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Abstract
In this paper, the approximation of a Effipsoid surface patch using bicubic Bézier poly-

nomials is considered. The approximation is sixth order accurate. Furthermore the adjacent
approximation surface patches have the same tangent plane at their common boundary.
Keywords: Approximation, Ellipsoid, Accurate, Patch.

1 Introduction
Bézier curves and surfaces are widely used in the geometric modelling, but they could not denote
circle, sphere and the like exactly. Hence in practice, the requirement of approximation of sphere
and the like arises when conic sections or rational curves are not available or are not recommended.

Many authors have worked with the approximation of circle by Bézier polynomials [1, 2, 3], and
in [4] we give a perfect approximation for a octant of ellipsoid surface. This paper we consider the
approximation of a ellipsoid surface patch by bicubic polynomials. The approximation turns out
to have sixth order accuracy, giving a very small error.

In the following, we introduce the error functions

1(t)=+-—i (1.1)

for the case of ellipse and

x2(s,t) y2(s,t) z2(s,t)2(s,t) = a2 b2 c2 (1.2)

for the ellipsoid.

2 The approximation of elliptic arc
An ellipse is defined as

-;+;=, a,bER. (2.1)

Let the elliptic arc to be approximated be given by its angular width 0 < /3 ir/2, starting in the
point () on the positive y-axis, see Fig.1(a).
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b — x

P0>3 — x

. . (b)the approximation curve and its control
Fig.1(a)the elliptic arc

points

We intend to find a cubic Bézier curve p(t) to approximate this elliptic arc. Here, p(t) is of form

p(t) = ( ) = PB(t) (2.2)

with the control points P and the Bernstein basic functions B (t) given by

Pi= ( ;: ) B(t)= ()ti(l_t)n_i, tE(O,1), i=O,1,... ,n. (2.3)

The Bézier curve p(t) is required that passes through the end points and there has a collinear
tangents with the ellipse arc. We rewrite the ellipse equation in a parametric form as

f(O\ — (x(O) _ (asin9 24' I — y(O)) bcosO)'

where e is the angle starting from positive y-axis as shown in Fig. 1(a). Then the control points pi
(see Fig.1(b)) can be computed as follows.

_(o (asin _(o h df (ahPO_b} bcos,)' P1_b)+ b )'
P (asin/3"\hdf (asini3_ahcos/3'\ 252 — b cos ) dG e=p b cos + bh sin ) '

where h is a positive constant to be determined later. Then we have:

I x(t) = a{hBj(t) + (sin 9 — h cos j3)B (t) + sin J3B (t)]
1 i(t) = b[B (t) + B (t) + (cos /3 + h sin /3) B (t) + cos /3B (t)]

and the error function E (t) is of the form

'(t) = [hB(t) + (sin/3 —hcos/3)B(t) + sin /3B(t)]2

+ [B(t) + B(t) + (cos fi+ h sin/3)B(t) + cos flB(t)]2 — 1

= f?(t,fl,h) +f(t,/3,h) —1. (2.6)

here,

f1(t,,h) = hB(t) + (sin/3— hcos/3)B(t) +sin/3B(t) (2.7)

f2(t,13,h) = B(t) + B(t) + (cos3+ hsin/3)B(t) +cos/3B(t)

Hence, 61(t) defined in (1.1) is a polynomial of degree 6. The error function can be written in the
form

= bB?(t). (2.8)
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Using the method as same as in [4], the Bézier coefficients in (2.8) can be decided:

b0=b1=b5=b6=O, b2=b4=[3h2+2hsin_2(1_cos)]

b3 [_9h2cos+18hsin_ 10(1—cos)]. (2.9)

So

si(t) = b2B(t) + b3B(t) + b4B(t). (2.10)

In order to determine the free parameter h, for obvious symmetry, we let () = 0, it requires
2b3 + 3b2 = 0, thus h can be determined, and

4h= tan.
Then we have

si(t) = 15b2 . t2(1 — t)2(2t — 1)2 (2.11)

here

15b2 9h2 + 6hsin/3 — 6(1— cos/3)

