
1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID 1

Analyzing Large Biological Datasets in
Bioinformatics with Maximal Information

Coefficient
Chao Wang, Member IEEE, Xi Li, Dong Dai, Aili Wang and Xuehai Zhou

Abstract— The maximal information coefficient (MIC) has been proposed to discover relationships and associations between
pairs of variables. It poses significant challenges for bioinformatics scientists to accelerate the MIC calculation, especially in
genome sequencing and biological annotations. In this paper we explore a parallel approach which uses MapReduce
framework to improve the computing efficiency and throughput of the MIC computation. The acceleration system includes
biological data storage on HDFS, preprocessing algorithms, distributed memory cache mechanism, and the partition of
MapReduce jobs. Based on the acceleration approach, we extend the traditional two-variable algorithm to multiple variables
algorithm. The experimental results show that our parallel solution provides a linear speedup comparing with original algorithm
without affecting the correctness and sensitivity.

Index Terms—Bioinformatics; Large Biological Datasets; MIC; MapReduce;

——————————  ——————————

1 INTRODUCTION

NA microarray is able to simultaneously measure
the expression levels of thousands of genes, generat-
ing huge amounts of data [1]. The analysis of the

large scale data presents a tremendous challenge to biolo-
gists to gain biological deep insights from raw experi-
ments. Along with the massive data generated from indi-
vidual genes, examining dataset on a gene-by-gene basis
is quite time consuming and difficult to carry out across
an entire dataset. A typical example is measuring the rela-
tionships between genes by determining the associations
between their expression profiles [2]. Imagine a huge data
set with tens of thousands of records, each of which may
contain tens of thousands of variable pairs—far too many
to examine manually [3]. However, many undiscovered
relationships are still hidden in the explosive large scale
data, and how to identify important factors for a chosen
objectivity efficiently has become an important scientific
issue to be solved.

Determination of sequence similarity is one of the ma-
jor steps in computational phylogenetic studies. During
evolutionary history, not only DNA mutations for indi-
vidual nucleotide but also subsequent rearrangements
have occurred. It has been one of major tasks for compu-

tational biologists to develop novel mathematical de-
scriptors for similarity analysis such that various muta-
tion phenomena information would be involved simulta-
neously [4]. Figure 1 illustrates the basic step of the ge-
nome sequencing mapping. The top part in the figure
indicates the sequence alignment, where the reference
and the reads are all strings consisted of ’A’, ’C’, ’T’, ’G’,
as illustrated by the bottom of the figure [5]. Underlined
characters in reads represent the gnome variations. The
motivation is to identify the similarity of the referenced
genome and the short reads. However, this process could
be quite timing consuming and has posed significant
challenges to the researchers.

Figure 1 Genome read mapping. The top part in the figure indicates
the sequence alignment, where the reference and the reads are all
strings consisted of ’A’, ’C’, ’T’, ’G’, as illustrated by the bottom of the
figure. Underlined characters in reads represent the gnome varia-
tions.

To tackle this problem, Reshef et al. [6] proposed a
novel correlation measurement “maximal information
coefficient” (MIC), and presented a 1-D dynamic pro-
gramming algorithm to calculate the MIC. MIC does not
rely on the distributional assumptions of measured data
and could identify a broad class of associations compared

xxxx-xxxx/0x/$xx.00 © 200x IEEE

D

————————————————
 C. Wang is with the University of Science and Technology of China, Hefei,

230027, Anhui, China. E-mail: cswang@ustc.edu.cn
 D. Dai is with School of Computer Science, Texas Tech University, Lub-

bock. Email: daidong@mail.ustc.edu.cn
 A. Wang is with the School of Software Engineering, University of Science

and Technology of China, Suzhou, 215123, Jiangsu, China. E-mail: wan-
gal@ustc.edu.cn.

 X.Li and X.Zhou are with the Suzhou Institute of University of Science
and Technology of China, Suzhou, 215123, Jiangsu, China. E-mail:
llxx,xhzhou@ustc.edu.cn.

 Manuscript received (insert date of submission if desired). Please note that
all acknowledgments should be placed at the end of the paper, before the bib-
liography.

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

2 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

with previous studies. Given a discrete random variable x
and all its possible values, we can calculate the infor-
mation content of any event x=k. Furthermore, given the
distribution of x, we can calculate the average information
content of its distribution. It has been named as Shannon
Entropy H(x). Based on the Shannon entropy, we can de-
fine the mutual information I(x, y), which refers to the
uncertainty about y, consequently I(x,y)=H (y)-H(y|x). For
example, if x and y are independent, we can easily calcu-
late I(x,y) = 0. On the contrary, if x and y have strong rela-
tionship y= f(x), then H(y|x)=0, and I(x, y) reaches the
maximum value.

Consider two given variables: the objective (obj) and
the factor (fac), with millions of sample pairs (faci , obji). To
compute the mutual information of these two variables,
we need to try all the different ways to draw a grid on the
scatter plot of these two variables. After exploring all
grids up to a maximal grid resolution, which are depend-
ent on the sample size, we can compute for each (faci , obji)
the largest possible mutual information (Ig) achievable by
any x*y grid. To process a fair comparison between grids
of different dimensions, we can normalize these mutual
information values into 0 to 1. According to the grids
number, we can define a characteristic matrix M = {mx,y},
where mx,y is the peak normalized mutual information
from all the possible x*y grids.

To propose a formal definition: for a grid G, Ig denotes
the formalized mutual information of the probability dis-
tribution induced on the boxes of G, where the probabil-
ity of a box is proportional to the number of data points
falling inside the box. The (x, y)th entry mx,y of the charac-
teristic matrix equals to max {Ig/log(mx,y)}. The maximum
is taken over all x*y grids G. MIC is the maximum of mx,y
over ordered pairs (x, y) such that x* y≤ B, where B is a
function of sample size, which is usually set to n0.6. Every
entry of M and MIC fall between 0 and 1, while MIC is
also symmetric due to the symmetric mutual information.
Due to that Ig depends only on the rank order of the data,
MIC is invariant under order preserving transformations
of the axes.

MIC has been regarded an effective statistic measure [6]
to evaluate the association between two variables due to
its two important heuristic properties: generality and
equitability. Generality indicates that with sufficient
sample size, the statistic should capture a wide range of
interesting associations, not limited to specific function
types (such as linear, exponential, or periodic), or even to
all the functional relationships. The latter condition is
desirable because not only do relationships take many
functional forms, but also many important relationships
(like superposition functions) are not well modeled by a
specific function. Equitability means that the statistic
should give similar scores to equally noisy relationships
of different types. Furthermore, equitability is difficult to
formalize for associations in general but has a clear inter-
pretation in the basic case of functional relationships: an
equitable statistic should give similar scores to functional
relationship with similar R2 values (given sufficient sam-
ple size). Besides these two properties, MIC gives rise to a
large family of statistics, which was referred to as MINE,

or maximal information-based nonparametric exploration.
MINE statistics can be used not only to identify interest-
ing associations, but also to characterize them according
to properties such as nonlinearity and monotonicity.

