
Computing µ-Bases of Rational Curves and Surfaces
Using Polynomial Matrix Factorization

Jiansong Deng Falai Chen Liyong Shen
Department of Mathematics

University of Science and Technology of China
Hefei, Anhui 230026, P. R. of China

dengjs@ustc.edu.cn,chenfl@ustc.edu.cn

ABSTRACT
The µ-bases of rational curves/surfaces are newly developed
tools which play an important role in connecting paramet-
ric forms and implicit forms of the rational curves/surfaces.
They provide efficient algorithms to implicitize rational
curves/surfaces as well as algorithms to compute singular
points of rational curves and to reparametrize rational ruled
surfaces. In this paper, we present an efficient algorithm
to compute the µ-basis of a rational curve/surface by us-
ing polynomial matrix factorization followed by a technique
similar to Gaussian elimination. The algorithm is shown su-
perior than previous algorithms to compute the µ-basis of a
rational curve, and it is the only known algorithm that can
rigorously compute the µ-basis of a general rational surface.
We present some examples to illustrate the algorithm.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—Algebraic algorithms; I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling—Cur-
ve, surface, solid, and object representations

General Terms
Algorithms

Keywords
µ-basis, syzygy module, implicitization, primitive factoriza-
tion algorithm, Hermite form, GCD extraction algorithm

1. INTRODUCTION
The µ-basis was first introduced in [9] to provide a com-

pact representation for the implicit equation of a rational
parametric curve. Then it was generalized by one of the
present authors to general rational surfaces [1, 5, 6]. The
µ-basis can be used not only to recover the parametric equa-
tion of a rational curve/surface but also to derive the implicit
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equation of the rational curve/surface. Thus it provides a
connection between the parametric form and the implicit
form of a curve/surface. Furthermore, the µ-basis was suc-
cessfully applied in reparametrizing a rational ruled surface
[4], in computing the singular points of a rational curve [7]
and in finding more compact representation for the implicit
equation of a rational curve with high order of singularities
[2].

There are several methods to compute the µ-basis of a
rational curve. The first method is based on undetermined
coefficients by solving linear system of equations [14]. This
method needs O(n3) arithmetic operations, where n is the
degree of the curve, and it is a trial-and-error approach. The
second method was developed by Zheng and Sederberg [18],
and it is similar to the Buchberger’s algorithm for computing
the Gröbner basis of a module. The computational cost of
the method is about 81

4
n2 + O(n) multiplications in generic

case. In [3], Chen and Wang applied vector elimination tech-
nique to improve the efficiency of the second algorithm by a
factor of two.

For a rational ruled surface, an efficient algorithm simi-
lar to curve case was developed to compute the µ-basis [1].
However, we do not have a rigorous algorithm to compute
the µ-basis of a general rational surface so far. Currently,
we use the Gröbner basis technique to compute a generator
for the syzygy module of the rational surface, and then try
to find the µ-basis by forming linear combinations of the
elements in the generator. This is totally a non-automatic
approach and fails in most circumstances.

In this paper we apply the theory of polynomial matri-
ces developed by researchers in linear systems [11, 12, 13]
to the computation of a µ-basis. Using some polynomial
matrix operations, such as primitive factorization and GCD
extraction, we are able to compute a µ-basis of a rational
curve/surface rigorously. The computed µ-basis is further
simplified by lowering its degree using vector elimination
technique [3]. For curve case, a µ-basis can be computed in
33
4

n2 +O(n) operations, which is superior than any existing
algorithms.

The organization of the paper is as follows. In Section 2,
some preliminary knowledge about the µ-basis of a rational
curve or surface is introduced. In Section 3, some basic con-
cepts and results in the theory of polynomial matrices are re-
viewed, including the primitive factorization algorithm, Her-
mite form, and GCD extraction algorithm. Sections 4 and
5 apply the results of Section 3 to the computation of the
µ-basis of a rational curve and surface respectively. Some
examples are illustrated to demonstrate the detailed process
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of the algorithm. We end the paper with some conclusions
and future works in Section 6.

2. µ-BASES OF RATIONAL CURVES AND
SURFACES

Throughout the paper, we work over the field K of real
numbers or rational numbers. K[x1, . . . , xk] = K[x] and
K(x) are the polynomial ring and the rational function field,
respectively, in variables x = (x1, . . . , xk) with coefficients
in K. Km×l[x] denotes the set of m× l matrices with entries
in K[x]. If m = 1, we write it in Kl[x] for short.

