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Abstract

This paper provides a physically based model to animate water. A disturbance model is

proposed to simulate various kinds of waves. We use a powerful solver called Finite Volume

Method to solve the water 
uid equation and give various kinds of disturbance to the solutions

according to di�erent disturbance sources such as wind and rain droplets. In this way, we can

nicely simulate the movement of waves such as superposition and re
ection, and thus easily

simulate scenes of raining pool, windy lake,etc.

Keywords: computer animation, water wave, �nite volume method, disturbance model

1 Introduction

Computer animation techniques have gotten adequate development in recent years. One of the
main techniques is based on key frames. We can create some key frames of the scene and the
frames between the key frames are produced by interpolation. But now many researchers have
shown more interest in physical models to animate natural scenes. In this approach, each frame
is automatically created by solving some physical equation, and the scene is totally determined
by the physical rules. What we need to do is to build such a physical model and provide some
parameters to control the animation.

Making water animation is an interesting problem. Many researchers have achieved remarkable
results in this area. Most of the methods to animate water can be classi�ed into four categories.

The �rst one is based on wave synthesis. It synthesizes the wave properties and tries to use
mathematical functions such as sin, cos, to simulate the shapes of water. In [1, 2], authors take the

surface y = f(x; z; t), where f(x; z; t) =
P

n

i=0
Ai � sin(!it+ �i), as the water surface and modify

the parameters Ai, !i, �i to model water movement. These approaches concern how to adjust the
parameters to simulate the wave phenomena such as superposition, refraction and re
ection. The
second method is based on physical models, which use a 
uid dynamic equation such as a 2D or 3D
Navier-Stokes Equation to describe water 
ow. The water animation is produced by rendering the
solutions of the equation at each time step. For example, in [3, 4, 5, 7], authors are concerned with
building a reasonable physical model and how to solve the equations which describe the model.
To make the scene more realistic, they usually add some particles to simulate sprays and foams.
The third approach is based on particle systems. Researchers [8, 9] take water 
uid as a volume
of particles and set some rules to the particles, and then render the volume of particles. Finally,
some papers focus on the rendering of a water scene. For example, [10, 11] study the interaction
of light with water to produce high quality still images of water.

In this paper, we propose a new method to animate water. Our method is also based on a
physical model. Our new idea is to design an e�ective disturbance model to simulate water scenes.
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We take the water surface as a height �eld. We solve the two dimensional Navier-Stokes equation
using a stable and fast algorithm called Finite VolumeMethod. Then we draw the resulting surface
at each time step.In order to simulate various water scenes, we give a set of disturbances to modify
the shape of the water surface. In this way we can nicely simulate the scenes of rainy pool, windy
pool, and ripples.

Comparing with previous work, our work has the following features:

1. We propose a new idea to simulate the water 
ow. Instead of concerning ourselves with
how to give an appropriate initial value of the dynamic equation, we focus on how to give
a set of disturbances for the dynamic equation. We design some typical disturbances to
simulate the wind blowing, stone throwing, and stick stirring. Thus we can de�ne a sequence
of disturbances to design the scenario of water animation.

2. We introduce a new solver called Finite Volume Method (FVM) to solve the dynamic equa-
tion. The solver is quite stable and fast. And we can adjust viscosity to simulate di�erent
kinds of 
uids.

3. We can deal with boundary problems of the domain which has complex topology. In previous
work, solvers usually use Partial Di�erence Method which is only suitable for a rectangular
domain. With the power of FVM, we can easily simulate the scene of a pool with a tiny
island in the center. And we can simulate the scene of dam breaking.

This paper is organized as follows. Section 2 discusses our point of view on the generation
of water waves. Section 3 introduces a powerful solver FVM to solve the Navier-Stokes equation
for water 
uid. Section 4 discusses the initial conditions and boundary conditions for the 
uid
dynamic equation. Section 5 proposes a disturbance model to simulate various scenes of water.
Section 6 describes the detailed design of the disturbance of rain droplet. Section 7 implements
the algorithm. In Section 8, we discuss how to tune the viscosity of 
uid, and �nally in Section 9
and 10, we make some discussions and point out future work.

