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Abstract— The maximal information coefficient (MIC) has been proposed to discover relationships and associations between 
pairs of variables. It poses significant challenges for bioinformatics scientists to accelerate the MIC calculation, especially in 
genome sequencing and biological annotations. In this paper we explore a parallel approach which uses MapReduce 
framework to improve the computing efficiency and throughput of the MIC computation. The acceleration system includes 
biological data storage on HDFS, preprocessing algorithms, distributed memory cache mechanism, and the partition of 
MapReduce jobs. Based on the acceleration approach, we extend the traditional two-variable algorithm to multiple variables 
algorithm. The experimental results show that our parallel solution provides a linear speedup comparing with original algorithm 
without affecting the correctness and sensitivity.  
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1 INTRODUCTION

NA microarray is able to simultaneously measure 
the expression levels of thousands of genes, generat-
ing huge amounts of data [1]. The analysis of the 

large scale data presents a tremendous challenge to biolo-
gists to gain biological deep insights from raw experi-
ments. Along with the massive data generated from indi-
vidual genes, examining dataset on a gene-by-gene basis 
is quite time consuming and difficult to carry out across 
an entire dataset. A typical example is measuring the rela-
tionships between genes by determining the associations 
between their expression profiles [2]. Imagine a huge data 
set with tens of thousands of records, each of which may 
contain tens of thousands of variable pairs—far too many 
to examine manually [3]. However, many undiscovered 
relationships are still hidden in the explosive large scale 
data, and how to identify important factors for a chosen 
objectivity efficiently has become an important scientific 
issue to be solved.  

Determination of sequence similarity is one of the ma-
jor steps in computational phylogenetic studies. During 
evolutionary history, not only DNA mutations for indi-
vidual nucleotide but also subsequent rearrangements 
have occurred. It has been one of major tasks for compu-

tational biologists to develop novel mathematical de-
scriptors for similarity analysis such that various muta-
tion phenomena information would be involved simulta-
neously [4]. Figure 1 illustrates the basic step of the ge-
nome sequencing mapping. The top part in the figure 
indicates the sequence alignment, where the reference 
and the reads are all strings consisted of ’A’, ’C’, ’T’, ’G’, 
as illustrated by the bottom of the figure [5]. Underlined 
characters in reads represent the gnome variations. The 
motivation is to identify the similarity of the referenced 
genome and the short reads. However, this process could 
be quite timing consuming and has posed significant 
challenges to the researchers. 

 

 
Figure 1 Genome read mapping. The top part in the figure indicates 
the sequence alignment, where the reference and the reads are all 
strings consisted of ’A’, ’C’, ’T’, ’G’, as illustrated by the bottom of the 
figure. Underlined characters in reads represent the gnome varia-
tions. 

To tackle this problem, Reshef et al. [6] proposed a 
novel correlation measurement “maximal information 
coefficient” (MIC), and presented a 1-D dynamic pro-
gramming algorithm to calculate the MIC. MIC does not 
rely on the distributional assumptions of measured data 
and could identify a broad class of associations compared 
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with previous studies. Given a discrete random variable x 
and all its possible values, we can calculate the infor-
mation content of any event x=k. Furthermore, given the 
distribution of x, we can calculate the average information 
content of its distribution. It has been named as Shannon 
Entropy H(x). Based on the Shannon entropy, we can de-
fine the mutual information I(x, y), which refers to the 
uncertainty about y, consequently I(x,y)=H (y)-H(y|x). For 
example, if x and y are independent, we can easily calcu-
late I(x,y) = 0. On the contrary, if x and y have strong rela-
tionship y= f(x), then H(y|x)=0, and I(x, y) reaches the 
maximum value.  

Consider two given variables: the objective (obj) and 
the factor (fac), with millions of sample pairs (faci , obji). To 
compute the mutual information of these two variables, 
we need to try all the different ways to draw a grid on the 
scatter plot of these two variables. After exploring all 
grids up to a maximal grid resolution, which are depend-
ent on the sample size, we can compute for each (faci , obji) 
the largest possible mutual information (Ig) achievable by 
any x*y grid. To process a fair comparison between grids 
of different dimensions, we can normalize these mutual 
information values into 0 to 1. According to the grids 
number, we can define a characteristic matrix M = {mx,y}, 
where mx,y is the peak normalized mutual information 
from all the possible x*y grids. 

To propose a formal definition: for a grid G, Ig denotes 
the formalized mutual information of the probability dis-
tribution induced on the boxes of G, where the probabil-
ity of a box is proportional to the number of data points 
falling inside the box. The (x, y)th entry mx,y of the charac-
teristic matrix equals to max {Ig/log(mx,y)}. The maximum 
is taken over all x*y grids G. MIC is the maximum of mx,y 
over ordered pairs (x, y) such that x* y≤ B, where B is a 
function of sample size, which is usually set to n0.6. Every 
entry of M and MIC fall between 0 and 1, while MIC is 
also symmetric due to the symmetric mutual information. 
Due to that Ig depends only on the rank order of the data, 
MIC is invariant under order preserving transformations 
of the axes. 