.2/s 1 I2 sin6
=l6sin 7(—-—cos7) =16 2 (2.12)

cos4 '± cos

Hence

sin6

i(t) = 16
2 t2(1

— t)2(2t — 1)2. (2.13)
cos

Because of
max t2(1 — t)2(2t — 1)2 1/108,

tE[O,1}

finally we have:

Theorem 1 The Be'zier curve p(t) = ( ) obtained by above control points, when h =

4 . . . 1 0 \ I asin(3/2) \ I asin/3 \ .

tan it interpolates the arc at b )' b cos(9/2) )
and b cos ) and never enters inside

the ellipse. The error is given by

IIi(t)I! = + - 1} =

This result is the same as that in [2] or [3] for the circle case (a =b = 1).
At last of this section, we note that from (2.11), (2.12), the approximation is one-sided.

3 The approximation of ellipsoid patch
The main purpose of this paper is to generalize the above method to surface case. An ellipsoid is
defined by

x2 y2 z2
—-+---+---=1, a,b,cER. (3.1)
a b c
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Let the parametric representation of the ellipsoid surface be

f
f(G,ça) =

('
asinOcos
bsinOsinço

ccosO

\
J

Initially, we consider a patch as shown in Fig.2(a) on the ellipsoid with 0 G /3 rr/2 and
Oçco/2.

Fig.2(a)the ellipsoid patch 0 G /3 Fig.2(b)the ellipsoid patch 0 /3 0

We intend to approximate the ellipsoid surface patch using bicubic Bézier surface with two
parameters. Let

p(s,t) = (3.3)
i=O j=O

In order to determine the control points Pj, it is required that P(s, t) interpolates the patch at
points (0,0,c)T, (asin/3,0,ccos/3)T, (asin/3cosa,bsin/3sina,ccos/3)T, and has the same tangent
plane with ellipsoid at these three points, but in the increasing direction of 9 and ço, the tangent
at these points may have different length.

By requirements of interpolation, it is easy to compute that

/ asin/3
,P30=( 0

\ ccos/3

aP(s t) P(s t) of
From = and ,

=
,

we nave
8

(0,0) (0,0) (1,0) (j3,0)

/ ah1 \
Pio=( 0

C

/ asin/3—ah1cos/3
0

\ ccos/3+chisin/3

Suppose h1 =oi/3, h2 = o2/3. Due to the assumptions, we also have

UP(s, t)
Ut (1,0)

UP(s, t)
Us (0,1)

Uf
aço (/3,0)

Uf=
O1- (0,c)'

UP(s, t)
Ut (1,1)

UP(s, t)
Us (1,1)

UI=
Up (/3,a)

Uf= Oi—
UO (/3,c)

and the other control points can be decided:

/ asin/3 '\
Uf = I bhsin/3P31 = P30 +

ccos/3 /

UI —
P32 = P33 —

h2— (/3,o)

/ ah1cosc
P13=P03+h1 = j bh1sina

)U9I(0,a) C

0 9 rr, 0 2ir. (3.2)

z

y

x

/0
Poo=Poi=Po2=Po3= (

/ asin/3cosa
P33 =

(
bsin /3 sina

\ ccos/3

/ a sin /3 cos a + ah2 sin /3 sin a
b sin /3 sin a — bh2 sin /3 cos a

'I' ccos/3
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U I a sin /3 cos a — ah1 cos 3 cos a
P23 P33 — h1 —f-- = ( bsin 3 sin a — bh1 cos /3 sin a

UG&3a) '\ ccos9+chisin/3

Now, oniy middle control points P11 , F12, P21 , P22 are left to be determined by using two-order
mixed derivatives. From

82p(s,t) D2f
0102

Dsat (o,o) ooa(p (0,0)

and

a2p(s,t)
9(P11 — Pio — P01 + Poo), U12aGa1

LOGO) 12 ( )
we get fo\ I ah1

P11=P10+h1h2 ( b = ( bh1h2

\oJ \
By the same argument, from

82P(s,t) 92f 92P(s,t) ____= 0102 =
c9st9t (0,1) OD (0,c)' Dsôt (1,0) U99o (p0)