2 Mechanism of Wave Generation

Before we show the detailed algorithm for the water animation, we would like to make two concepts
clear: water wave and water 
uid. Water 
uid is the body of water, which 
ows and has a 
ow
velocity. Water wave is the wave which takes water 
uid as a carrier. If the river bed is very
regular, i.e, 
at, smooth, and the bank is absolutely straight, the water 
uid 
ows calmly and the
surface of the water is just a plane. However, if we throw a stone into the river, then waves are
generated and spread away. That is to say, disturbance is the cause of wave generation. The wave
has a velocity that is di�erent from 
ow velocity. This fact guides our new idea of designing an
appropriate disturbance model to simulate interesting scenes of water.

3 Navier-Stokes Equation and Its Solver

We use the two dimensional Navier-Stokes equation to model shallow water waves. Just as stated
in [3], the model is based on three approximations. First, the water surface is taken as a height �eld
in a three dimensional space. Second, the vertical component of the velocity of the water particle
is ignored. Thirdly, the velocity of the water in a vertical column are approximately constant. The
limitation of these approximations makes the model be only suitable for the cases where the main
body of the water doesn't break. However, the experience of hydrodynamicists and the wide usage
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Figure 1: Discretizing the domain into meshes

of this model in numerical analysis show that it is an e�ective model to simulate water scenes in
a wide range.

Let h be the depth of the water and (u; v) be the planar components of the velocity of the water
in a vertical column. The shallow water equation can be written in conservative form as follows
[15]:
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where 
 is the solution domain, g is the acceleration due to gravity, and n is the normal vector of
the domain boundary.

3.1 Discretization

The domain is discretized into a set of triangular cells. We use the freeware EasyMesh [12] to do
this work. The domain which has complex topology can also be discretized into triangles (Figure
1). Our aim is to get U = (h; hu; hv) for each cell and use the height h of each cell to produce the
whole water surface.

3.2 Finite Volume Method

Finite Volume Method is an e�cient method to solve PDEs. Since equation (1) is the governing
equation for all the water body, each discretized cell of the domain should also obey it. Let Ae be
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the directional area of the triangular cell, Ue be the value of U on this cell, lj ; j = 1; 2; 3 are the
length of the three walls of the cell (Figure 2), we have

Ae �
@Ue

@t
+

3X
j=1

(F � n)j � lj = 0 (2)

for each cell.
Now compute the following values:

1.
@Ue

@t
. We use the simple di�erential scheme to compute:

@Ue

@t
=
Un+1

e
�Un

e

�t

2. Ae. Let the three vertices of cell e be (x1; y1), (x2; y2), (x3; y3), then the directional area of
the cell is

Ae =

������
x1 y1 1
x2 y2 1
x3 y3 1

������
3. lj . The length of walls of the cell e is

lj =
q
(xj+1 � xj+2)2 + (yj+1 � yj+2)2

where the index j should be moduled by 3.

4. (F �n)j. We use the technique proposed by Roe ([?]) to compute this part. Let U+

j
and U�

j

be two states on both sides of the wall j of the cell e at the time level n�t(�gure 2), then
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j
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j
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where A is the Jacobian matrix of the projection of the 
ux F in the normal direction
evaluated at some average of the variables at states U+, U�:

A =
@(F � n)
@U

=

0
@ 0 nx ny

(c2 � u
2)nx � uvny 2unx � vny uny

�uvnx + (c2 � u
2)ny vnx unx + 2vny

1
A

and jAj is the matrix whose elements are absolute values of elements of A.

The following are details of the calculation:

(a) nj. The normal vectors of the walls are

nj =
1

lj

�
(yj+2 � yj+1);�(xj+2 � xj+1)

�
:
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Figure 2: Calculate U+

j
, U�

j
for each cell

(b) jAj(U+

j
�U�

j
). We need more computation for this part [15]. The solution space of

jAj(U+

j
�U�

j
) can be represented by the eigenvectors of matrix jAj, that is:

jAj(U+

j
�U�

j
) =

3X
k=1

�k � j�kj � ek

where j�kj; k = 1; 2; 3, are the absolute values of the eigenvalues of matrix jAj and ek
are the corresponding eigenvectors.
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and �k are coe�cients of the decomposition in the basis of eigenvectors of �k,
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and

�h =h+ � h
�

�(uh) =(uh)+ � (uh)�

�(vh) =(vh)+ � (vh)�

(c) U+

j
, U�

j
. For simplicity, we use the scheme with the accuracy of order 1. That is, we

take the value of U at the center point of neighboring cell as U+

j
, and the value of U

at the center point of the current cell as U�
j
(�gure 2).