However, the MIC computation algorithm is quite
complex so that it is not feasible to be applied on large
data sets for now. In this paper, we propose a solution
based on MapReduce [7] and other infrastructures to
solve this problem. Our solution extends current software
algorithm into parallel manner and achieves linear
speedup without the affecting the correctness and sensi-
tivity. We use the open-source implementation of the dis-
tributed programming framework including Hadoop [8]
and memcached [9] to implement this parallel algorithm.

In this paper, we propose a uniform accelerating cluster
based system to solve this problem. We claim following
contributions:

1) Our major contribution is the MapReduce accelera-
tion implementation based on the state-of-the-art serial
algorithm. The acceleration can achieve higher perfor-
mance with correctness and satisfying scalability.

2) In this work, we intend to analyze and demonstrate
important properties of the large scale association [10].
Based on the understanding of the problem as well as
heterogeneous accelerators based cluster architecture, we
show that accelerator's parallel processing power can be
fully mobilized to achieve high speed data association
detecting.

3) In order to improve the applicability of the algorithm,
we extend the traditional algorithm to a multi-variable
algorithm. Experimental results verify the correctness and
the efficiency of the new algorithm.

The structure of this paper is organized as below. In
Section 2, we summarize the related work, and then in
Section 3 we first introduce the original algorithm, and
then have some discussions on the MapReduce frame-
work to accelerate the algorithm in parallel. In Section 4,
we describe our MapReduce algorithm in detail, and pro-
pose a phase detection method to locate the execution
stages. Then we demonstrate an approximate way to ex-
tend current solution to multi variables. Thereafter, the
experimental results are described in Section 5. Finally,
Section 6 concludes the paper and introduces future
works.

2 RELATED WORK
For years, the MIC has been applied in various bioinfor-
matics fields successfully. For example, the MIC has been
used as a measure to convert records of biological annota-
tions into networks of the associated annotations [11].
Billions of samples and thousands of variables make the
computing impossible and time consuming. MAPPFinder
[2] presents an identification method for important bio-
logical processes, which is a software tool set for viewing
and analyzing microarray data representing biological
pathways or any other functional grouping of genes.

Meanwhile, accelerators like Cloud[12], GPU [13], and
FPGA [14] have been major dominant engines in big data
research, such as genome sequencing in bioinformatics

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

WANG ET AL.: ANALYZING LARGE BIOLOGICAL DATASETS IN BIOINFORMATICS WITH MAXIMAL INFORMATION COEFFICIENT 3

[15-18]. Of these literatures, how to identify the data cor-
relation has posed significant challenges to the academic
and industrial researchers. There have been a wide range
of methods for identifying interesting relationships be-
tween pairs of variables in large data sets in bioinformat-
ics [19], including methods formulated around the axio-
matic framework for measures of dependence [20], other
state-of-the-art measures of dependence, and several
nonparametric estimation techniques that can be used to
score pairs of variables based on the relationship of the
estimated curve. Methods such as splines and regression
estimators [21] tend to be equitable across functional rela-
tionships but they fail to find many simple and important
types of relationships that are not functional. Although
these methods are not intended to provide generality,
most of them are unsuitable for identifying all potentially
interesting relationships in a large scale data set. Similar
methods such as mutual information estimators, maximal
correlation, principal curve, distance correlation, and the
spearman rank correlation coefficient methods are able to
detect broader classes of relationships. However, these
methods are not equitable even in the basic case of func-
tional relationships: They show a strong preference for
some types of functions, even at identical noise levels. For
example, Reshef [6] has established the generality of max-
imal information coefficient (MIC) through proofs, show-
ing its equitability on functional relationships through
simulations, and observe the intuitively equitable behav-
ior on more general associations.

Although researchers have proven MIC is a creditable
approach to detect the relationships between variable
pairs, it still consumes significant time for analyzing large
scale data set due to the complex calculation process.
With respect to the optimization approaches, GPU and
FPGA based approaches are two dominant methodolo-
gies in heterogeneous architecture design paradigms. For
example, RapidMic [22] is a cross-platform tool for the
rapid computation of the maximal information coefficient
based on parallel computing methods. Through parallel
processing, it can effectively analyze the large-scale bio-
logical datasets with a remarkable reduced computing
time. Similarly a simulated annealing and genetic algo-
rithm was developed [23] to facilitate the optimal calcula-
tion of MIC, and the convergence of SG was proved based

on Markov theory. Lopez-Paz et.al [24] introduce the ran-
domized dependence coefficient, which is a measure of
nonlinear dependence between random variables of arbi-
trary dimension. Kinney et. al [25] identify artifacts in the
reported simulation, in particular for the estimates of mu-
tual information when these artifacts are removed. Re-
cently Nature Biotechnology [26] solicits comments from
several practitioners versed in data-intensive biological
research. Their responses not only highlight the appeal of
methods like MIC for biological research, but also raise
some important reservations as to its widespread use and
statistical power. Paninski [27] presents some results on
the nonparametric estimation of entropy and mutual in-
formation. Kraskov et. al [28] present two classes of im-
proved estimators for mutual information, from samples
of random points distributed according to some joint
probability density. To show the effectiveness of MIC in
medical imaging field, Pluim et.al [29] summarize the
MIC based registration of medical images. Reshef et.al [30]
present the MIC calculation with more comprehensive
understanding to show the effectiveness and efficiency.
Similarly, many scientific applications have been opti-
mized by GPU and FPGA accelerators, such as [31], [5]
and [16]. In particular, these approaches consist of a series
of nodes, each of which has both a CPU controller and a
heterogeneous accelerator. All nodes are under the con-
trolling of the scheduler that is responsible for issuing
tasks and balancing workloads, which increase the design
complexity and burden of the software programmers.

3 MIC CALCULATION ALGORITHM
To reduce the computation complexity in the original
algorithm, Reshef [6] has introduced a dynamic pro-
gramming improvement. In this section, we will
demonstrate the algorithm first, and then analyze the
strategy of parallelization using MapReduce frame-
work on multiple computing machines.