32P(s,t) 92f= 0102
UsOt (1,1) aeoo (pa)

we have

I ah1 cos a + ah1h2 sin a \ I asin /? — ah1 cos
P12 ( bh1sina—bh1h2cosa I 12' = bh2sinfl—bh1h2cos,8

\\
C J \\ c cos /9 + ch1 sin /3

f asin/?cosa — ah1 cos/3cosa + ah2 sin/3sina —ah1h2cos/3sina
P22 = ( bsin /3 sin a — bh1 cos 3 sin a — bh2 sin/3cos a + bh1h2 cos /3 cos a

ccos/3+chisin/3

/ X \ / X(s,t) \
Let Pj = ( Y , P(s,t) = I Y(s,t) , then from (3.3), we have

\ Z J \ Z(s,t) J

X(s,t) = XB(s)B(t) = afi(s,/3,hi)f2(t,a,h2) (3.4)

i,j=0

here,

f' (s, /3, hi) = hiB(s) + (sin /3 — h1 cos /3)B(s) + sin /3B(s),
f2 (t, a, h2) = B(t) + B (t) + (cos a + h2 sin a)B(t) + cos aB (t).

we also have:

Y(s,t) = B(s)B(t) = bfi(s,/3,hi)fi(t,a,h2),
i,j=0

1' (t, a, h2) = h2B(t) + (sin a — h2 cos a)B(t) + sinB(t),

Z(s,t) = ZB(s)B(t) = cf2(s,/3,hi), (3.5)
i,j=0
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f2(s, j3, h1) = B(s) + B(s) + (cos /9 + h1 sin,i3)B(s) + cos

Substituting above X(s,t),Y(s,t),Z(s,t) into (1.2) gives

X2(s,t) Y2(s,t) Z2(s,t)e2(s,t) =
a2 b2 C2

(3.6)

= f?(s,3,hi)[f(t,a,h2) +f?(t,a,h2) — 1] +f(s,fl,hi) +f?(s,/3,hi) —1

It is easy to find out that f(t, c, h2) + f?(t, a, h2) — 1 and f(s, 9, h1) + f?(s, fl h1) — 1 are
just the error interpolating elliptic arc introduced in (2.6) and (2.7). When h2 = tan and
h1 = tan -, we have

4 sin6 4 sin6
2(s,t) 27cos2 fi(s,/?,hi) + 27cos2 U

Combine the above discussion,we state the following main theorem.

Theorem 2 suppose the control points Pj chosen as above and h1 = tan -, h2 = tan
then, the Be'zier surface

P(s,t) = PB(s)B(t), s,t [0,1]
i,j=O

interpolates the ellipsoid surface patch Fig2(a) at points Poo, P30, P33 and have the same tangent
plane with ellipsoid at these points. The interpolating error s2(s, t) satisfies

X2(s t) Y2(s t) Z(s t)2
IIs2(s,t)Ik = max ' + , + ' —1

s,tE{O,1] a2 b2 c2

4 sin6 - sin6

cos2 cos2 (3.7)

Proof: If h1 , h2 are chosen as above, since (2.6) and (2. 13), (3.6) is equal to

16sin6 16sin6
E2(S,t) = f(s,3, h1) 2 t2(1— t)2(2t — 1)2+ 2 s2(1 — s)2(2s— 1)2

cos cos

In order to prove theorem, we only need to prove

Ifi(s,i,hi)I 1.

Because of
sin — h1 cos = sin fi — tan cos 0,

and 0 h1 < 1, it is obvious that

Ifi(s,/3,hi)I B(s) +B(s) +B(s) 1.

The theorem is proved.

Considering another patch(see Fig.2(b)) the algorithm is similar to the previous one. The
calculation shows that the control points are

/ a sin 3 / asin 3 \ / a sin 3 cos a + ah2 sin sin a \
Poo =

1
0 , P01 = bh2 sin /3 , P02 =

(
b sin /3 sin a — bh2 sin /3 cos a

\ ccos/3 ) \ ccos/3 J ccos/3 /
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I asin /3 cos a \ f asin 3 + ah1 cos 9 \ f a sin /9 + ah1 cos 3 \
P03 = ( bsinsin a , P10 = 0 , P11 ( bh2 sin8 + bh1h2 cos/3