MIC has been regarded an effective statistic measure [6] 
to evaluate the association between two variables due to 
its two important heuristic properties: generality and 
equitability. Generality indicates that with sufficient 
sample size, the statistic should capture a wide range of 
interesting associations, not limited to specific function 
types (such as linear, exponential, or periodic), or even to 
all the functional relationships. The latter condition is 
desirable because not only do relationships take many 
functional forms, but also many important relationships 
(like superposition functions) are not well modeled by a 
specific function. Equitability means that the statistic 
should give similar scores to equally noisy relationships 
of different types. Furthermore, equitability is difficult to 
formalize for associations in general but has a clear inter-
pretation in the basic case of functional relationships: an 
equitable statistic should give similar scores to functional 
relationship with similar R2 values (given sufficient sam-
ple size). Besides these two properties, MIC gives rise to a 
large family of statistics, which was referred to as MINE, 

or maximal information-based nonparametric exploration. 
MINE statistics can be used not only to identify interest-
ing associations, but also to characterize them according 
to properties such as nonlinearity and monotonicity. 

However, the MIC computation algorithm is quite 
complex so that it is not feasible to be applied on large 
data sets for now. In this paper, we propose a solution 
based on MapReduce [7] and other infrastructures to 
solve this problem. Our solution extends current software 
algorithm into parallel manner and achieves linear 
speedup without the affecting the correctness and sensi-
tivity. We use the open-source implementation of the dis-
tributed programming framework including Hadoop [8] 
and memcached [9] to implement this parallel algorithm. 

In this paper, we propose a uniform accelerating cluster 
based system to solve this problem. We claim following 
contributions: 

1) Our major contribution is the MapReduce accelera-
tion implementation based on the state-of-the-art serial 
algorithm. The acceleration can achieve higher perfor-
mance with correctness and satisfying scalability.  

2) In this work, we intend to analyze and demonstrate 
important properties of the large scale association [10]. 
Based on the understanding of the problem as well as 
heterogeneous accelerators based cluster architecture, we 
show that accelerator's parallel processing power can be 
fully mobilized to achieve high speed data association 
detecting. 

3) In order to improve the applicability of the algorithm, 
we extend the traditional algorithm to a multi-variable 
algorithm. Experimental results verify the correctness and 
the efficiency of the new algorithm. 

The structure of this paper is organized as below. In 
Section 2, we summarize the related work, and then in 
Section 3 we first introduce the original algorithm, and 
then have some discussions on the MapReduce frame-
work to accelerate the algorithm in parallel. In Section 4, 
we describe our MapReduce algorithm in detail, and pro-
pose a phase detection method to locate the execution 
stages. Then we demonstrate an approximate way to ex-
tend current solution to multi variables. Thereafter, the 
experimental results are described in Section 5. Finally, 
Section 6 concludes the paper and introduces future 
works. 

2 RELATED WORK 
For years, the MIC has been applied in various bioinfor-
matics fields successfully. For example, the MIC has been 
used as a measure to convert records of biological annota-
tions into networks of the associated annotations [11]. 
Billions of samples and thousands of variables make the 
computing impossible and time consuming. MAPPFinder 
[2] presents an identification method for important bio-
logical processes, which is a software tool set for viewing 
and analyzing microarray data representing biological 
pathways or any other functional grouping of genes. 

Meanwhile, accelerators like Cloud[12], GPU [13], and 
FPGA [14] have been major dominant engines in big data 
research, such as genome sequencing in bioinformatics 
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[15-18]. Of these literatures, how to identify the data cor-
relation has posed significant challenges to the academic 
and industrial researchers. There have been a wide range 
of methods for identifying interesting relationships be-
tween pairs of variables in large data sets in bioinformat-
ics [19], including methods formulated around the axio-
matic framework for measures of dependence [20], other 
state-of-the-art measures of dependence, and several 
nonparametric estimation techniques that can be used to 
score pairs of variables based on the relationship of the 
estimated curve. Methods such as splines and regression 
estimators [21] tend to be equitable across functional rela-
tionships but they fail to find many simple and important 
types of relationships that are not functional. Although 
these methods are not intended to provide generality, 
most of them are unsuitable for identifying all potentially 
interesting relationships in a large scale data set. Similar 
methods such as mutual information estimators, maximal 
correlation, principal curve, distance correlation, and the 
spearman rank correlation coefficient methods are able to 
detect broader classes of relationships. However, these 
methods are not equitable even in the basic case of func-
tional relationships: They show a strong preference for 
some types of functions, even at identical noise levels. For 
example, Reshef [6] has established the generality of max-
imal information coefficient (MIC) through proofs, show-
ing its equitability on functional relationships through 
simulations, and observe the intuitively equitable behav-
ior on more general associations. 

Although researchers have proven MIC is a creditable 
approach to detect the relationships between variable 
pairs, it still consumes significant time for analyzing large 
scale data set due to the complex calculation process. 
With respect to the optimization approaches, GPU and 
FPGA based approaches are two dominant methodolo-
gies in heterogeneous architecture design paradigms. For 
example, RapidMic [22] is a cross-platform tool for the 
rapid computation of the maximal information coefficient 
based on parallel computing methods. Through parallel 
processing, it can effectively analyze the large-scale bio-
logical datasets with a remarkable reduced computing 
time. Similarly a simulated annealing and genetic algo-
rithm was developed [23] to facilitate the optimal calcula-
tion of MIC, and the convergence of SG was proved based 