For any F := (f1, . . . , fl) ∈ Km×l[x], the set

Syz(F ) :=
n

(h1, . . . , hl) ∈ Kl[x]
���

lX
i=1

hifi ≡ 0
o

is a module over K[x], called a syzygy module [8]. If we
can find a generating set {b1, . . . ,bm}, bi ∈ Kl[x], of a
syzygy module, then the matrix M = (b1, . . . ,bm) is called
the generating matrix of the syzygy module. It follows that
FM = 0.

A generating set of a module over K[x] is called a basis if
the elements in the generating set are K[x]-linearly indepen-
dent. If a module has a basis, then it is called a free module.
Conditions for a syzygy module being free will be given in
the next section. We just mention that, if k = 1 or 2, i.e., we
are working with univariate or bivariate polynomials, then
the syzygy module is free.

Now we review the definitions of µ-bases of a planar ra-
tional curve [3] and a rational surface [6]. Consistent with
the notation in [6, 3, 5, 1, 9], we use t and s, t as the variable
names for univariate and bivariate cases, respectively.

Definition 1 ([9]). Given a planar rational curve of
degree n in homogeneous form:

P(t) := (a(t), b(t), c(t)) ∈ K3[t],

where max(degt a, degt b, degt c) = n and gcd(a, b, c) = 1.
The syzygy module Syz(a, b, c) has a basis {p(t),q(t)} ⊂
K3[t] with degree µ and n − µ respectively, where µ 6 n

2
.

{p(t),q(t)} is called a µ-basis of the rational curve P(t).

Remark 1 A µ-basis has the following properties [3]:

(1) The µ-basis has the lowest possible degree among all
the bases of the syzygy module Syz(a, b, c).

(2) The parametric equation of P(t) can be recovered from
a µ-basis. In fact, for any basis p,q of Syz(a, b, c), we
have

[p,q] = κ(a, b, c)

for some nonzero constant κ in K.

(3) A basis {p(t),q(t)} of Syz(a, b, c) is a µ-basis if and
only if degt(p(t)) + degt(q(t)) = n, and if and only
if LCV(p(t)) and LCV(q(t)) are linearly independent.
Here LCV(p(t)) is the leading coefficient vector of vec-
tor polynomial p(t) which is defined by LCV(p(t)) :=
(p1µ, p2µ, p3µ) if we write p(t) = (p1µ, p2µ, p3µ)tµ +
. . . + (p10, p20, p30). LCV(q(t)) is defined similarly.

(4) The implicit equation of P(t) can be obtained by tak-
ing the resultant of p · v and q · v with respect to t,
where v = (x, y, 1).

Definition 2. Given a rational parametric surface in ho-
mogeneous form:

P(s, t) := (a(s, t), b(s, t), c(s, t), d(s, t)) ∈ K4[s, t],

where a, b, c, d are relatively prime. A basis {p(s, t), q(s, t),
r(s, t)} ⊂ K4[t] of the syzygy module Syz(a, b, c, d) is called
a µ-basis of the surface P(s, t). If in addition, p, q, r satisfy

1. among all the bases of Syz(a, b, c, d), degt p+ degt q+
degt r is smallest, and

2. among all the bases of Syz(a, b, c, d) which satisfy item
1, degs p + degs q + degs r is smallest,

then {p, q, r} is called a minimal µ-basis of P(s, t).

Remark 2 The existence of µ-basis of a rational surface
was proved in [6]. It can be also seen from Corollary 3.2 in
the next section. However, except for parametrizations with
no base points, standard computational methods only give
generating sets for the syzygy module. The main task of the
current paper is to describe how to compute a basis of this
module, i.e., a µ-basis.
Remark 3 From [6], the parametric equation of a rational
surface can be recovered by the outer-product of a µ-basis,
i.e.,

[p,q, r] = κ(a, b, c, d)

for some nonzero constant κ in K. Here

[p,q, r] =

0
@
������

p2 q2 r2

p3 q3 r3

p4 q4 r4

������ ,−
������

p1 q1 r1

p3 q3 r3

p4 q4 r4

������ ,

������
p1 q1 r1

p2 q2 r2

p4 q4 r4

������ ,−
������

p1 q1 r1

p2 q2 r2

p3 q3 r3

������
1
A .

On the other hand, the implicit equation of a rational
surface can be obtained by computing the Gröbner basis for
the ideal 〈p·v,q·v, r·v〉 : gN , where v = (x, y, z, 1), g ∈ K[s]
is defined by 〈a, b, c, d〉 ∩K[s] = 〈g〉 and N is a sufficiently
large integer. Though it is relatively more efficient than the
method by direct computation of Gröbner basis of the ideal
〈dx− a, dy− b, dz − c, dw− 1〉 ∩K[x, y, z, s, t], finding more
efficient method to derive the implicit representation from a
µ-basis is a problem worthy of further investigation.