U+

j
= Uf ; U�

j
= Ue

Now if we have the value of Ue at time level n�t, from step 1 we can get the value at time
level (n+ 1)�t:

Un+1

e
= Un

e
�
�t

Ae

3X
j=1

(F �n)j � lj
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We compute the unknown parts by the steps listed above and get the solution Un+1

e
=

(h; uh; vh)n+1
e

, we produce the surface made up of all the triangles with vertices (xi; yi; hi),
i = 1; 2; 3 (each triangle corresponds to each cell), and take it as the water surface.

3.3 Numerical Stability

The stability of the FVM scheme can be judged by the following formula:

�t 6
minfdri;jg

2maxf(c+
p
[u2 + v2]i;j)g

(3)

where dri;j represents the whole set of distances between every center point (i; j) and those of
its adjacent cells. In simple words, let A be the minimum of all the cell areas, the condition can
be described as

�t

A
6 a certain value:

4 Initial and Boundary Conditions

To start the time evolution computation on the two-dimensional domain, we have to specify the
values of h; u; v at every center point of each cell for time t = 0, and assuming the values are
uniform over each cell. Unlike previous works [4], we don't have to design complicated initial
values for the animation scene, we just give the cells some trivial values. For example, to simulate
the water in a pool, we specify all the cells the same values (h0; 0; 0). To simulate the scene of dam
breaking, we set the initial values to be (h1; 0; 0) for the cells in one part of the domain and the
initial values to be (h2; 0; 0) for the cells in the other part of the domain.

We set the boundary conditions by calculatingU+

j
,U�

j
for each boundary wall of the boundary

cells. We set two kinds of boundary conditions for the equation (2). One is wall re
ection condition
(close boundary condition). By this condition setting, we can easily simulate scenes where waves
meet with the bank of a river or pool and are re
ected. We calculate the values U+

j
, U�

j
at the

boundary wall of cell e as follows[Figure 2 and 3]:

U+

j
= Ue =

0
@ h

hu

hv

1
A ;U�

j
=Ue =

0
@ h

hu

hv

1
A

here, (h; hu; hv) is the result of Ue = (h; hu; hv) being re
ected at the boundary wall of the cell e.
The other boundary condition is an out
ow condition (open boundary condition). This is for

simulating the scene where water 
ows from a pool into a river. The waves aren't re
ected at the
border of the domain, but go into another domain. When calculating the values at the boundary
wall of cell e, we take the values at the center point of the cell as U+

j
, U�

j
. That is:

U+

j
= Ue =

0
@ h

hu

hv

1
A ;U�

j
=Ue =

0
@ h

hu

hv

1
A

5 Disturbance Model

The water body is governed by the Navier-Stokes equation, and the initial values are trivial. Now
how can we simulate various water scenes? Just like a painter making a drawing on a blank canvas,
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Figure 3: Open boundary and close boundary

we add di�erent kinds of disturbances to the water and generate various shapes of waves and water
scenes. At each time step of solving Navier-Stokes equation, we disturb the solution by

Un+ = dU

i.e., we modify Un on some cells by h+ = dh; u+ = du; v+ = dv, and we take the disturbed Un

as the new initial values for Un+1. Since the water is governed by the Navier-Stokes equation, the
neighboring cells are in
uenced by the disturbance and their heights and velocities are changed.
Thus waves are generated and spread out automatically. When more than one waves are generated,
waves can meet and superpose with each other. When the waves meet the boundary of the domain,
they are re
ected. When the waves meet the break of the boundary, they go into another water
domain. In this way, the wave actions such as re
ection, superposition are simulated automatically
and perfectly.

We take the rain droplets, wind, creatures in the water and boats, etc. as disturbance sources.
Each disturbance source has its own way to in
uence the water surface by disturbing a di�erent
set of cells and providing di�erent amounts of disturbances to their heights and velocities.

To simulate a disturbance, two main factors have to be considered. One is the action of the
disturbance source, and the other is the in
uence when the source meets with the water surface. In
this paper, we only provide the detailed design for the disturbance of rain droplet. We will enrich
the model to include more kinds of disturbances in the future work.

