 GOPS

Performance
Density (Slice)

4.5E-04
GOPs/Slice

1.3E-04
GOPs/Slice

2.2E-04
GOPs/Slice

3.42E-04
GOPs/Slice

1.9E-04
GOPs/Slice

4.3E-04
GOPs/Slice

1.45E-4
GOPS/Slice

5.52E-5
GOPS/ALM

Performance
Density(DSP)

2.2E-02
GOPS/DSP

3.51E-02
GOPS/DSP

4.17E-02
GOPS/DSP

2.73E-02
GOPS/DSP

6.63E-03
GOPS/DSP

1.52E-02
GOPS/DSP

3.5E-02
GOPS/DSP

5.05E-02
GOPS/DSP

1045-9219 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2017.2701828, IEEE
Transactions on Parallel and Distributed Systems

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. X, NO. X, XXX 2016

REFERENCES
[1]. Chen, T., et al., DianNao: a small-footprint high-throughput

accelerator for ubiquitous machine-learning, in Proceedings of the
19th international conference on Architectural support for
programming languages and operating systems. 2014, ACM: Salt
Lake City, Utah, USA. p. 269-284.

[2]. Leupers, R., et al. Cool MPSoC programming. in Design, Automation
& Test in Europe Conference & Exhibition (DATE) 2010. Dresden

[3]. Galuzzi, C. and K. Bertels, The Instruction-Set Extension Problem: A
Survey, in Proceedings of the 4th international workshop on
Reconfigurable Computing: Architectures, Tools, and Applications.
2008, Springer-Verlag: London, UK.

[4]. Wang, C., et al. SOMP: Service-Oriented Multi Processors. in
Proceedings of the 2011 IEEE International Conference on Services
Computing. 2011. IEEE Computer Society.

[5]. Wang, C., et al. CaaS: Core as a service realizing hardware services
on reconfigurable MPSoCs. in 22nd International Conference on Field
Programmable Logic and Applications (FPL). 2012.

[6]. Xiaoying, B., X. Dezheng, and D. Guilan, Dynamic Reconfigurable
Testing of Service-Oriented Architecture, in Proceedings of the 31st
Annual International Computer Software and Applications Conference
- Volume 01. 2007, IEEE Computer Society.

[7]. Wentzlaff, D. and A. Agarwal, Factored operating systems (fos): the
case for a scalable operating system for multicores. ACM SIGOPS
Operating Systems Review, 2009. 43(2): p. 76-85.

[8]. Thanh, D.v. and I. Jørstad. A Service-Oriented Architecture
Framework for Mobile Services. in Proceedings of the Advanced
Industrial Conference on Telecommunications/Service Assurance with
Partial and Intermittent Resources Conference/E-Learning on
Telecommunications Workshop 2005.

[9]. HAKI, M.K. and M.W. Forte. Service Oriented Enterprise Architecture
Framework in Services (SERVICES-1), 2010 6th World Congress on
2010. Miami, FL

[10]. I.M., D. and L. J.L.M., Service-Oriented Architecture for Distributed
Publish/Subscribe Middleware in Electronics Production Industrial
Informatics, IEEE Transactions on 2006 2(4): p. 281 - 294

[11]. Jia, Z., K. Daniel, and L. Shiyong. Confucius: A Scientific
Collaboration System Using Collaborative Scientific Workflows. in
Proceedings of the 2010 IEEE International Conference on Web
Services. 2010. IEEE Computer Society.

[12]. Lubbers, E. and M. Platzner, ReconOS: Multithreaded programming
for reconfigurable computers. ACM Transactions on Embedded
Computing Systems, 2009. 9(1): p. 1-33.

[13]. Peck, W., et al. Hthreads: A Computational Model for
Reconfigurable Devices in International Conference on Field
Programmable Logic and Applications, FPL '06. 2006. Madrid, Spain.

[14]. Koch, D., C. Beckhoff, and J. Teich. A communication architecture
for complex runtime reconfigurable systems and its implementation on
spartan-3 FPGAs. in Proceedings of the ACM/SIGDA international
symposium on Field programmable gate arrays. 2009. Monterey,
California, USA: ACM.

[15]. Rupnow, K., K.D. Underwood, and K. Compton, Scientific
Application Demands on a Reconfigurable Functional Unit Interface.
ACM Trans. Reconfigurable Technol. Syst., 2011. 4(2): p. 1-30.

[16]. Martin, T., et al., FlexCore: Utilizing Exposed Datapath Control for
Efficient Computing. 2009, Kluwer Academic Publishers. p. 5-19.

[17]. Wittig, R.D. and P. Chow. OneChip: An FPGA processor with
reconfigurable logic. in Proceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines. 1995.