3. PRELIMINARY RESULTS IN THE THE-
ORY OF POLYNOMIAL MATRICES

Given a matrix M in Km×m[x], its determinant det M
is a polynomial in K[x]. If the polynomial is nonzero, the
matrix M is nonsingular, otherwise it is singular. If the de-
terminant det M is a nonzero constant in K, then we called
M a unimodular matrix.

A matrix M ∈ Km×l[x] is of rank r if there exists at least
one minor of order r being nonzero polynomial, and all the
minors of order r+1 being zero polynomials. We use rank M
to denote the rank of M . If rank M = min(l, m), we call the
matrix full-rank.

For a nonsingular matrix M ∈ Km×m[x], we can calculate
its inverse matrix, whose entries are in K(x). The inverse
matrix is also in Km×m[x] if and only if M is unimodular.

Definition 3. Let F ∈ Km×l[x] with m 6 l. Then F is
said to be :
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1. minor left prime (MLP) if all m×m minors of F are
coprime.

2. factor left prime (FLP) if any polynomial decomposi-
tion F = F1F2 in which F1 is square, then F1 is a
unimodular matrix, i.e., det F1 = k0 ∈ K\{0}.

Minor right prime (MRP) and factor right prime (FRP) can
be similarly defined.

In [16], the authors proved that for k = 1, 2, MLP ≡ FLP,
MRP ≡ FRP; for k > 3, MLP 6≡ FLP, MRP 6≡ FRP; and
for all k > 1, MLP ⇒ FLP, MRP ⇒ FRP. Here k is the
number of variables.

Definition 4. Given two polynomial matrices A, B with
the same number of rows (columns), where entries are in
K[x], we call them to be left (right) coprime if whenever

there are two matrices Ã, B̃ and a square polynomial matrix
C, where entries of all the three matrices are in K[x] such
that

A = CÃ, B = CB̃ (A = ÃC, B = B̃C),

then C is a unimodular matrix.

Definition 5. Given two polynomial matrices A, B with
the same number of rows (columns), where entries are in
K[x], a square polynomial matrix D is their greatest com-
mon left (right) divisor (GCL(R)D) if there exist two left

(right) coprime polynomial matrices Ã, B̃ such that

A = DÃ, B = DB̃ (A = ÃD, B = B̃D).

The following theorem due to Lin [12] describes when a
syzygy module is free, i.e., it has a basis.

Theorem 3.1. [12] Let F = [−Ñ , D̃] ∈ Km×l[x] be of

rank m, with l > m, D̃ ∈ Km×m[x] being nonsingular, and
r = l −m. Then Syz(F ) has a generating matrix of dimen-
sion l× r (i.e., Syz(F ) is free) if and only if there exists an
MRP matrix H ∈ Kl×r[x] such that FH = 0m×r. Further-
more, H is the generating matrix.

Based on Theorem 3.1, Lin derived the following corollary,
the proof of which is constructive. We copy its proof to
help the reader to more easily understand the algorithm in
Sections 4 and 5.

Corollary 3.2. Let F = [−Ñ , D̃] ∈ Km×l[s, t] be of

rank m, with l > m, D̃ ∈ Km×m[x] being nonsingular,
and r = l − m. Then, there exists a generating matrix
H ∈ Kl×r[s, t] of Syz(F ).

Proof. Associate F with a rational matrix P = D̃−1Ñ .
By a well-known result in bivariate polynomial matrix the-
ory [11, 13], P has a right matrix fraction description (MFD)
P = ND−1, where N and D, whose entries are in K[s, t],
are right coprime. Let H = (DT , NT )T ∈ Kl×r[s, t], which

is FRP, hence MRP. Clearly, P = D̃−1Ñ = ND−1 gives rise
to FH = 0. By Theorem 3.1, H is a generating matrix of
Syz(F ).

According to the proof of Corollary 3.2, to find a basis of
Syz(F ), we need to get the MFD of a rational matrix. For
any rational matrix M , it is easy to write it into M = AB−1,
where A, B are polynomial matrices. Hence it is important

on how to extract GCRDs from A and B. The approach con-
sists of some important algorithms in the theory of bivariate
polynomial matrices, including primitive factorization, Her-
mite form, and GCD extraction. We will review them in the
following subsections.

3.1 Primitive factorization algorithm
For a bivariate polynomial a(s, t) ∈ K[s][t], we write it

into the following form:

a(s, t) =

nX
i=0

ai(s)t
i,

where ai(s) ∈ K[s]. The content of a(s, t) with respect to
K[s][t] is the gcd of the ai’s.