3.1. Original Algorithm Description
In particular, the MINE algorithm is designed for heu-
ristically generating the characteristic matrix of two-
variable data sets. To calculate MIC matrix, the algo-
rithm would ideally optimize over all possible grids.

Figure 2. Detailed process of MINE algorithm description

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

4 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

For computational efficiency, the algorithm instead
uses a dynamic programming algorithm which opti-
mizes over a subset of the possible grids and performs
the approximate computation well to the true value of
MIC in practice. The MINE algorithm description can
be divided into four steps as shown in Fig. 2:

(1) Input arrays. In this step the algorithm receives
the two-variable input data.

(2) Noiseless functional relationships. In this step the
received data is aligned to the two-dimensional coor-
dinate quadrant. Actually the curve refers to the func-
tional relationships with noises. In order to explain the
following steps clearly, we use noiseless relationships
for further discussion. Noiseless relationships mean
that all the received data is part of a specific function.

(3) Parallel association detection. To calculate the
MIC of a two-variable data set, we explore all the grids
up to a maximal grid resolution, depending on the
sample size. Then the largest possible mutual infor-
mation achievable by any x-by-y grid is calculated for
every pair of integers (x,y).

(4) Locate the maximum MIC. These mutual infor-
mation values are normalized to ensure a fair compari-
son between grids of different dimensions and to ob-
tain modified values between 0 and 1. Finally the peak
normalized mutual information achieved by any x-by-
y grid refers to the MIC.

3.2. MapReduce Acceleration
Accelerate the original algorithm is necessary because it is
time-consuming especially when facing large scale input
data size. The huge size of input dataset usually cannot be
stored in one server, and it is typically stored in distribut-
ed storage systems or distributed databases. Storing data
across thousands of machines means each server only
stores a small part of the dataset. In such condition, the
original algorithm would become inefficient as it needs
too many communications when processing data that is
not stored locally. What’s worse, the limitation that only
one single sever can execute the algorithm makes it im-
possible for large input data.

To accelerate the original algorithm, we provide a sys-
tem-level distributed framework including the storage
pattern, the way to parallel original algorithm, and the
components.

1) Storage Pattern: Before discussing the MapReduce so-
lution, we first describe the storage pattern. The large
dataset can be stored in all kinds of distributed storage
systems. However, in our specific MapReduce based sce-
nario, input data collected by recorders or loggers is
stored as text files in HDFS cluster, as illustrated in Fig. 3.
Each row of the logs.data contains thousands of variables.
The first column of Fig. 3 indicates that the objective is to
find out whether other variables have relationships with.
From the second column, we store all the collected varia-
bles: fac1, fac2… facn. Please note that all the rows are
stored unordered. In HDFS, this log file (logs.data) will be
divided into chunks (typically 64 MB) and stored into
different storage nodes. Usually HDFS will replicate each
chunk into three servers, consequently when a MapRe-

duce job is started, the Hadoop manager will try to
schedule tasks running on the node with the tasks input
data set. In our solution, we take advantage of this locali-
ty to achieve a better performance.

Figure 3. Input dataset storage in HDFS files.

2) Parallel Analysis and Design: According to the algo-
rithm that has been presented in Reshef’s work [6], it can
be concluded that different y will generate completely
different MIC results. This means we may be able to di-
vide the computing process into different irrelevant parts
according their y partition number, and execute them on
different servers in parallel. However, due to that each
server still needs the overall input dataset during this
computation, it is difficult to run this computation in par-
allel. This means the algorithm is still infeasible facing the
huge data set which cannot be accommodated on one
machine.

Although we cannot parallelize the MIC computing
procedure in such a straightforward way, we can try oth-
er non-trivial ways. As shown in Fig. 4. (a), the depend-
ence graph of the original algorithm can be discovered
inside each loop during the execution: there is B/2 loops
(B denotes the maximum grids we want to draw) and
each loop contains three dependent procedures: equally
partition y-axis, optimally partition x-axis, and calculate x
* y grids’ mutual information. Fig. 4. (b) demonstrates
that we can change the inner-loop dependence to a nest-
ed-loop dependence. After getting rid of the inner-loop
dependence, we will get three dependent loops, and ac-
celerate the three tasks in sequence. The detailed loop
unrolling techniques will be presented in Section 4.2 Loop
Unrolling Process.

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

WANG ET AL.: ANALYZING LARGE BIOLOGICAL DATASETS IN BIOINFORMATICS WITH MAXIMAL INFORMATION COEFFICIENT 5

Figure 4. Dependence graph of MI computation procedure

Regarding the task partitioning, the first task is parti-
tioning y-axis equally in a distributed manner. EquiParti-
tionY Axis should make sure that each part contains the
same number of points. In HDFS, each physical server
stores parts of dataset out-of-order, therefore we divide
the entire dataset into different servers, each of which
contains an equal range according to the points’ y value.
Thereafter, EquippartitionY Axis can be executed locally.
So far, we have got the equal partitions for each equal y
ranges in each server, and then we combine these equal
partitions together to form an overall equal partition. Due
to the imbalance of ranges, it is not possible to form an
equal partition just by one combination. Anyway, a posi-
tive perspective is that we can start a multi-round task to
make the partition as equal as possible.

The second task is the x-axis partitioning based on
Theorem 1. Fig. 5 shows the overall procedure of optimal
x-axis partition. All the nodes can be distributed into dif-
ferent servers using the same strategy as we did in equal-
ly partitioning y-axis. Given a server number of k, we di-
vide the input dataset in HDFS into k ordered parts with
equal range according to the points’ x value. After this
data distribution, we explore all the possible x-axis parti-
tions locally in each server.

Figure 5. Partition x-axis with k fix partition lines.

After this step, we have calculated the entire possible x

* y grids in the k parts (Part (k) in Fig. 5), subsequently we
need to combine the intermediate results into the final
result. As shown in Fig. 5, the x-axis partition at least con-
tains k division due to that we have to divide all the data
pairs into k parts, and run each part in a separate server.
However, this fixed k parts would not affect the correct-
ness at all because it is easily to choose k wisely: making it
small enough without affecting the final result or we can
even run the x-axis partition procedure again for a slice
different k division. Two different k divisions can guaran-
tee that we explorer all the possible x * y grids and pro-
vide the exactly correct results.

4. MAPREDUCE SOLUTION AND OPTIMIZATION
4.1 MapReduce Solution

The MapReduce based parallel MIC algorithm in-
cludes three dependent stages: 1) equally divide the y-
axis in parallel, 2) explore all the possible x-axis partitions
with every y-axis partition, and 3) calculate the maximum
mutual information for each x * y grid.