on Markov theory. Lopez-Paz et.al [24] introduce the ran-
domized dependence coefficient, which is a measure of 
nonlinear dependence between random variables of arbi-
trary dimension. Kinney et. al [25] identify artifacts in the 
reported simulation, in particular for the estimates of mu-
tual information when these artifacts are removed. Re-
cently Nature Biotechnology [26] solicits comments from 
several practitioners versed in data-intensive biological 
research. Their responses not only highlight the appeal of 
methods like MIC for biological research, but also raise 
some important reservations as to its widespread use and 
statistical power. Paninski [27] presents some results on 
the nonparametric estimation of entropy and mutual in-
formation. Kraskov et. al [28] present two classes of im-
proved estimators for mutual information, from samples 
of random points distributed according to some joint 
probability density. To show the effectiveness of MIC in 
medical imaging field, Pluim et.al [29] summarize the 
MIC based registration of medical images. Reshef et.al [30] 
present the MIC calculation with more comprehensive 
understanding to show the effectiveness and efficiency. 
Similarly, many scientific applications have been opti-
mized by GPU and FPGA accelerators, such as [31], [5] 
and [16]. In particular, these approaches consist of a series 
of nodes, each of which has both a CPU controller and a 
heterogeneous accelerator. All nodes are under the con-
trolling of the scheduler that is responsible for issuing 
tasks and balancing workloads, which increase the design 
complexity and burden of the software programmers. 

3 MIC CALCULATION ALGORITHM 
To reduce the computation complexity in the original 
algorithm, Reshef [6] has introduced a dynamic pro-
gramming improvement. In this section, we will 
demonstrate the algorithm first, and then analyze the 
strategy of parallelization using MapReduce frame-
work on multiple computing machines. 
 
3.1. Original Algorithm Description 
In particular, the MINE algorithm is designed for heu-
ristically generating the characteristic matrix of two-
variable data sets. To calculate MIC matrix, the algo-
rithm would ideally optimize over all possible grids.  

Figure 2. Detailed process of MINE algorithm description 
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For computational efficiency, the algorithm instead 
uses a dynamic programming algorithm which opti-
mizes over a subset of the possible grids and performs 
the approximate computation well to the true value of 
MIC in practice. The MINE algorithm description can 
be divided into four steps as shown in Fig. 2:  

(1) Input arrays. In this step the algorithm receives 
the two-variable input data.  

(2) Noiseless functional relationships. In this step the 
received data is aligned to the two-dimensional coor-
dinate quadrant. Actually the curve refers to the func-
tional relationships with noises. In order to explain the 
following steps clearly, we use noiseless relationships 
for further discussion. Noiseless relationships mean 
that all the received data is part of a specific function.    

(3) Parallel association detection. To calculate the 
MIC of a two-variable data set, we explore all the grids 
up to a maximal grid resolution, depending on the 
sample size. Then the largest possible mutual infor-
mation achievable by any x-by-y grid is calculated for 
every pair of integers (x,y). 

(4) Locate the maximum MIC. These mutual infor-
mation values are normalized to ensure a fair compari-
son between grids of different dimensions and to ob-
tain modified values between 0 and 1. Finally the peak 
normalized mutual information achieved by any x-by-
y grid refers to the MIC. 
 
3.2. MapReduce Acceleration 
Accelerate the original algorithm is necessary because it is 
time-consuming especially when facing large scale input 
data size. The huge size of input dataset usually cannot be 
stored in one server, and it is typically stored in distribut-
ed storage systems or distributed databases. Storing data 
across thousands of machines means each server only 
stores a small part of the dataset. In such condition, the 
original algorithm would become inefficient as it needs 
too many communications when processing data that is 
not stored locally. What’s worse, the limitation that only 
one single sever can execute the algorithm makes it im-
possible for large input data. 

To accelerate the original algorithm, we provide a sys-
tem-level distributed framework including the storage 
pattern, the way to parallel original algorithm, and the 
components. 

1) Storage Pattern: Before discussing the MapReduce so-
lution, we first describe the storage pattern. The large 
dataset can be stored in all kinds of distributed storage 
systems. However, in our specific MapReduce based sce-
nario, input data collected by recorders or loggers is 
stored as text files in HDFS cluster, as illustrated in Fig. 3. 
Each row of the logs.data contains thousands of variables. 
The first column of Fig. 3 indicates that the objective is to 
find out whether other variables have relationships with. 
From the second column, we store all the collected varia-
bles: fac1, fac2… facn. Please note that all the rows are 
stored unordered. In HDFS, this log file (logs.data) will be 
divided into chunks (typically 64 MB) and stored into 
different storage nodes. Usually HDFS will replicate each 
chunk into three servers, consequently when a MapRe-

duce job is started, the Hadoop manager will try to 
schedule tasks running on the node with the tasks input 
data set. In our solution, we take advantage of this locali-
ty to achieve a better performance. 

 

 
Figure 3. Input dataset storage in HDFS files. 

2) Parallel Analysis and Design: According to the algo-
rithm that has been presented in Reshef’s work [6], it can 
be concluded that different y will generate completely 
different MIC results. This means we may be able to di-
vide the computing process into different irrelevant parts 
according their y partition number, and execute them on 
different servers in parallel. However, due to that each 
server still needs the overall input dataset during this 
computation, it is difficult to run this computation in par-
allel. This means the algorithm is still infeasible facing the 
huge data set which cannot be accommodated on one 
machine.  