Suppose p(s) is irreducible in K[s]. Then

a(s, t) (mod p(s)) = 0

(i.e., p(s)|ai(s), i = 0, . . . , n), or

a(s, t) (mod p(s)) =

n1X
i=0

αi(s)t
i,

where αi(s) ∈ K[s] with degs αi(s) < degs p(s), n1 6 n,
and αn1(s) 6≡ 0. The αi’s can be obtained by means of the
Euclidean division algorithm.

In [13] a primitive factorization (PF) algorithm of bivari-
ate polynomial matrices is proposed, which extracts the con-
tent of a full-rank matrix with entries in the ring K[s, t] of
bivariate polynomials over some algebraically closed field K.
[11] eliminates the restriction on K, such that we can do the
factorization over the real field or even the field of rational
numbers, provided the coefficients start out in the same field.
We describe the PF algorithm as follows. Further details can
be found in [11].

Algorithm 1 (PF Algorithm).

Input F : an m×l full-rank matrix with entries in K[s, t],
m 6 l.
Output L, R: m × m and m × l matrices, respectively,
with entries in K[s, t], such that F = LR and det L = g(s),
where g(s) ∈ K[s] is the content of the greatest common
divisor (GCD) of the set of m×m minors of F .
Step

1. Calculate the GCD of the set of m ×m minors of F .
g(s) is its content as a polynomial in t.

2. Let L be an identity matrix of order m, and R = F .
Factorize g(s) into a list of irreducible factors in K[s].
For every factor p(s) do the following steps:

(a) Set the current row and column indices i, j to be
1. R̄ = R (mod p(s)).

(b) Among rows from i to m in R̄, if there exists a
row with all entries zeros, say row i0, then

D0 = diag(1, . . . , 1,
i0

p(s), 1, . . . , 1)

is a left divisor of F , and we let L ← LD0, and
R← D−1

0 R. Continue Step 2 for the next factor.

If no row of R̄ from rows i to m is zero, then go
to the next sub-step.
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(c) From columns j to l, find the first column (say
column j0) with at least one nonzero entry from
rows i to m. Set j ← j0.

(d) In the column j, from rows i to m, find the entry
with the smallest degree of t, say i1. Interchange
row i and i1 of R̄. This is equivalent to premulti-
plying R̄ with matrix D1, where D1 comes from
Im by interchanging rows i and i0. Let L← LD1,
R← D−1

1 R = D1R.

(e) Suppose the entries in column j to be

�
∗, . . . , ∗, ai(s, t), . . . , am(s, t)

�T
.

The leading coefficients of ai(s, t), . . . , am(s, t) in
t are bi(s), . . . , bm(s). Since bi(s) and p(s) are
relatively prime, by Euclidean algorithm we can
find x(s) and y(s) in K[s] such that

x(s)bi(s) = 1− y(s)p(s).

Let a∗i (s, t) = x(z)ai(s, t) (mod p(s)).1 There ex-
ist qk(s, t) and rk(s, t) in K[s, t] such that

ak(s, t) = qk(s, t)a∗i (s, t) + rk(s, t),

k = i + 1, . . . , m, where

degt rk(s, t) < degt a∗i (s, t), or rk(s, t) ≡ 0.

Then for k = i + 1, . . . , m, we add to row k
with row i multiplied by −x(s)qk(s, t). This is
equivalents to premultiplying R̄ with the matrix
D3 = diag(Ii−1, E), where

E =

0
BBBBB@

1
−xqi+1 1
−xqi+2 1

...
. . .

−xqm 1

1
CCCCCA

.

Let L ← LD−1
3 , R ← D3R. Then the j column

of R̄ is with the form�
∗, . . . , ∗, ai(s, t), ri+1(s, t), . . . , rm(s, t)

�T
.

Let R̄← R̄ mod p(z).

If ri+1(s, t) ≡ · · · ≡ rm(s, t) ≡ 0, then j ← j + 1,
i ← i + 1, and go to sub-step (b). Otherwise,
repeat the current sub-step (e).

Remark 4 There is of course a similar primitive factoriza-
tion algorithm for m > l, where an l× l matrix is extracted
on the right. We denote these two algorithms as the LPF
and RPF algorithms with respect to K[s][t], respectively.

Remark 5 The LPF and RPF algorithms terminate after
finitely many steps. In fact, the complexity is predictable
after given the degree of polynomials in F . For a given F ,
the factorization is unique up to a unimodular matrix.

3.2 Hermite form
Given a univariate or bivariate m× l full-rank polynomial

matrix F , m > l, we are interested in finding its Hermite
form with respect to K[t] or K[s][t]. The Hermite form [10,

1Note that a∗i (s, t) is monic and degt a∗i (s, t) = degt ai(s, t).