6 Simulation of Rain Droplets

We �rst consider the action of a rain droplet. It is guided by the forces of gravity G, air friction
f , and wind blowing F (�gure 4). So the movement of the droplet can be described as

F +G+ f = ma

v = v0 + a�t

p = p0 + v�t

where �t is length of time step, v, p are current velocity and position respectively, v0, p0 are
velocity and position respectively at the previous time step. The mass m is determined by the size
of droplet and friction f is determined by the velocity.
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Figure 4: Movement and in
uence of droplet

Now considering the in
uence of a rain droplet when it meets with the water surface. It disturbs
a circular area of water. The radius of the circle is determined by the droplet's size and speed.
The cells inside the circle will be disturbed by dh, du, dv, which are also determined by the size
and the speed of the droplet. That is (Figure 4),

r = x � p;
jjrjj � factor radius � droplet size � droplet speed
dh = factor dh � droplet size � droplet speed
du = factor du � droplet size � droplet speed
dv = factor dv � droplet size � droplet speed

Where r is the vector from the center of considered cell x to the droplet's projection on water
plane p. The speed of the droplet can be calculated by droplet speed = jjvjj. And factor dh,
factor du, factor dv and factor radius are coe�cients.

The whole disturbing procedure can be described as follows: a droplet is falling to the water
and we check each cell of the water surface to see which cell the droplet is going to meet with. If
the droplet's current position and its next position cross a certain cell, we say the droplet meets
with the cell and causes disturbance in the way we have described above. Then the droplet is
bounced or merged into water.

7 Implementation of Algorithm

We describe the pseudo code of our algorithm as follows:

For each time step n do

f
//1. calculate U+, U� for each cell

calculate U+

j
, U�

j
for the walls of each boundary cell, deal with boundary conditions;

calculate U+

j
, U�

j
for the walls of each internal cell;

//2. add disturbance to invoke waves

for each disturbance source

f
calculate the disturbance source's current position and velocity;

check each cell to see if the source has in
uence on it, and disturb it if there exists

in
uence;

g
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//3. Un!Un+1

for each cell calculate Un+1

e
=Un

e
� �t

Ae

P
3

j=1
(F � n)j � lj ;

//4. Un  Un+1, reset Un to be Un+1, and take them as new initial values for the next

//time step.

for each cell reset Un to be Un+1;

//5. produce the water surface

for each cell calculate its normal and its three vertices (xi; yi; hi) and then rendering;

g

8 Viscosity of Fluid

There is an interesting point worthy to mention. As we know from section 3, the stability of
solution of the N-S equation is determined by �t=A. If �t=A exceeds a certain value, the solution
will be unstable, otherwise the solution is stable. In fact, �t=A indicates the viscosity of 
uid.
The larger �t=A is, the less viscous the 
uid looks. So we can tune �t=A to simulate many kinds
of 
uids which have di�erent viscosity.

However, when a mesh is created (and A is determined), sometimes even you tune �t to its
maximum value, you may still feel the viscosity of the water is too large. Here we provide a smart
trick to "enlarge" �t. That is, we only render the water surface every other time step, then we
achieve the e�ect of doubling �t.

9 Demo

We apply our algorithm to simulate the scene of light rain. In the demo attached in this paper, a
pool is created and some rain droplets are added. The pool is calm at �rst. Then it rains and the
water surface is disturbed. Thus the ripples are generated and spread away. Note that the waves
are re
ected when they meet with the bank of the pool and the ripples are superposed with each
other nicely.

We illustrate the movement of water waves in Figure 5. The pictures captured from the anima-
tion show that the phenomena of water waves can be produced automatically. When waves meet
with each other, they are superposed. When waves meet the bank of the pool, they are re
ected.
If there is a column block in the water, waves can go around it and continue propagating. All these
movements, i.e., superposition, re
ection and rounding, are generated automatically.

Our application is programmed using C++ and OpenGL on an SGI Octane workstation. If

we discretize the domain into about 932 triangular cells, the animation is in real time, with the
speed of 17 frames a second. (Note that the scene has been mapped with textures). However, if we
discretize the domain into 10,192 cells, as in the demo, our program can only produce two frames
per second. We need to point out that the speed of solving the Navier-Stokes equation is quite
fast. Without rendering the pictures, the speed is about 43 frames a second for 932 cells.

10 Conclusions and Future Work

The demo shows that the movement of waves is realistic. This is an e�ective way to simulate the
water scene in which the main water body doesn't break. We are con�dent that we have found
a good way to simulate the generation of water waves. This work is a success of integration of
computer graphics and numerical analysis. However, there is still much work to do. One piece
of future work is to enrich the disturbance model to simulate wind blowing, stick stirring, boat
rowing, etc. While writing this paper, we are simulating wind blowing. Another piece of future
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Figure 5: Superposition, re
ection and rounding of waves

work is to make shadows and add particle systems to make the water scene more realistic. Finally,
how about the cases where the river bed or pool bottom is not plane? This is also a challenging
problem.
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