The Alg. 4 DirverMain describes the main function to

drive these three stages to finish the MIC calculation. The
y-axis partition results (Q) generated by MREquiParti-
tionYAxis will be used as the input set of MROpti-
mizePartitionXAxis. Then MROptimizePartitionXAxis
function will explore the entire possible x*y grids and
produce the mutual information for different x*y grids.
After normalizing the Ix,y array, we can get the maximum
mutual information array Mx,y. Meanwhile, the same al-
gorithm will be applied to the same data pairs with re-
versed x and y to make sure the correctness of the approx-
imation.

1) MREquiPartitionYAxis: Before partition dataset in y-
axis based on MapReduce, we need some global variables:
the sample size, denoted as ny, the maximum y-value of
all the samples, denoted as yn, and the maximum x-value
of all the samples, denoted as xn. All these variables
should be maintained while the input dataset was collect-
ed.

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

6 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

Figure 6. MR procedure of equally partition y-axis

Fig.6 illustrates the MapReduce procedure of MREqui-
PartitionYAxis. We firstly emit the <k,yi> to different re-
ducers by judging whether yn/y (k) < yi < yn/y (k + 1). Each
reduce function should sort all the yi that it receives, and
generates equal partitions locally using the serial algo-
rithm. In each reduce function, we emit < (k, pi), (ys, ye,
nki)> after equally partitioning the dataset locally. In these
key-value pairs that the reduce function finally generates,
k means this partition is generated in the kth reducer, pi
denotes this partition’s index inside the kth reducer, (ys, ye)
shows the partition start point and the end point, nki
means the node number in current partition. Considering
the partition number is quite small (comparing with ele-
ments number), we process these <(k, pi),(ys, ye, nki)> key-
value pairs in one reduce function (Reduce-2 phase in Fig.
6). In this reduce function, we choose the partition that
contains the least node numbers, and then combine them
with their adjacent partitions, until we finally get y nearly
equal partitions.

After phase Reduce-2, we get the y-axis partition Q,
but it is not a perfect equal partition because the combina-
tion of two adjacent partitions may generate some unbal-
anced partition. To solve this problem, we should just run
MROptEquipartitionYAxis iteratively to generate opti-
mized equal partitions. The strategy is simple: In MROp-
tEquipartitionYAxis, map all the sample pairs according
partition Q, and send <k, yi> to reduce functions. The kth
reduce function will process nodes belong to the {qk-1, qk}.
Each reduce function will sort all the received nodes in
order, and check whether its nodes number is bigger than
ny/y, if exceed, it will emit the extra nodes with <k + 1, y>
to next iteration. The reduce function in next iteration will
repeat this operation. Users can set the iteration numbers
with configurations, and after y rounds, an optimized hat
Q is achieved.

2) MROptimizePartitionXAxis: MROptimizeParti-
tionXAxis calculate the maximal mutual information of
each possible x-axis partition for a given y-axis partition.
After running MROptimizePartitionXAxis on a given y-
axis partition, we will get the return vector represented as

the set: .

(1)

According to the definition of mutual information il-

lustrated in Equation 1, we can easily conclude that, for a
specific Q (which means a given y-axis partition), the first
part of mutual is a constant. So, we only need to calculate
the maximum of the second part to get the largest I(x,y).
Calculating the maximum of the second part in Equation
1 means calculating the maximal value of following Equa-
tion:

W (x, y) =
This calculation can be easily paralleled in MapReduce

way. Firstly, we divide the sample pairs into k parts using
map function, which emits <k, xi> to different reducers by
judging whether qk < xi < qk+1. Then, each part is processed
in one node by a reduce function. Reduce function does
the similar work as the original optimize PartitionXAxis
except for one key difference: all the W (x, y) calculation is
based on the global information instead of the local in-
formation. For example, to calculate p (x, y), we use over-
all sample nodes number ny, not the node number belong
to the kth part. The reason we use global node number
instead of the local number to calculate W (x, y) can be
easily explained by Equation 2. If we calculate p (x, y) us-
ing global node number, then W (xi, y) can be used in cal-
culating W (x, y).

(2)

Based on this observation, we can distribute the com-

plex W (x, y) calculation to different reducers, and com-
bine them together. The kth reducer will use the modified
serial version optimize PartitionXAxis to calculate W (x,
y), and it will return a vector as following:

V (k) =

As a consequence, each reducer will emit <k,W(k)> to

the last phase reduce function. In the last reduce function,
we combine {W(1), W(2),……,W (k)} into a maximal vector
W as following equation shows. Although the final vector
W is start from k not 2, it would not change the result.

As we have described, we list the MROptimizeParti-

tionXAxis algorithm bellow. The overall computation
includes three phases, including one map phase and two
reduce phases. At last, it will generate a vector W, which
is the second part of the corresponding mutual infor-
mation vector. We can easily calculate Ix,y vector based on
the vector V .

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

WANG ET AL.: ANALYZING LARGE BIOLOGICAL DATASETS IN BIOINFORMATICS WITH MAXIMAL INFORMATION COEFFICIENT 7

3) Optimization for Combination: The last reduce

phase of Alg. 5 contains a complex computation proce-
dure. It may become impossible to calculate according to
the data set’s size. For example, we have a data set with N
nodes, and then the maximal x-axis partition number
would be N0.6/2. If we have R reducers that execute the
reduce phase 1 of Alg. 5, then it will generate R vectors
that contains the partial best mutual information. Each
vector Wi from these R vectors contains N0.6/2 elements.
To get the maximal W results from these vectors, it will
need (N0.6/2)R computations, which would be pretty huge
as is shown in Table I.

TABLE I
COMPLEXITY OF SIX REDUCERS (1GHZ CPU)

Data Set Size
Computation

Complexity

Time

1,000 9.85e106 10‐3s

10,000 3.9e1012 103s

100,000 1.56e1016 107s

1,000,000 6.22e1019 1010s

It is clear that the complexity will increase in an expo-

nential order. This is obviously not acceptable for big data
set. To solve this problem, we firstly sort the vectors in-
side each reduce function and add all the maximums
from different reducers. If the summation is much less
than 1.0, we can guarantee that the final combination re-
sult would be less than 1.0, and consequently those two
variables do not have any strong relationship. Otherwise,
if the summation is close to 1.0, we calculate the combina-
tion by choosing the nearby smaller elements from the
sorted vectors each time, once we have fulfilled the
MaxMI array or we find out that the normalized mutual
information is much less than 1.0, we can stop and set the
remained MaxMI array to be zero safely. In such way, the
proposed methodology is able to alleviate the design

complexity of the combination operations without sacri-
ficing the correctness of the results.