13] is a matrix (aij(t)) or (aij(s, t)) with aij ≡ 0, j < i, and
degt ajj > degt aij , j > i.

[10] and [13] presented algorithms to compute the Hermite
form of a full-rank matrix in univariate case and bivariate
case respectively. For univariate case, based on Gaussian
elimination technique and Euclid division algorithm, one can
find a unimodular matrix U such that H = UF is the Her-
mite form of F . For bivariate case, the algorithm consists of
two steps. First, we work over K(s)[t] to find U with entries

in K(s)[t] such that H̃ = ŨF is a Hermite form with respect

to K(s)[t], where det Ũ ∈ K(s). Second, let pi(s, t) be the

least common multiple of the denominators in row i of Ũ ,
and D = diag(p1(s, t), . . . , pm(s, t)), H = DH̃ and U = DŨ .
Then it follows that H = UF ∈ K[s, t] is the Hermite form
of F with respect to K[s][t], and det U ∈ K[s]. It is obvi-
ous that the two steps can be merged into one by using the
pseudo division algorithm for two polynomials.

3.3 GCD extraction algorithm
In [13], a GCD extraction algorithm of bivariate polyno-

mial matrices is presented. We describe it as follows.

Algorithm 2 (GCRD extraction algorithm).

Input A, B: two bivariate polynomial matrices A(s, t)
and B(s, t) with the same number of columns, such that
(AT , BT ) is of full rank.
Output D: GCRD of A and B.
Step

1. Use the RPF algorithm with respect to K[s][t] on the
right side of (AT , BT )T , i.e., find Ā, B̄ and R0 such
that �

A
B

�
=

�
Ā
B̄

�
R0,

where det R0 ∈ K[s].

2. Find U with entries in K[s, t] and det U ∈ K[s] to get
the Hermite form of (ĀT , B̄T )T , i.e.,

U

�
Ā
B̄

�
=

�
R
0

�
.

3. Use the LPF algorithm to R,

R = R̄R∗.

Then D = R∗R0 is the GCRD of A and B.
Remark 6 To save some unnecessary primitive factoriza-
tion in Step 3, we make a little modification to the above
algorithm. In the computation of the Hermite form of a
bivariate polynomial matrix, after we get H̃ and Ũ , let
qi(s, t) be the least common multiple of the denominators

in row i of H̃, then qi(s, t) is a factor of pi(s, t). Let D̄ =

diag(q1(s, t), . . . , qm(s, t)) and H̄ = D̄H̃, and take H̄ in place
of H in Step 3 of the GCD extraction algorithm.

4. COMPUTING µ-BASES OF A
RATIONAL CURVE

Suppose we are given a planar rational curve

P(t) := (a(t), b(t), c(t)),

where a, b, c ∈ K[t] and gcd(a, b, c) = 1. Computing a
µ-basis of P(t) is equivalent to computing a basis of the
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syzygy module Syz(a, b, c) with lowest possible degree. We
first compute a basis of Syz(a, b, c) based on the proof of
Corollary 3.2.

Set D̃ = (c), Ñ = (−a,−b). Construct a matrix P and
compute its MFD:

P = D̃−1Ñ = AB−1.

where A = (−a,−b) and B = diag(c, c). To compute a
generating matrix of Syz(a, b, c), we need to find the GCRD
of A and B.

The GCRD extraction algorithm in Section 3.3 is de-
scribed for bivariate polynomial matrices, but it works also
for univariate case with minor modifications. In the univari-
ate case, we do not need to do the primitive factorization in
Steps 1 and 3 of Algorithm 2. The key step is to find the
Hermite form of matrix

�
A
B

�
=

0
@ −a −b

c 0
0 c

1
A .

Suppose gcd(−a, c) = d, then there exist λ1, λ2 ∈ K[t] such
that λ1(−a) + λ2c = d. Assume gcd(−bc/d, c) = e, then
there exist µ1, µ2 ∈ K[t] such that µ1(−bc/d) + µ2c = e.
Finally suppose the quotient and remainder of λ1b divided
by e are k and r. Denote the following matrix as D,0
@ 1 −k 0

0 1 0
0 0 1

1
A
0
@ 1 0 0

0 µ1 µ2

0 c/e bc/(de)

1
A
0
@ λ1 λ2 0

c/d a/d 0
0 0 1

1
A

Then

D

0
@ −a −b

c 0
0 c

1
A =

0
@ d r

0 e
0 0

1
A

is the Hermite form. Hence the GCRD of A and B is

R =

�
d r
0 e

�
,

and the generating matrix of Syz(a, b, c) is

M =

�
B
A

�
R−1 =

0
@ e −r

0 d
−a/d (ar − bd)/c

1
A , (1)

since c = de. The two columns p̃(t), q̃(t) of matrix M are a
basis of the syzygy module Syz(a, b, c).