[18]. Watkins, M.A. and D.H. Albonesi, ReMAP: A Reconfigurable
Heterogeneous Multicore Architecture, in Proceedings of the 2010
43rd Annual IEEE/ACM International Symposium on Microarchitecture.
2010, IEEE Computer Society. p. 497-508.

[19]. Wawrzynek, J., et al., RAMP: Research Accelerator for Multiple
Processors. Micro, IEEE, 2007. 27(2): p. 46-57.

[20]. Vassiliadis, S., et al., The MOLEN polymorphic processor.
Computers, IEEE Transactions on, 2004. 53(11): p. 1363-1375.

[21]. Tarditi, D., S. Puri, and J. Oglesby. Accelerator: using data
parallelism to program GPUs for general-purpose uses. in
Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems. 2006.
San Jose, California, USA: ACM.

[22]. Li, H., et al., SWAP: Parallelization through Algorithm Substitution.
IEEE Micro, 2012. 32(4): p. 54-67.

[23]. Pericas, M., et al. A Flexible Heterogeneous Multi-Core Architecture.
in 16th International Conference on Parallel Architecture and
Compilation Techniques, PACT 2007. Brasov

[24]. Castrillon, J., et al. Task management in MPSoCs: An ASIP
approach. in IEEE/ACM International Conference on Computer-Aided
Design - Digest of Technical Papers. 2009. San Jose, CA

[25]. Vassiliadis, N., G. Theodoridis, and S. Nikolaidis, An Application
Development Framework for ARISE Reconfigurable Processors. ACM
Trans. Reconfigurable Technol. Syst., 2009. 2(4): p. 1-30.

[26]. Salminen, E., et al. Overview of bus-based system-on-chip
interconnections. in IEEE Int. Symp. Circuits Syst. 2002.

[27]. Rosinger, H.-P., Connecting Customized IP to the MicroBlaze Soft
Processor Using the Fast Simplex Link (FSL) Channel. 2004, Xilinx
Inc. p. 1-12.

[28]. Ian, K. and R. Jonathan, Area and delay trade-offs in the circuit and
architecture design of FPGAs, in Proceedings of the 16th international
ACM/SIGDA symposium on Field programmable gate arrays. 2008,
ACM: Monterey, California, USA.

[29] M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal. Memory-
centric accelerator design for convolutional neural networks. In
Computer Design (ICCD), 2013 IEEE 31st International Conference on,
pages 13–19. IEEE, 2013.

[30] M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I.
Durdanovic, E. Cosatto, and H. P. Graf. A massively parallel
coprocessor for convolutional neural networks. In 20th IEEE
International Conference on Application-specific Systems,
Architectures and Processors, ASAP 2009., pages 53–60, 2009.

[31] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. Cnp: An fpga-based
processor for convolutional networks. In Field Programmable Logic
and Applications, 2009. FPL 2009. International Conference on,
pages 32–37. IEEE, 2009.

[32] S. Cadambi, A. Majumdar, M. Becchi, S. Chakradhar, and H. P. Graf.
A programmable parallel accelerator for learning and classification. In
19th international conference on Parallel architectures and compilation
techniques, 273–284. ACM, 2010.

[33] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi. A
dynamically configurable coprocessor for convolutional neural
networks. In ACM SIGARCH Computer Architecture News, volume 38,
pages 247–257. ACM, 2010.

BIOGRAPHY
Chao Wang received B.S. and Ph.D degree
from University of Science and Technology of
China, in 2006 and 2011 respectively, both in of
computer science. He is an associate professor
in School of Computer Science, University of
Science and Technology of China, Suzhou,
China. He is the handling editor of Microproces-
sors & Microsystems, and IET Computers &
Digital Techniques. His research interests focus

on Multicore and reconfigurable computing.

Xuehai Zhou is a Professor in the School of
Computer Science, and the executive dean of
School of Software Engineering, University of
Science and Technology of China. He serves as
general secretary of steering committee of com-
puter College fundamental Lessons, and tech-
nical committee of Open Systems, CCF.

Yunji Chen graduated from the Special Class for
the Gifted Young, University of Science and
Technology of China (USTC), Hefei, in 2002.
Then, he received the PhD degree in computer
science from Institute of Computing Technology
(ICT), Chinese Academy of Sciences (CAS),
Beijing, China, in 2007. He is currently a profes-
sor at ICT.

Xi Li is a Professor and vice dean in the School of
Software Engineering, University of Science and
Technology of China. There he directs the re-
search programs in Embedded System Lab, ex-
amining various aspects of embedded system with
the focus on performance, availability, flexibility
and energy efficiency. He has lead several nation-

al key projects of CHINA, several national 863 projects and NSFC
projects. Prof. Li is a member of ACM and IEEE, a senior member of
CCF (China Computer Federation).