4.2 Loop Unrolling Process
The dependence graph of the original algorithm is inside
each loop during the execution. In this section we demon‐
strate the methodology to change the inner‐loop depend‐
ence to nested‐loop dependence. After getting rid of the
inner‐loop dependence, we will get three dependent
loops, and accelerate the three tasks one by one.

In particular, we inherit the description of state‐of‐the
art dataflow execution model proposed by [32] and [33].
Based on this model, we extend the definition to a general
heterogeneous multicore computing scenario in this pa‐
per. Generally, dataflow execution model executes tasks
with dependences using tokens to signal production and
availability of parameters. Based on the token based tech‐
nique, we make two crucial enhancements. First we asso‐
ciate tokens with objects instead of individual memory
locations, to match the abstraction for functional source
and destination parameters. Second, we assign each ob‐
ject multiple read tokens and a single write token, to man‐
age both production and consumption of parameters.

When the execution encounters a function (in this pa‐
per, denoted as a task) to be considered for dataflow exe‐
cution, it requests read (write) tokens for objects in the
function read (write) set. The pending task is ready for
execution only after it has acquired all its requisite objects.
Upon completion, it releases the tokens which are then
spawned to the shelved function(s) if necessary. When a
shelved function has acquired its requisite tokens, it can
be unshelved and submitted for execution. In this section,
we model the loop based applications on a general state‐
of‐the‐art cluster hardware model, and then present the
phase based detection and pipeline techniques.

Figure 7. PE based Cluster Architecture.

A high level general architecture framework of the
clusters is illustrated in Fig. 7. The proposed architecture
is based on massive computing nodes, each of which can
perform specific MapReduce operations.

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

8 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

Figure 8. Inner-loop and Nested-Loop Pipelining.

4.2.1 Phase Definition

Before the DFG can be mapped to different nodes at
run time, it is essential to analyze the loop based task be‐
havior and detect different phases. Considering the pro‐
gram in Fig. 8 (a), inside each round inside the loop, dif‐
ferent tasks (Task T…G) are executed in a pipeline. Every
time the pipeline should be fulfilled and flushed, this can
be regarded as prolog phase and epilog phase [34], while
the execution at full pipeline can be treated as the kernel
phase. One complexity in pipelining is how to correctly
handle prolog and epilog, which are the initial and the
final iterations when the pipeline is not full. Prolog/epilog
code could be generated separately from the kernel code
during compilation, which however is very likely to in‐
crease the code size or the number of configurations, and
therefore detrimental for clusters, as the cluster can keep
only a very limited number of configurations locally. Fur‐
thermore, if instead prolog/epilog configurations can be
generated from the kernel configurations at runtime by
the control unit itself, no extra configuration will be neces‐
sary. The other parameters of which the control unit needs
to be aware include LC (Loop Count), which is the trip
count of the loop, and EC (Epilog Count), which is the
schedule length in terms of stages.

4.2.2 Inner‐Loop Pipelining

An inner‐loop pipeline can be viewed as a four‐step
process consisting of preheader, prolog, kernel, and epilog,
which is illustrated in Fig. 8 (a). The preheader, which in‐
cludes loop‐invariant code execution as well as issuing
some pipeline‐related tasks, is performed primarily by the
main processor, which may enlist the help of PE arrays.

However, the other steps, prolog, kernel, and epilog, are
performed autonomously by the PE arrays in the cluster.

Single‐loop pipelining can generate a pipeline for the
innermost loop only. Therefore single‐loop pipelining is
also Inner‐Loop Pipelining (ILP). The conventional ap‐
proach to loop nests has been inner‐loop pipelining with
the outer loop implemented in software on a main proces‐
sor. This approach not only suffers from significant per‐
formance overhead due to communication in hybrid archi‐
tectures, but it is also unable to take advantage of outer‐
loop pipelining. We address those problems by overlap‐
ping outer‐loop iterations through sophisticated resched‐
uling on cluster, called Outerloop Pipelining. Note that
mapping the entire loop nest onto cluster can not only
reduce communication delay, but also eliminate the need
for communication at all.

4.2.3 Nested‐Loop Pipelining (NLP).

Fig. 8 (b) illustrates the execution of nested‐loop pipe‐
lining after merging, which can be divided into three
parts. The first part is from the beginning up to the first
prolog, which can be called outerloop prolog. The second
part is from the first kernel up to the last PIC, right before
the last kernel. This part is periodic, consisting of multiple
repetitions of the kernel‐EIC‐kernel‐PIC pattern, and may
be called outerloop kernel. The rest can be called outer‐
loop epilog. The PE can autonomously execute the outer‐
loop kernel plus the first prolog and the last kernel and
epilog. The rest can be done in software on the main pro‐
cessor automatically.

4.3 Multi-Variable Algorithm
After the process is divided into different phases, we

have described the entire MapReduce solution for detect-
ing associations between two variables. However, most
relationships are between the objectivity and more than
two variables. For example, z = f(x, y) denotes that z has a
functional relationship with x and y, but it is still possible
that (z, x) and (z, y) do not contain strong associations. So,
we need to extend the original algorithm to process multi-
variable situations.

Generally, there are two ways to define the mutual in-
formation with multiple variables: the higher-order mu-
tual information and the mutual information for multiple
variables. Higher-order mutual information is defined
like: I(x; y; z) = H(x) + H(y) + H (z) - H(x, y, z). It only
shows the entropy of multiple variables (x, y, and z) joint
distribution. However, in our case, we need to know how
much information a set of variables X1;X2,……,Xk have
about a given outcome or target variable C, this should be
defined as in equation 3:

(3)

As a consequence, for three variables, we know that I

(z:x,y) = H(z)+H(x, y) - H(z, x, y) and we can use the same
strategy described in previous sections to calculate MIC:

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

WANG ET AL.: ANALYZING LARGE BIOLOGICAL DATASETS IN BIOINFORMATICS WITH MAXIMAL INFORMATION COEFFICIENT 9

we can equally divide the z-axis to make H(z) maximal,
and for each z-axis partition, we need to explore all the
possible x, y partitions to make H(x, y)-H(z, x, y) to reach
the peak. However, this will be much more complex than
in 2-dimension because this is an arbitrary x-axis and ar-
bitrary y-axis exploration. As a result, the MapReduce
solution is more important because when the dimension
increases, the grids we need to explore would increase
exponentially. In this situation, only the parallelized algo-
rithm can finish this complex computation in a reasonable
time. Besides, along with the dimension increase, the
sampled nodes number also increases which calls for
more computation ability.