Note that the basis obtained so far is possibly of higher
degree than a µ-basis. To get the µ-basis, we need re-
duce the degree of p̃(t), q̃(t). Suppose n2 := deg(q̃(t)) ≥
n1 := deg(p̃(t)) and n1 + n2 > n. Then LCV(p̃(t)) and
LCV(q̃(t)) must be linearly dependent (otherwise p̃(t) ×
q̃(t) 6= k(a, b, c)), that is, there exists some constant α such
that LCV(q̃(t)) = α LCV(p̃(t)). Update q̃(t) by q̃(t) :=
q̃(t) − αtn2−n1 p̃(t). This process can be continued until

deg(p̃(t)) + deg(q̃(t)) = n, i.e., ˜p(t), ˜q(t) are a µ-basis. Let
us use an example to illustrate the process.

Example 1 Suppose a rational curve is parametrized by

P(t) = (2t2 + 4t + 5, 3t2 + t + 4, t2 + 2t + 3).

Then

λ1(t) = 1, λ2(t) = 2, d = 1,

e(t) = t2 + 2t + 3, r(t) = 5(t + 1),

and

M =

0
@ t2 + 2t + 3 −5(t + 1)

0 1
−2t2 − 4t− 5 10t + 7

1
A .

The column-reduced form of M is

M ′ =

0
@ 5(t + 3) −5(t + 1)

t 1
−13t− 25 10t + 7

1
A .

The two columns of M ′ are a µ-basis of the rational curve
(a(t), b(t), c(t)).

The main computational costs of the µ-basis algorithm lie
in computing GCDs of univariate polynomials using Euclid-
ean algorithm and column-reduction of matrix M . One can
easily prove that the computational complexity is less than
33
4

n2 + O(n) multiplications, which is faster than fastest
known algorithm [3].

5. COMPUTING µ-BASES OF A
RATIONAL SURFACE

To compute a µ-basis of a rational surface, we just follow
what we did to compute a µ-basis of a rational curve. Here
the main computational complexity comes from the GCRD
extraction algorithm. However, since Steps 1 and 3 of Al-
gorithm 2 can’t be omitted, it is difficult to write down the
generating matrix of the syzygy module explicitly.

Given a rational parametric surface in homogeneous form

P(s, t) := (a(s, t), b(s, t), c(s, t), d(s, t)),

where a, b, c, d ∈ K[s, t] and gcd(a, b, c, d) = 1. A µ-basis
of rational surface P(s, t) is a basis of the syzygy module
Syz(a, b, c, d).

Set D̃ = (d), Ñ = (−a,−b,−c). Construct a matrix P
and compute its MFD:

P = D̃−1Ñ = (−a/d,−b/d,−c/d) = AB−1,

where A = (−a,−b,−c) and B = diag(d, d, d). Suppose the
GCRD of A and B is G, i.e., there exist Ā, B̄ ∈ K[s, t] such
that

A = ĀG, B = B̄G,

where Ā and B̄ are right coprime. Then (B̄T , ĀT )T is the
generating matrix of Syz(a, b, c, d), and the three columns
p,q, r of the generating matrix are a µ-basis of the rational
surface P(s, t).

Similar to curve case, the µ-basis obtained may not be a
minimal µ-basis. To lower the degree, we proceed as follows.

Rewrite the µ-basis as

p =

dpX
i=0

pi(s)t
i,q =

dqX
i=0

qi(s)t
i, r =

drX
i=0

ri(s)t
i,

where pi(s), qi(s) and ri(s) in K4[s]. Without loss of gen-
erality, we assume dp > dq > dr.

Let mp, mq, mr ∈ K4[s] be the leading coefficient vectors
of p, q and r with respect to t, respectively, i.e., mp(s) =
pdp(s), etc. From the recovery equation of Remark 3 in
Section 2, it is easy to see that dp +dq +dr = degt(P(s, t)) if
and only if mp, mq and mr are K[s]-linearly independent.

Now if mp, mq and mr are K[s]-linearly independent,
then dp +dq +dr reaches minimum and the process is termi-
nated. Otherwise, consider the syzygy module Syz(mp, mq,
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mr), the basis of which can be found based on the results
in [12]. Find a vector α := (αp, αq, αr) in the basis of the
syzygy module Syz(mp, mq, mr) such that one of αp, αq, αr

is a non-zero constant, if possible. If not, terminate the
process. Set βp = αp, βq = αqs

dp−dq , βr = αrs
dp−dr and

u = βpp + βqq + βrr. If αp is a non-zero constant and
degs(u) < degs(p), update p by u. Otherwise if αq is a
non-zero constant, and dp = dq and degs(u) < degs(q), up-
date q by u. Otherwise if αr is a non-zero constant, and
dp = dq = dr and degs(u) < degs(r), update r by u. This
process can be continued until dp + dq + dr = degt(P(s, t))
or one of the above conditions fails to hold.