Although we cannot parallelize the MIC computing 
procedure in such a straightforward way, we can try oth-
er non-trivial ways. As shown in Fig. 4. (a), the depend-
ence graph of the original algorithm can be discovered 
inside each loop during the execution: there is B/2 loops 
(B denotes the maximum grids we want to draw) and 
each loop contains three dependent procedures: equally 
partition y-axis, optimally partition x-axis, and calculate x 
* y grids’ mutual information. Fig. 4. (b) demonstrates 
that we can change the inner-loop dependence to a nest-
ed-loop dependence. After getting rid of the inner-loop 
dependence, we will get three dependent loops, and ac-
celerate the three tasks in sequence. The detailed loop 
unrolling techniques will be presented in Section 4.2 Loop 
Unrolling Process. 
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Figure 4. Dependence graph of MI computation procedure 

Regarding the task partitioning, the first task is parti-
tioning y-axis equally in a distributed manner. EquiParti-
tionY Axis should make sure that each part contains the 
same number of points. In HDFS, each physical server 
stores parts of dataset out-of-order, therefore we divide 
the entire dataset into different servers, each of which 
contains an equal range according to the points’ y value. 
Thereafter, EquippartitionY Axis can be executed locally. 
So far, we have got the equal partitions for each equal y 
ranges in each server, and then we combine these equal 
partitions together to form an overall equal partition. Due 
to the imbalance of ranges, it is not possible to form an 
equal partition just by one combination. Anyway, a posi-
tive perspective is that we can start a multi-round task to 
make the partition as equal as possible. 

The second task is the x-axis partitioning based on 
Theorem 1. Fig. 5 shows the overall procedure of optimal 
x-axis partition. All the nodes can be distributed into dif-
ferent servers using the same strategy as we did in equal-
ly partitioning y-axis. Given a server number of k, we di-
vide the input dataset in HDFS into k ordered parts with 
equal range according to the points’ x value. After this 
data distribution, we explore all the possible x-axis parti-
tions locally in each server. 

 

 
Figure 5. Partition x-axis with k fix partition lines. 

After this step, we have calculated the entire possible x 

* y grids in the k parts (Part (k) in Fig. 5), subsequently we 
need to combine the intermediate results into the final 
result. As shown in Fig. 5, the x-axis partition at least con-
tains k division due to that we have to divide all the data 
pairs into k parts, and run each part in a separate server. 
However, this fixed k parts would not affect the correct-
ness at all because it is easily to choose k wisely: making it 
small enough without affecting the final result or we can 
even run the x-axis partition procedure again for a slice 
different k division. Two different k divisions can guaran-
tee that we explorer all the possible x * y grids and pro-
vide the exactly correct results. 

4. MAPREDUCE SOLUTION AND OPTIMIZATION 
4.1 MapReduce Solution 

The MapReduce based parallel MIC algorithm in-
cludes three dependent stages: 1) equally divide the y-
axis in parallel, 2) explore all the possible x-axis partitions 
with every y-axis partition, and 3) calculate the maximum 
mutual information for each x * y grid. 

 

 
 
The Alg. 4 DirverMain describes the main function to 

drive these three stages to finish the MIC calculation. The 
y-axis partition results (Q) generated by MREquiParti-
tionYAxis will be used as the input set of MROpti-
mizePartitionXAxis. Then MROptimizePartitionXAxis 
function will explore the entire possible x*y grids and 
produce the mutual information for different x*y grids. 
After normalizing the Ix,y array, we can get the maximum 
mutual information array Mx,y. Meanwhile, the same al-
gorithm will be applied to the same data pairs with re-
versed x and y to make sure the correctness of the approx-
imation. 

1) MREquiPartitionYAxis: Before partition dataset in y-
axis based on MapReduce, we need some global variables: 
the sample size, denoted as ny, the maximum y-value of 
all the samples, denoted as yn, and the maximum x-value 
of all the samples, denoted as xn. All these variables 
should be maintained while the input dataset was collect-
ed. 
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Figure 6. MR procedure of equally partition y-axis 

Fig.6 illustrates the MapReduce procedure of MREqui-
PartitionYAxis. We firstly emit the <k,yi> to different re-
ducers by judging whether yn/y (k) < yi < yn/y (k + 1). Each 
reduce function should sort all the yi that it receives, and 
generates equal partitions locally using the serial algo-
rithm. In each reduce function, we emit < (k, pi), (ys, ye, 
nki)> after equally partitioning the dataset locally. In these 
key-value pairs that the reduce function finally generates, 
k means this partition is generated in the kth reducer, pi 
denotes this partition’s index inside the kth reducer, (ys, ye) 
shows the partition start point and the end point, nki 
means the node number in current partition. Considering 
the partition number is quite small (comparing with ele-
ments number), we process these <(k, pi),(ys, ye, nki)> key-
value pairs in one reduce function (Reduce-2 phase in Fig. 
6). In this reduce function, we choose the partition that 
contains the least node numbers, and then combine them 
with their adjacent partitions, until we finally get y nearly 
equal partitions. 

After phase Reduce-2, we get the y-axis partition Q, 
but it is not a perfect equal partition because the combina-
tion of two adjacent partitions may generate some unbal-
anced partition. To solve this problem, we should just run 
MROptEquipartitionYAxis iteratively to generate opti-
mized equal partitions. The strategy is simple: In MROp-
tEquipartitionYAxis, map all the sample pairs according 
partition Q, and send <k, yi> to reduce functions. The kth 
reduce function will process nodes belong to the {qk-1, qk}. 
Each reduce function will sort all the received nodes in 
order, and check whether its nodes number is bigger than 
ny/y, if exceed, it will emit the extra nodes with <k + 1, y> 
to next iteration. The reduce function in next iteration will 
repeat this operation. Users can set the iteration numbers 
with configurations, and after y rounds, an optimized hat 
Q is achieved. 

2) MROptimizePartitionXAxis: MROptimizeParti-
tionXAxis calculate the maximal mutual information of 
each possible x-axis partition for a given y-axis partition. 
After running MROptimizePartitionXAxis on a given y-
axis partition, we will get the return vector represented as 

the set: .  