To reduce the complexity of high dimension computa-
tion, we revise and extend the default 2-dimension algo-
rithm. In particular, we equally partition all dimensions
except the last one, and we change the last dimension d
times sequentially from the d dimensions. Finally, the Alg.
4 should be revised to Alg. 6:

Alg. 6 illustrates how we modify our two variable ver-

sions into a multi-variable version. For an object z, a set of
factors x1; x2,……,xd, xi∈R, and all factors belong to Rd.
We first choose a dimension: xk to be partitioned optimal-
ly, while others are partitioned equally. From step 6, eve-
ry extra dimension will result in one for loop. When it
comes to xk in step 10, we determine a partition scenario:
Iz,x1,x2,….,xd, and call MapReduce job to calculate the maxi-
mum mutual information.

5. EXPERIMENTS AND ANALYSIS
In this section, we will describe the experiments on our

MapReduce solution, including the correctness, execution
time, and speedup evaluation for two variables. Moreo-
ver, the accuracy and efficiency of the multi-variable al-
gorithm is also presented. Due to that the complexity of

original algorithm increases notably fast when data set
grows, it would be impossible to compute a large enough
data set in one server. So in our speed experiments, we
mainly measure the speedup in line with the increase of
the cluster size to show the speed advantage of our paral-
lel algorithm.

5.1 Hardware and Software Configuration

We set up a small cluster of 7 nodes, each of which
runs Fedora 17 on Xeon dual-core 2.53 GHz CPU and 6GB
memory. All machines are connected with a single gigabit
Ethernet link. All nodes are in the same hosting facility
and therefore the round-trip time between any pair of
machines was less than a millisecond. In our experiment,
we use Hadoop 1.0.3 as basic storage and processing
framework, which supports HDFS federation and new
generation of MapReduce framework YARN [35]. HDFS
uses multiple independent Namenodes/Namespaces to
scale the name service horizontally. YARN aka MRv2
divides the two major functions of the Job-Tracker and
leverages the system performance. Besides using HDFS as
the main storage layer, we use Memcached [9] to help
multiple MapReduce jobs with intermediate data sharing.

Figure 9. Four relationships sample

5.2 Correctness Evaluation
In the correctness experiment, we compare MIC scores
computed by our MapReduce version with the serial ver-
sion for some relationships and some non-functional rela-
tionships. Fig.9 shows four statistics we used, which are
Random, Linear, Exponential, and Periodic relationship
types.

Figure 10. Three non-functional relationships sample

Fig. 10 illustrates three non-functional associations we
used include ’X’, ’Two Lines’, and ’Eclipse’. Our MapRe-

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

10 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

duce implementation has a fixed k x-axis partitions and
this may influence the correctness. So we choose different
k values for these different kinds of relationships and
check how k affects the correctness by comparing with the
original algorithm.

Table II reports that the fixed k x-partition does not af-
fect the correctness of the MIC calculation. In most situa-
tions, the differences of MIC score between MapReduce
algorithm and the serial algorithm for these functional
and nonfunctional relationships are insignificant enough
to be treated as a random deviation. In fact, this correct-
ness can be proven through our MapReduce algorithm
design and implementation. If there are large enough
sample pairs comparing with the server number k, the
results are unlikely to be different from the original ver-
sion.

TABLE II

MIC SCORE COMPARISON FOR 7 RELATIONSHIPS, SERVER
NUMBER FROM 1 TO 12 (SERVER NUMBER EQUALS TO K)

Relationship Type Serial Alg. N4 N8 N10 N12

Random 0.01 0.08 0.09 0.08 0.08

Linear 0.91 0.96 1.03 1.04 1.03

Exponential 0.96 0.92 0.96 0.92 0.94

Periodic 0.98 0.96 0.92 0.95 0.93

‘X’ 0.68 0.65 0.66 0.60 0.68

‘Two Lines’ 0.68 0.66 0.64 0.67 0.66

‘Eclipse’ 0.69 0.65 0.63 0.65 0.63

5.3 Execution Time and Speedup Evaluation
Hadoop’s MapReduce framework will distribute the

Map and Reduce tasks into multiple servers automatical-
ly according to the input data set. If a Hadoop cluster
stores files into 64MB blocks and the input file is 2GB,
then the file (in our condition is logs.data) will be divided
into 27 blocks and each block will be stored in three serv-
ers (the default replication factor of HDFS). This input file
(logs.data) will make Hadoop’s MapReduce framework
start 27 mapper tasks, with the limitation of the system
parameter mapred.tasktracker.map.tasks.maximum.
However, in most cases, we need to set the reduce tasks
number manually to provide more computation power to
our MapReduce jobs. In our speedup experiments, we
manually set the Reduce tasks number and leave the map
tasks number set by Hadoop.

Besides building Hadoop as the storage layer and the
MapReduce environment, we also introduce a Mem-
cached instance to accelerate the reading of intermediate
results and global variables. As illustrated in Fig. 11, the
MapReduce algorithm includes at least two stages: Y-
Partition stage and X-Partition stage. The y-axis partition
generated by Y-Partition stage will be used in X-Partition
stage. It is clear that the y-axis partition would not be
large because it only includes ys (the y-axis partition
number, belongs to 2,……, B/2) elements. As a result, to
accelerate the processing speed, we store this y-axis parti-
tion results into the memory cache (Memcached) in every
server, then each X-Partition stage task can access these
data locally.

In our implementation, both Y-Partition and XPartition

Figure 11. Time Occupation of 4 MR Jobs

Figure 12. Execution time of different MR jobs with input 10,000 and 100,000 sample points

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

WANG ET AL.: ANALYZING LARGE BIOLOGICAL DATASETS IN BIOINFORMATICS WITH MAXIMAL INFORMATION COEFFICIENT 11

stages include two MapReduce jobs, therefore the total
computation time is the summation of the four MapRe-
duce jobs. We name these four MapReduce jobs as Y-
Partition MR1, Y-Partition MR2, X-Partition MR1, and X-
Partition MR2. Fig. 11 illustrates the percentage of these
four MapReduce jobs occupied in the overall execution
time for different input dataset sizes and number of re-
ducer tasks. It presents that when the input data set in-
creases, an increasing percent of execution time is con-
sumed by the X-Partition MR1 job, this is due to that we
need to explore all the possible x * y grids and calculate
their mutual information accordingly. Also when the re-
ducer task number increases (from 1 to 15), the percent-
age of the most time-consuming job (X-Partition MR1) is
descendent. This is because our parallel solution decreas-
es the execution time of X-Partition MR1 more obviously
than other three MR jobs. In general, the X-Partition MR1
is the longest MR job and our solution can reduce its exe-
cution time with good scalability by adding more servers.