The next step is to reduce the degree of p,q, and r with
respect to s while keeping the degree of p,q, and r with
respect to t unchanged. This can be done by applying the
vector elimination technique in [3] to p,q, and r.

We should note that, while the above process generally re-
duces the degree of a µ-basis, it doesn’t necessarily produce
a minimal µ-basis.

Now we present some examples to demonstrate the de-
tailed process of the algorithm.

Example 2 The Steiner surface is defined by (a, b, c, d) =
(2st, 2t, 2s, s2 + t2 + 1). The matrices A and B are then

�
A
B

�
=

0
BB@

−2st −2t −2s
s2 + t2 + 1 0 0

0 s2 + t2 + 1 0
0 0 s2 + t2 + 1

1
CCA .

The content of the GCD of all the minors of order 3 with
respect to K[s][t] is 1, so we skip Step 1 in the GCRD ex-
traction algorithm, i.e., R0 = I3.

In Step 2 of the GCRD extraction algorithm, we make use
of the discussion in Remark 6 of Section 3.3, and obtain

R =

0
@ (s2 + 1)s s2 + 1 −st

0 s2 + t2 + 1 0
0 0 s2 + t2 + 1

1
A ,

U =

0
BB@

t/2 s 1 0
0 0 1 0
0 0 0 1

s2+t2+1
2s

t t
s

1

1
CCA .

Here U ∈ K(s, t), but /∈ K[s, t]. Since det(R) = (s2 +
1)s(s2 + t2 + 1)2, its irreducible factor list of the content
with respect to t is s2 + 1, s. Applying the LPF algorithm
in Algorithm 1, we get

R̄−1 =

0
@ −

t2+1
s

1
s

0
1 0 0

− st
s2+1

0 1
s2+1

1
A ,

R∗ =

0
@ −(t2 + 1)(s2 + 1) −st2 t(t2 + 1)

(s2 + 1)s s2 + 1 −st
−s2t −st t2 + 1

1
A .

Then the GCRD of A and B is R∗R0 = R∗. Therefore the
generating matrix of Syz(a, b, c, d) is

M =

�
B
A

�
(R∗)−1 =

0
BB@
−1 0 t
s t2 + 1 0
0 st s2 + 1
0 −2t −2s

1
CCA .

The three columns of M gives a µ-basis of the Steiner sur-
face. One can show that it is a minimal µ-basis.

Example 3 Given a bi-quadratic surface defined by

a(s, t) = t2 + st + 2s2 − 2s2t,

b(s, t) = t2 + 2st + st2 + 2s2 − s2t + 2s2t2,

c(s, t) = −t2 + st + 2st2 + 2s2 − s2t− 2s2t2,

d(s, t) = 2st− 2st2 − 2s2t− s2t2.

The content of the GCD of all the major minors of

�
A
B

�
=

0
BB@
−a −b −c
d 0 0
0 d 0
0 0 d

1
CCA

with respect to K[s][t] is s2. Then the irreducible factor list
is {s, s}.

In Step 1 of GCRD extraction algorithm, one can compute

R0 =

0
@ 1 1 −1

0 s 0
0 0 s

1
A ,

Ā =

0
@ 2s2t− 2s2 − st− t2

−t(2st + s + t + 1)
2st2 + 3st− 4s− 2t2 − 2t

1
A

T

,

B̄ = t(st + 2s + 2t− 2)

0
@ −s 1 −1

0 −1 0
0 0 −1

1
A .

After Step 2, it follows that

R =

0
@ 2s(3s4 + 5s3 + s2 − 2s + 2) α(s, t) β(s, t)

0 γ(s, t) 0
0 0 γ(s, t)

1
A ,

where

α(s, t) = −(s + 2)(3s2 − 5s− 4)st,

β(s, t) = 12s4 + 20s3 + 4s2 − 8s + 8

+ 5s4t + 4s3t− 4s2t + 12st− 8t,

γ(s, t) = t(2s + st + 2t− 2).