 
(1) 

According to the definition of mutual information il-

lustrated in Equation 1, we can easily conclude that, for a 
specific Q (which means a given y-axis partition), the first 
part of mutual is a constant. So, we only need to calculate 
the maximum of the second part to get the largest I(x,y). 
Calculating the maximum of the second part in Equation 
1 means calculating the maximal value of following Equa-
tion: 

W (x, y) =  
This calculation can be easily paralleled in MapReduce 

way. Firstly, we divide the sample pairs into k parts using 
map function, which emits <k, xi> to different reducers by 
judging whether qk < xi < qk+1. Then, each part is processed 
in one node by a reduce function. Reduce function does 
the similar work as the original optimize PartitionXAxis 
except for one key difference: all the W (x, y) calculation is 
based on the global information instead of the local in-
formation. For example, to calculate p (x, y), we use over-
all sample nodes number ny, not the node number belong 
to the kth part. The reason we use global node number 
instead of the local number to calculate W (x, y) can be 
easily explained by Equation 2. If we calculate p (x, y) us-
ing global node number, then W (xi, y) can be used in cal-
culating W (x, y). 

 

 
(2) 

 
Based on this observation, we can distribute the com-

plex W (x, y) calculation to different reducers, and com-
bine them together. The kth reducer will use the modified 
serial version optimize PartitionXAxis to calculate W (x, 
y), and it will return a vector as following:  

V (k) =  
 
As a consequence, each reducer will emit <k,W(k)> to 

the last phase reduce function. In the last reduce function, 
we combine {W(1), W(2),……,W (k)} into a maximal vector 
W as following equation shows. Although the final vector 
W is start from k not 2, it would not change the result. 

 
As we have described, we list the MROptimizeParti-

tionXAxis algorithm bellow. The overall computation 
includes three phases, including one map phase and two 
reduce phases. At last, it will generate a vector W, which 
is the second part of the corresponding mutual infor-
mation vector. We can easily calculate Ix,y vector based on 
the vector V . 
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3) Optimization for Combination: The last reduce 

phase of Alg. 5 contains a complex computation proce-
dure. It may become impossible to calculate according to 
the data set’s size. For example, we have a data set with N 
nodes, and then the maximal x-axis partition number 
would be N0.6/2. If we have R reducers that execute the 
reduce phase 1 of Alg. 5, then it will generate R vectors 
that contains the partial best mutual information. Each 
vector Wi from these R vectors contains N0.6/2 elements. 
To get the maximal W results from these vectors, it will 
need (N0.6/2)R computations, which would be pretty huge 
as is shown in Table I. 

TABLE I 
COMPLEXITY OF SIX REDUCERS (1GHZ CPU) 

Data Set Size 
Computation 

Complexity 

Time 

1,000  9.85e106  10‐3s 

10,000  3.9e1012  103s 

100,000  1.56e1016  107s 

1,000,000  6.22e1019  1010s 

 
It is clear that the complexity will increase in an expo-

nential order. This is obviously not acceptable for big data 
set. To solve this problem, we firstly sort the vectors in-
side each reduce function and add all the maximums 
from different reducers. If the summation is much less 
than 1.0, we can guarantee that the final combination re-
sult would be less than 1.0, and consequently those two 
variables do not have any strong relationship. Otherwise, 
if the summation is close to 1.0, we calculate the combina-
tion by choosing the nearby smaller elements from the 
sorted vectors each time, once we have fulfilled the 
MaxMI array or we find out that the normalized mutual 
information is much less than 1.0, we can stop and set the 
remained MaxMI array to be zero safely. In such way, the 
proposed methodology is able to alleviate the design 

complexity of the combination operations without sacri-
ficing the correctness of the results. 

 
4.2 Loop Unrolling Process 
The dependence graph of the original algorithm is inside 
each loop during the execution. In this section we demon‐
strate the methodology to change the inner‐loop depend‐
ence  to nested‐loop dependence. After getting  rid of  the 
inner‐loop  dependence,  we  will  get  three  dependent 
loops, and accelerate the three tasks one by one. 

In particular, we  inherit  the description of state‐of‐the 
art dataflow execution model proposed by  [32] and  [33]. 
Based on this model, we extend the definition to a general 
heterogeneous multicore  computing  scenario  in  this  pa‐
per. Generally, dataflow  execution model  executes  tasks 
with dependences using  tokens  to  signal production  and 
availability of parameters. Based on the token based tech‐
nique, we make two crucial enhancements. First we asso‐
ciate  tokens with  objects  instead  of  individual memory 
locations,  to match  the  abstraction  for  functional  source 
and destination parameters.  Second, we  assign  each  ob‐
ject multiple  read tokens and a  single write token,  to man‐
age both production and consumption of parameters.  

When  the execution encounters a  function  (in  this pa‐
per, denoted as a task) to be considered for dataflow exe‐
cution,  it  requests  read  (write)  tokens  for  objects  in  the 
function  read  (write)  set. The  pending  task  is  ready  for 
execution only after it has acquired all its requisite objects. 
Upon  completion,  it  releases  the  tokens which  are  then 
spawned  to  the shelved  function(s)  if necessary. When a 
shelved  function has acquired  its  requisite  tokens,  it can 
be unshelved and submitted for execution.  In  this section, 
we model the loop based applications on a general state‐
of‐the‐art  cluster hardware model,  and  then present  the 
phase based detection and pipeline techniques.  
 

 
Figure 7. PE based Cluster Architecture. 