Fig.12 illustrates the execution time of the overall
MapReduce computation procedure with different serv-
ers and different input dataset size. The x-axis of these
two figures denotes the number of Reduce tasks we as-
signed, and the y-axis refers to the execution time in sec-
ond. It is interesting that when there are only 10,000 sam-
ple points (Fig.12) the execution time does not reduce
while the server number is increasing. The reason is that
MapReduce jobs need lots of network communications
and disk I/O, so if the data size is small, the communica-
tion delay and I/O cost will be more obvious. This situa-
tion will disappear when input data size increases, the
execution time decreases dramatically when adding more
servers. For example, it needs 2087 seconds to finish the
computation in one server but it only cost nearly 653 sec-
onds (31.3%) to finish the same computation using three
servers. Our MapReduce solution can achieve linear
speedup according to our experiments.

Furthermore, the speedup of the algorithm is illustrat-
ed in Fig. 13. We derived the speedup from the execution
time with both 10,000 data scale and 100,000 data scale.
For 10,000 data scale, the speedup is not scalable with the
number of MapReduce jobs. The speedup of the total exe-
cution increases to 1.14x only when the number of reduce
tasks increases to 6, but then decreases to 0.85x when the
reduce tasks increase to 15. This is due to the communica-
tion overheads and scheduling overheads. By contrast,

the scalability at the 100,000 data scale is much more satis-
fying. In particular, the speedup of the total execution
increases to 9.99x when the the number of reduce tasks
increase to 12, and then remains flat afterwards.

5.4 Accuracy of the Multi-Variable Algorithm
In order to evaluate the correctness of the new designed
algorithm, we use six statistics, which are Exponential,
Periodic, X, Two Lines and Eclipse relationship types.

Figure 14. Accuracy of the of the Multi-Variable Algorithm

Experimental results of accuracy is illustrated in Figure
14, which is quite similar to the results in Table II. X-axis
denotes the different number of reducer tasks, while y-
axis refers to the accuracy. It depicts that the all the rela-
tionship types are very close to 100%. For Exponential
statistics, the accuracy increases from 96.0% to 99.6%. For
Two Lines statistics, the accuracy increases from 68.2% to
99.6%, and for Eclipse statistics, the accuracy increases
from 68.8% to 99.6%. Experimental results demonstrate
that the accuracy of the multi-variable algorithm can
achieve high accuracy when the number of reducer tasks
is larger than 4.

5.5 Efficiency of the Multi-Variable Algorithm
We evaluated the execution time and the speedup for the
multi-variable algorithm. The experimental results are
presented in Figure 15.

The left part of Figure 15 stands for the execution time,
and it illustrates that the execution time of the algorithm
decreases significantly with the increase of the reducer
tasks. Of the four calculations, the X-Partition MR1 execu-

Figure 13. Speedup of different MR jobs with input 10,000 and 100,000 sample points

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

12 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

tion time is dominant. Based on the execution time, the
speedup chart is derived to show the scalability of the
algorithm, as illustrated in the right part of Figure 15. The
speedup reaches 7.58x when the reducer tasks grows to
15. Results show that the algorithm is able to achieve a
scalable speedup with satisfying scalability.

6 CONCLUSION AND FUTURE WORKS
 In this paper, we have proposed an acceleration tech-

nique for large scale biological datasets using MapReduce
framework. The framework is based on the analysis of the
classic MIC computation for detecting associations be-
tween two variables. The task sets are partitioned into
Map and Reduce jobs which can run in parallel on the
HDFS storage system and memory cache to speedup the
computation of MIC. Furthermore, in order to explore the
relationship among multiple factors, we extended the
conventional two-variable algorithm to a more general
multi-variable solution. Experimental results demonstrate
that the MapReduce accelerator can achieve a significant
speedup with satisfying scalability and flexibility.

 Although the results are promising there are numer-
ous directions worth pursuing. As future work, the algo-
rithm for multi-variable situation will be investigated
with more state-of-the-art applications. Meanwhile, we
will apply the algorithm to cutting edge applications in
different circumstances.

ACKNOWLEDGMENT

This work was supported by the National Science Foun-
dation of China under grants (No. 61379040, No.
61272131, No. 61202053, No. 61222204, No. 61221062),
Jiangsu Provincial Natural Science Foundation (No.
SBK201240198), Fundamental Research Funds for the
Central Universities No. WK0110000034, and the Strategic
Priority Research Program of CAS (No. XDA06010403).
The authors deeply appreciate many reviewers for their
insightful comments and suggestions.

REFERENCES

[1]. M, S., et al., Quantitative monitoring of gene expression

patterns with a complementary DNA microarray. Science,

1995. 270: p. 467-70.

[2]. Doniger, S.W., MAPPFinder: using Gene Ontology and

GenMAPP to create a global gene-expression profile from

microarray data. Genome Biology, 2003. 4(R7).

[3]. Howe, D., et al., Big data: The future of biocuration. Nature,

2008. 455(7209): p. 47-50.

[4]. Qi, X., et al., A Novel Model for DNA Sequence Similarity

Analysis Based on Graph Theory. Evolutionary Bioinformatics,

2011. 7: p. 149-158.

[5]. Olson, C.B., et al. Hardware Acceleration of Short Read

Mapping. in 2012 IEEE 20th International Symposium on

Field-Programmable Custom Computing Machines. 2012.

[6]. Reshef, D.N., et al., Detecting Novel Associations in Large

Data Sets. Science, 2011. 334: p. 1518-1524.

[7]. Jeffrey, D. and G. Sanjay, MapReduce: simplified data

processing on large clusters. Communications of the ACM

2008. 51(1): p. 107-113.

[8]. Apache. Hadoop. 2014; Available from:

ttp://hadoop.apache.org/.

[9]. Memcached. Memcached:Free & open source, high-

performance, distributed memory object caching system.

2014; Available from: http://memcached.org/.

[10]. Dai, D., et al. Detecting Associations in Large Dataset on

MapReduce. in 2013 12th IEEE International Conference on

Trust, Security and Privacy in Computing and Communications

(TrustCom). 2013.

[11]. TV, K., P. BH, and U. EC., Analyzing large biological datasets

with association networks. Nucleic Acids Res, 2012. 40(17): p.

e131.

[12]. Dai, D., et al. Sedna: A Memory Based Key-Value Storage

System for Realtime Processing in Cloud. in In Cluster

Computing Workshops. 2012.