The results of the rest steps are omitted since they are a
little clumsy to write down. Finally, we obtain a µ-basis for
the biquadratic surface as follows:
p = 1

35412
·

0
BBBBBBBBB@

30440 ts4 + 36528 s4 + 56037 s3t + 98902 s3 + 16316 s2t
+ 93930 s2 + 52004 st + 9410 s + 35412

−35412,

−2 s
�
18264 s3 + 49451 s2 + 46965 s + 4705

�
,

12176 s4 + 18762 s3 + 30440 s2t− 11887 s2 − 4843 st
+ 35412 s + 26002 t + 17706

1
CCCCCCCCCA
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q = 1
256176

·

0
BBBBBBBBBBBBBBBBB@

−46308 st− 74337 t2s4 − 96066 ts4 − 216726 s2t
− 209666 s3t + 59836 s2t2 − 40826 s3t2 − 311720 st2

+ 92216 s + 100316 t− 36272 + 21680 s2 − 54752 s3

− 22872 s4,

4
�
−4534 + 6993 s + 9703 s2 + 2859 s3

�
(2 s + st + 2 t− 2) ,

32022 t
�
3 s4 + 5 s3 + s2 − 2 s + 2

�
,

−20586 ts4 + 22872 s4 + 55203 s3t + 73812 s3

− 74337 s2t2 + 226126 s2t + 11240 s2 + 107848 st2

− 68094 st− 118252 s− 155860 t2 − 82180 t− 18136

1
CCCCCCCCCCCCCCCCCA

r =
1

6

0
BBBBBBBBB@

�
6 s4 + 10 s3 + 2 s2 − 4 s + 4 + 5 ts4 + 4 ts3

−4 ts2 + 12 ts− 8 t
�
s,

0,

−2 s
�
3 s4 + 5 s3 + s2 − 2 s + 2

�
,

2 s5 + s4 + 5 s3t− 4 s3 − 6 s2t
+ 10 s2 + 8 st− 4 t

1
CCCCCCCCCA

Now we apply degree reduction algorithm to reduce the
degree of the µ-basis. The new µ-basis is shown below.
p′ = 1

236661622380753
·

0
BBBBBBBBBBBBBBBBBBBBB@

−300729067167523 st + 56467802265703 s2t
+ 203543640533634 s + 228386226979701 t
− 196295646522670 s2 − 140869867499516,

−279870932485122 s + 90277583448339 st
− 125135373778758 t + 140869867499516
+ 48465134115412 s2 − 97142080550445 s2t,

−58285248330267 s2t + 81366332623128 st
+ 103250853200943 t + 147830512407258 s2

+ 76327291951488 s,

−40462746679845 st− 77713664440356 s2t
− 207436107658841 s− 105225741859592 t
− 811703353674 s2 − 70434933749758

1
CCCCCCCCCCCCCCCCCCCCCA

q′ = 1
56167843795

·

0
BBBBBBBBB@

326160947200 + 162042688768 s2t + 770629365248 s2

+ 324085377536 st− 323344102656 s,

−326160947200− 360111336704 s2 + 487462361088 s,

−410518028544 s2 − 164118258432 s,

163080473600− 223271993856 s2

+ 82429766656 s + 162042688768 t

1
CCCCCCCCCA

r′ = 1
2039538

·

0
BBBBB@

23600164− 47200328 s3 + 64900451 s2 − 23600164 s,

−23600164 + 47200328 s + 29500205 s3 − 35400246 s2,

17700123 s3 − 29500205 s2 − 23600164 s,

11800082 + 23600164 s3 + 5900041 s2

1
CCCCCA

Example 4 Consider the surface parameterized by

a(s, t) = −3s2t2 + 5s2t− 5t2 − 4st + 5,

b(s, t) = −3s2t2 + 3s2t + s2 + st2 − s− 2t2 − 5st + 1,

c(s, t) = −5s2t2 + 6s2t + 2st− t2 − t− 5,

d(s, t) = −4s2t2 + 3s2t− st + 6t2 − t + 1.

If we use the computer algebra system Singular or the pack-
age CASA in Maple to compute a generator of syzygy mod-
ule Syz(a, b, c, d), then we get four or five vector polynomials
(depending on different orderings), and it is very difficult to
find proper combinations of them to form a µ-basis.

By our algorithm, we can easily compute a µ-basis. The
result is omitted.

6. CONCLUSION AND FUTURE WORKS
In this paper, we apply the theory of polynomial matri-

ces to compute µ-bases of rational curves and surfaces. The
algorithm is based on several important techniques in the
theory of polynomial matrices, such as primitive factoriza-
tion, Hermite form and GCD extraction. This is the only
known algorithm to compute the µ-bases of general rational
surfaces, and it is superior than any existing algorithms for
computing the µ-bases of rational curves.

In the future, µ-bases of a spatial rational parametric
curve will be considered. It is expected that the implicit
equation of a space curve can be computed from a µ-bases.
On the other hand, finding an efficient method to compute
a minimal µ-basis of a rational surface and the complexity
analyzing of the algorithm are problems worthy of further
research.
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