A  high  level  general  architecture  framework  of  the 
clusters is illustrated in Fig. 7. The proposed architecture 
is based on massive computing nodes, each of which can 
perform specific MapReduce operations.  
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Figure 8. Inner-loop and Nested-Loop Pipelining. 

4.2.1 Phase Definition  

Before  the DFG  can  be mapped  to different nodes  at 
run time, it is essential to analyze the loop based task be‐
havior  and detect different phases. Considering  the pro‐
gram  in Fig. 8  (a),  inside each round  inside  the  loop, dif‐
ferent tasks (Task T…G) are executed in a pipeline. Every 
time the pipeline should be fulfilled and flushed, this can 
be regarded as prolog phase and epilog phase  [34], while 
the execution at  full pipeline can be  treated as  the kernel 
phase. One  complexity  in  pipelining  is  how  to  correctly 
handle  prolog  and  epilog, which  are  the  initial  and  the 
final iterations when the pipeline is not full. Prolog/epilog 
code could be generated  separately  from  the kernel code 
during  compilation, which  however  is  very  likely  to  in‐
crease the code size or the number of configurations, and 
therefore detrimental  for clusters, as  the cluster can keep 
only a very limited number of configurations locally. Fur‐
thermore,  if  instead  prolog/epilog  configurations  can  be 
generated  from  the  kernel  configurations  at  runtime  by 
the control unit itself, no extra configuration will be neces‐
sary. The other parameters of which the control unit needs 
to  be  aware  include LC  (Loop Count), which  is  the  trip 
count  of  the  loop,  and  EC  (Epilog Count), which  is  the 
schedule length in terms of stages. 

4.2.2 Inner‐Loop Pipelining 

An  inner‐loop  pipeline  can  be  viewed  as  a  four‐step 
process consisting of preheader, prolog, kernel, and epilog, 
which is illustrated in Fig. 8 (a). The preheader, which in‐
cludes  loop‐invariant  code  execution  as  well  as  issuing 
some pipeline‐related tasks, is performed primarily by the 
main processor, which may  enlist  the help of PE  arrays. 

However,  the other  steps, prolog, kernel, and epilog, are 
performed autonomously by the PE arrays in the cluster. 

Single‐loop pipelining  can generate a pipeline  for  the 
innermost  loop  only.  Therefore  single‐loop  pipelining  is 
also  Inner‐Loop  Pipelining  (ILP).  The  conventional  ap‐
proach  to  loop nests has been  inner‐loop pipelining with 
the outer loop implemented in software on a main proces‐
sor. This  approach not only  suffers  from  significant per‐
formance overhead due to communication in hybrid archi‐
tectures, but  it  is also unable  to  take advantage of outer‐
loop pipelining. We  address  those problems  by  overlap‐
ping outer‐loop  iterations  through  sophisticated  resched‐
uling  on  cluster,  called  Outerloop  Pipelining. Note  that 
mapping  the  entire  loop  nest  onto  cluster  can  not  only 
reduce communication delay, but also eliminate  the need 
for communication at all. 

4.2.3 Nested‐Loop Pipelining (NLP). 

Fig. 8 (b) illustrates the execution of nested‐loop pipe‐
lining  after  merging,  which  can  be  divided  into  three 
parts. The  first part  is  from  the beginning up  to  the  first 
prolog, which can be called outerloop prolog. The second 
part is from the first kernel up to the last PIC, right before 
the last kernel. This part is periodic, consisting of multiple 
repetitions of  the kernel‐EIC‐kernel‐PIC pattern, and may 
be  called  outerloop  kernel. The  rest  can  be  called  outer‐
loop epilog. The PE can autonomously execute  the outer‐
loop kernel plus  the  first prolog  and  the  last kernel  and 
epilog. The rest can be done in software on the main pro‐
cessor automatically.  

4.3 Multi-Variable Algorithm 
After the process is divided into different phases, we 

have described the entire MapReduce solution for detect-
ing associations between two variables. However, most 
relationships are between the objectivity and more than 
two variables. For example, z = f(x, y) denotes that z has a 
functional relationship with x and y, but it is still possible 
that (z, x) and (z, y) do not contain strong associations. So, 
we need to extend the original algorithm to process multi-
variable situations. 

Generally, there are two ways to define the mutual in-
formation with multiple variables: the higher-order mu-
tual information and the mutual information for multiple 
variables. Higher-order mutual information is defined 
like: I(x; y; z) = H(x) + H(y) + H (z) - H(x, y, z). It only 
shows the entropy of multiple variables (x, y, and z) joint 
distribution. However, in our case, we need to know how 
much information a set of variables X1;X2,……,Xk have 
about a given outcome or target variable C, this should be 
defined as in equation 3: 

 

 

(3) 

 
As a consequence, for three variables, we know that I 

(z:x,y) = H(z)+H(x, y) - H(z, x, y) and we can use the same 
strategy described in previous sections to calculate MIC: 
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we can equally divide the z-axis to make H(z) maximal, 
and for each z-axis partition, we need to explore all the 
possible x, y partitions to make H(x, y)-H(z, x, y) to reach 
the peak. However, this will be much more complex than 
in 2-dimension because this is an arbitrary x-axis and ar-
bitrary y-axis exploration. As a result, the MapReduce 
solution is more important because when the dimension 
increases, the grids we need to explore would increase 
exponentially. In this situation, only the parallelized algo-
rithm can finish this complex computation in a reasonable 
time. Besides, along with the dimension increase, the 
sampled nodes number also increases which calls for 
more computation ability. 