[13]. Trapnell, C. and M.C. Schatz, Optimizing data intensive

GPGPU computations for DNA sequence alignment. Parallel

Computing 2009. 35(8-9): p. 429-440.

[14]. Wang, C., et al. Big data genome sequencing on Zynq based

clusters in 2014 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays. 2014.

[15]. Chen, P., et al., Accelerating the Next Generation long read

mapping with the FPGA-based system. IEEE/ACM

Transactions on Computational Biology and Bioinformatics,

2014(Preprint).

[16]. Tang, W., et al. Accelerating Millions of Short Reads Mapping

on a Heterogeneous Architecture with FPGA Accelerator. in

2012 IEEE 20th International Symposium on Field-

Programmable Custom Computing Machines. 2012.

[17]. Chen, Y., B. Schmidt, and D.L. Maskell. Accelerating short

read mapping on an FPGA (abstract only). in Proceedings of

the ACM/SIGDA international symposium on Field

Programmable Gate Arrays. 2012. Monterey, California, USA:

Figure 15. Execution Time and Speedup of the Multi-Variable Algorithm

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

WANG ET AL.: ANALYZING LARGE BIOLOGICAL DATASETS IN BIOINFORMATICS WITH MAXIMAL INFORMATION COEFFICIENT 13

ACM.

[18]. Chen, P., et al., Accelerating the Next Generation long read

mapping with the FPGA-based system. IEEE/ACM

Transactions on Computational Biology and Bioinformatics,

2014. PP(99): p. 1.

[19]. Wang, C., et al., Heterogeneous Cloud Framework for Big

Data Genome Sequencing. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 2014. 12(1): p.

166-178.

[20]. Renyi, A., On measures of dependence. Acta Mathematica

Hungarica, 1959(3): p. 441-451.

[21]. Hastie, T., R. Tibshirani, and J. Friedman, The Elements of

Statistical Learning: Data Mining, Inference, and Prediction.

2009: Springer-Verlag.

[22]. Tang, D., et al., RapidMic: Rapid Computation of the Maximal

Information Coefficient. Evolutionary Bioinformatics, 2014(10):

p. 11-16.

[23]. Zhang, Y., et al., A Novel Algorithm for the Precise Calculation

of the Maximal Information Coefficient. Scientific Reports,

2014. 4.

[24]. Lopez-Paz, D., P. Hennig, and B. Schölkopf. The randomized

dependence coefficient. in Advances in Neural Information

Processing Systems (NIPS). 2013.

[25]. Kinney, J.B. and G.S. Atwal, Equitability, mutual information,

and the maximal information coefficient. Proceedings of the

National Academy of Sciences, 2014. 111(9): p. 3354-3359.

[26]. Anonymous, Finding correlations in big data. Nature

Biotechnology, 2012. 30(4): p. 334-335.

[27]. Paninski, L., Estimation of entropy and mutual information.

Neural Computation, 2003. 15(6): p. 1191-1253.

[28]. Kraskov, A., H. Stögbauer, and P. Grassberger, Estimating

mutual information. Phys. Rev. E, 2004. 69: p. 066138

[29]. Pluim, J.P.W., J.B.A. Maintz, and M.A. Viergever, Mutual-

information-based registration of medical images: a survey.

IEEE Transactions on Medical Imaging, 2003. 22(8): p. 986-

1004.

[30]. Reshef, D.N., et al., Cleaning up the record on the maximal

information coefficient and equitability. Proc. Natl. Acad. Sci,

2014. 111(33): p. 3362-3363.

[31]. Wang, Z., et al. Accelerating subsequence similarity search

based on dynamic time warping distance with FPGA. in

Proceedings of the ACM/SIGDA international symposium on

Field programmable gate arrays. 2013. Monterey, California,

USA: ACM.

[32]. Wang, C., et al. Phase Detection for Loop-Based Programs on

Multicore Architectures. in IEEE Cluster. 2012.

[33]. Gupta, G. and G.S. Sohi. Dataflow execution of sequential

imperative programs on multicore architectures. in

Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture. 2011. Porto Alegre, Brazil:

ACM.

[34]. Kim, Y., et al., Improving performance of nested loops on

reconfigurable array processors. ACM Transactions on

Architecture and Code Optimization (TACO), 2012. 8(4): p. 1-

23.

[35]. Apache Hadoop NextGen MapReduce (YARN). 2014;

Available from: http://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/YARN.html.

BIOGRAPHY

Chao Wang (M'11) received B.S. and Ph.D

degree from University of Science and

Technology of China, in 2006 and 2011

respectively, both in of computer science. He

is an associate researcher with Embedded

System Lab in Suzhou Institute of University

of Science and Technology of China, Su-

zhou, China. His research interests focus on

Multicore and reconfigurable computing. He

has authored more than 60 publications and patents, including IEEE

TC, ACM TCBB, TACO and FPGA conferences. He is now the editor

board member of MICPRO, IET CDT, serves as Publicity Chair of

HiPEAC 2015 and ISPA 2014, guest editor for TCBB and IJPP. He is

a member of the IEEE, ACM and senior member of CCF.

Xi Li is a Professor and vice dean in the

School of Software Engineering, University of

Science and Technology of China. There he

directs the research programs in Embedded

System Lab, examining various aspects of

embedded system with the focus on perfor-

mance, availability, flexibility and energy effi-

ciency. He has lead several national key pro-

jects of CHINA, several national 863 projects

and NSFC projects. Prof. Li is a member of ACM and IEEE, a senior

member of CCF.

Dong Dai is a research scientist in School of

Computer Science, Texas Tech University. He

received B.S. and Ph.D degree from University of

Science and Technology of China, in 2006 and

2013 respectively, both in of computer science.

His research interests include cloud computing

and distributed computing.

Aili Wang is with School of Software Engineering,

University of Science and Technology of China.

She serves as the guest editor of Applied Soft

Computing, and International Journal of Parallel

Programming. Meanwhile she is a reviewer for

International Journal of Electronics. She has pub-

lished over 10 International journal and confer-

ence articles in the areas of software engineering, operating systems,

and distributed computing systems.

1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

14 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID

Xuehai Zhou is the executive dean of School of

Software Engineering, University of Science and

Technology of China, and Professor in the

School of Computer Science. He serves as gen-

eral secretary of steering committee of computer

College fundamental Lessons, and technical

committee of Open Systems, China Computer

Federation. He has lead many national 863 projects and NSFC pro-

jects. Prof. Zhou has published over 100 International journal and

conference articles in the areas of software engineering, operating

systems, and distributed computing systems. Prof. Zhou is a mem-

ber of ACM and IEEE, a senior member of CCF.