" C C05 /3 J \\ c cos 9 — ch1 sin /3 J \ ccos 3 — ch1 sin 9 J
I (a sin j3 + ah1 cos 3)(cos a + h2 sin c) \ f a sin 3 cos c + ah1 cos /1? cos a

P12 ( (bsin a — bh2 cos c) (sin 3 + h1 cos 3) J , P13 =
(

bsin /3 sin c + bh1 cos 3 sin a J

\\ C C05 /? — ch1 sin 3 J \ ccos /3 — ch1 sin 3 J
I a \ f a \ f acosa+ah2sina \ f acosa

P20 ( o , P21 =
( bh2 j , P22 =

( bsina — bh2cosc , P23 = ( bsina

\ ch1 J \ ch1 J \ ch1 J \ ch1 J

I a \ f a \ f a cos a + ah2 sina \ f a cos a
P30 = ( 0 J , P31 = bh2 , P32 = f b sin a — bh2 cos a , P33 =

( b sin a

\o1 \oJ \ 0 J \ 0

Based on control points, the bicubic Bézier surface can be written as:

I X(s,t) \ I aq1(s,8,hi)f2(t,a,h2)
P(s,t) = I Y(s, t) J = bq1(s, ?, hi)fi (t, a, h2)

'\ Z(s,t) I \ cq2(s,8,hi)

here, fi andf2 are the same functions as in (2.7), but

qi(s,8,h1) = sin/9B(s) + (sin8+ hjcos$)B(s) + B(s) + Bj(s)
=

f2(1—s, —,h1)

q2(s, 3, h1) = cosB(s) + (cos/3 — h1 sin/3)B(s) + hiB(s)
= fi(1—s, —,h1),

so the interpolating error s(s,t) is equal to:

= f(1 - s, - ,hi)[f(t,a,h2) + f?(t,a,h2) - 1] (3.8)

+ f(1 - s, - , h1) + f?(1 - s, - , h1) -1

Let h1 = tan( — -), h2 = tan(), we have the following

Theorem 3 The Be'zier surface

I aqi(s, 3, hi)f2(t, a, h2)
P(s,t) = bqi(s,/3,hi)fi(t,a,h2)

cq2(s,,8,h1)

based on the above assumptions interpolates the second ellipsoid patch shown in Fig.2(b) at points
F00, F03, F30, F33, and have the same tangent plane with ellipsoid at these points. And the error
function s(s,t) satisfies

4 sin6 sin6(!L —
II(s,t)II [cos2 + cos2( -

Proof: From (3.8), (2.6), (2.13), we have

16 sin6 16sin6( —
?2(5,t) = q(s, j:9, h1)

cos2
t2(1 — t)2(2t — 1)2 +

cos2(—
s2(1 — s)2(2s — 1)2.

Proc. SPIE Vol. 48751036



Then, for the theorem, we oniy need to prove IqiI � 1, that is sin 3 + h1 cos 1. Obviously,

4 ir /9 /9 /3cos(-) 1+cos(-)=2cos (-)
thus there is

4sin(—) ir /3 . /3 rr /3 . /9

3 cos( - cos( - 2 sin( - cos ( - = sin( -

so, h1 sin( — /9) 2 sin2( — = 1 — sin/9. Then what we need is proved.

From theorem2 and theorem3, we know that the sixth order approximation error is obtained.
The following table shows the error e2(s,t) for different c,/3. For simplicity, here take a = /3:

/9 3—— ir- — ir — ir. — ir
Th

II2(s,t)II 1.09027 . iO 1.69822 . iO 2.65296• i07 4.14520 . iO
Furthermore, two adjacent approximation surface patches are not only continuous but also have

the same tangent plane at common boundary. The effect of approximation is shown in Fig.3(a),(b),
and we show the pictures for error functions in Fig.3(c),(d)./ Fig 3(b)the approximation surface of the

. . . whole ellipsoid using eight piecesFig.3(a)the combination of two .
. . approximation patcnes.

approximation patches

0.OOW 0.000015

5, 1O

o.oooo1i_

71

O5
Fig.3(c)the error function Fig.3(d)the error function

2(s,t),a/3 s(s,t),a=/3=
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