To reduce the complexity of high dimension computa-
tion, we revise and extend the default 2-dimension algo-
rithm. In particular, we equally partition all dimensions 
except the last one, and we change the last dimension d 
times sequentially from the d dimensions. Finally, the Alg. 
4 should be revised to Alg. 6: 

 

 
Alg. 6 illustrates how we modify our two variable ver-

sions into a multi-variable version. For an object z, a set of 
factors x1; x2,……,xd, xi∈R, and all factors belong to Rd. 
We first choose a dimension: xk to be partitioned optimal-
ly, while others are partitioned equally. From step 6, eve-
ry extra dimension will result in one for loop. When it 
comes to xk in step 10, we determine a partition scenario: 
Iz,x1,x2,….,xd, and call MapReduce job to calculate the maxi-
mum mutual information. 

5. EXPERIMENTS AND ANALYSIS 
In this section, we will describe the experiments on our 

MapReduce solution, including the correctness, execution 
time, and speedup evaluation for two variables. Moreo-
ver, the accuracy and efficiency of the multi-variable al-
gorithm is also presented. Due to that the complexity of 

original algorithm increases notably fast when data set 
grows, it would be impossible to compute a large enough 
data set in one server. So in our speed experiments, we 
mainly measure the speedup in line with the increase of 
the cluster size to show the speed advantage of our paral-
lel algorithm. 

 
5.1 Hardware and Software Configuration 

We set up a small cluster of 7 nodes, each of which 
runs Fedora 17 on Xeon dual-core 2.53 GHz CPU and 6GB 
memory. All machines are connected with a single gigabit 
Ethernet link. All nodes are in the same hosting facility 
and therefore the round-trip time between any pair of 
machines was less than a millisecond. In our experiment, 
we use Hadoop 1.0.3 as basic storage and processing 
framework, which supports HDFS federation and new 
generation of MapReduce framework YARN [35]. HDFS 
uses multiple independent Namenodes/Namespaces to 
scale the name service horizontally. YARN aka MRv2 
divides the two major functions of the Job-Tracker and 
leverages the system performance. Besides using HDFS as 
the main storage layer, we use Memcached [9] to help 
multiple MapReduce jobs with intermediate data sharing. 

 

 
Figure 9. Four relationships sample 

5.2 Correctness Evaluation 
In the correctness experiment, we compare MIC scores 
computed by our MapReduce version with the serial ver-
sion for some relationships and some non-functional rela-
tionships. Fig.9 shows four statistics we used, which are 
Random, Linear, Exponential, and Periodic relationship 
types.  
 

 
Figure 10. Three non-functional relationships sample 

Fig. 10 illustrates three non-functional associations we 
used include ’X’, ’Two Lines’, and ’Eclipse’. Our MapRe-
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duce implementation has a fixed k x-axis partitions and 
this may influence the correctness. So we choose different 
k values for these different kinds of relationships and 
check how k affects the correctness by comparing with the 
original algorithm. 

Table II reports that the fixed k x-partition does not af-
fect the correctness of the MIC calculation. In most situa-
tions, the differences of MIC score between MapReduce 
algorithm and the serial algorithm for these functional 
and nonfunctional relationships are insignificant enough 
to be treated as a random deviation. In fact, this correct-
ness can be proven through our MapReduce algorithm 
design and implementation. If there are large enough 
sample pairs comparing with the server number k, the 
results are unlikely to be different from the original ver-
sion. 

 
TABLE II 

MIC SCORE COMPARISON FOR 7 RELATIONSHIPS, SERVER 
NUMBER FROM 1 TO 12 (SERVER NUMBER EQUALS TO K) 

Relationship Type  Serial Alg.  N4  N8  N10  N12 

Random  0.01  0.08  0.09  0.08  0.08 

Linear  0.91  0.96  1.03  1.04  1.03 

Exponential  0.96  0.92  0.96  0.92  0.94 

Periodic  0.98  0.96  0.92  0.95  0.93 

‘X’  0.68  0.65  0.66  0.60  0.68 

‘Two Lines’  0.68  0.66  0.64  0.67  0.66 

‘Eclipse’  0.69  0.65  0.63  0.65  0.63 

 

5.3 Execution Time and Speedup Evaluation 
Hadoop’s MapReduce framework will distribute the 

Map and Reduce tasks into multiple servers automatical-
ly according to the input data set. If a Hadoop cluster 
stores files into 64MB blocks and the input file is 2GB, 
then the file (in our condition is logs.data) will be divided 
into 27 blocks and each block will be stored in three serv-
ers (the default replication factor of HDFS). This input file 
(logs.data) will make Hadoop’s MapReduce framework 
start 27 mapper tasks, with the limitation of the system 
parameter mapred.tasktracker.map.tasks.maximum. 
However, in most cases, we need to set the reduce tasks 
number manually to provide more computation power to 
our MapReduce jobs. In our speedup experiments, we 
manually set the Reduce tasks number and leave the map 
tasks number set by Hadoop. 

Besides building Hadoop as the storage layer and the 
MapReduce environment, we also introduce a Mem-
cached instance to accelerate the reading of intermediate 
results and global variables. As illustrated in Fig. 11, the 
MapReduce algorithm includes at least two stages: Y-
Partition stage and X-Partition stage. The y-axis partition 
generated by Y-Partition stage will be used in X-Partition 
stage. It is clear that the y-axis partition would not be 
large because it only includes ys (the y-axis partition 
number, belongs to 2,……, B/2) elements. As a result, to 
accelerate the processing speed, we store this y-axis parti-
tion results into the memory cache (Memcached) in every 
server, then each X-Partition stage task can access these 
data locally. 

In our implementation, both Y-Partition and XPartition 

 
Figure 11. Time Occupation of 4 MR Jobs 

 
Figure 12. Execution time of different MR jobs with input 10,000 and 100,000 sample points 
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stages include two MapReduce jobs, therefore the total 
computation time is the summation of the four MapRe-
duce jobs. We name these four MapReduce jobs as Y-
Partition MR1, Y-Partition MR2, X-Partition MR1, and X-
Partition MR2. Fig. 11 illustrates the percentage of these 
four MapReduce jobs occupied in the overall execution 
time for different input dataset sizes and number of re-
ducer tasks. It presents that when the input data set in-
creases, an increasing percent of execution time is con-
sumed by the X-Partition MR1 job, this is due to that we 
need to explore all the possible x * y grids and calculate 
their mutual information accordingly. Also when the re-
ducer task number increases (from 1 to 15), the percent-
age of the most time-consuming job (X-Partition MR1) is 
descendent. This is because our parallel solution decreas-
es the execution time of X-Partition MR1 more obviously 
than other three MR jobs. In general, the X-Partition MR1 
is the longest MR job and our solution can reduce its exe-
cution time with good scalability by adding more servers. 

Fig.12 illustrates the execution time of the overall 
MapReduce computation procedure with different serv-
ers and different input dataset size. The x-axis of these 
two figures denotes the number of Reduce tasks we as-
signed, and the y-axis refers to the execution time in sec-
ond. It is interesting that when there are only 10,000 sam-
ple points (Fig.12) the execution time does not reduce 
while the server number is increasing. The reason is that 
MapReduce jobs need lots of network communications 
and disk I/O, so if the data size is small, the communica-
tion delay and I/O cost will be more obvious. This situa-
tion will disappear when input data size increases, the 
execution time decreases dramatically when adding more 
servers. For example, it needs 2087 seconds to finish the 
computation in one server but it only cost nearly 653 sec-
onds (31.3%) to finish the same computation using three 
servers. Our MapReduce solution can achieve linear 
speedup according to our experiments.  

Furthermore, the speedup of the algorithm is illustrat-
ed in Fig. 13. We derived the speedup from the execution 
time with both 10,000 data scale and 100,000 data scale. 
For 10,000 data scale, the speedup is not scalable with the 
number of MapReduce jobs. The speedup of the total exe-
cution increases to 1.14x only when the number of reduce 
tasks increases to 6, but then decreases to 0.85x when the 
reduce tasks increase to 15. This is due to the communica-
tion overheads and scheduling overheads. By contrast, 

the scalability at the 100,000 data scale is much more satis-
fying. In particular, the speedup of the total execution 
increases to 9.99x when the the number of reduce tasks 
increase to 12, and then remains flat afterwards. 

 
5.4 Accuracy of the Multi-Variable Algorithm 
In order to evaluate the correctness of the new designed 
algorithm, we use six statistics, which are Exponential, 
Periodic, X, Two Lines and Eclipse relationship types.  

 
Figure 14. Accuracy of the of the Multi-Variable Algorithm 

Experimental results of accuracy is illustrated in Figure 
14, which is quite similar to the results in Table II. X-axis 
denotes the different number of reducer tasks, while y-
axis refers to the accuracy. It depicts that the all the rela-
tionship types are very close to 100%. For Exponential 
statistics, the accuracy increases from 96.0% to 99.6%. For 
Two Lines statistics, the accuracy increases from 68.2% to 
99.6%, and for Eclipse statistics, the accuracy increases 
from 68.8% to 99.6%. Experimental results demonstrate 
that the accuracy of the multi-variable algorithm can 
achieve high accuracy when the number of reducer tasks 
is larger than 4.  

 
5.5 Efficiency of the Multi-Variable Algorithm 
We evaluated the execution time and the speedup for the 
multi-variable algorithm. The experimental results are 
presented in Figure 15. 

The left part of Figure 15 stands for the execution time, 
and it illustrates that the execution time of the algorithm 
decreases significantly with the increase of the reducer 
tasks. Of the four calculations, the X-Partition MR1 execu-

 
Figure 13. Speedup of different MR jobs with input 10,000 and 100,000 sample points 



1545-5963 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2550430, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

12 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, MANUSCRIPT ID 

 

tion time is dominant. Based on the execution time, the 
speedup chart is derived to show the scalability of the 
algorithm, as illustrated in the right part of Figure 15. The 
speedup reaches 7.58x when the reducer tasks grows to 
15.  Results show that the algorithm is able to achieve a 
scalable speedup with satisfying scalability. 

6 CONCLUSION AND FUTURE WORKS 
  In this paper, we have proposed an acceleration tech-

nique for large scale biological datasets using MapReduce 
framework. The framework is based on the analysis of the 
classic MIC computation for detecting associations be-
tween two variables. The task sets are partitioned into 
Map and Reduce jobs which can run in parallel on the 
HDFS storage system and memory cache to speedup the 
computation of MIC. Furthermore, in order to explore the 
relationship among multiple factors, we extended the 
conventional two-variable algorithm to a more general 
multi-variable solution. Experimental results demonstrate 
that the MapReduce accelerator can achieve a significant 
speedup with satisfying scalability and flexibility. 

  Although the results are promising there are numer-
ous directions worth pursuing. As future work, the algo-
rithm for multi-variable situation will be investigated 
with more state-of-the-art applications. Meanwhile, we 
will apply the algorithm to cutting edge applications in 
different circumstances. 
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