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Abstract In computer-aided geo-
metric design and computer graphics,
fitting point clouds with a smooth
curve (known as curve recon-
struction) is a widely investigated
problem. In this paper, we propose
an active model to solve the curve
reconstruction problem, where the
point clouds are approximated by
an implicit B-spline curve, i.e., the
zero set of a bivariate tensor-product
B-spline function. We minimize
the geometric distance between the
point clouds and the implicit B-
spline curve and an energy term (or
smooth term) which helps to extrude
the possible extra branches of the

implicit curve. In each step of the
iteration, the trust region algorithm
in optimization theory is applied to
solve the corresponding minimization
problem. We also discuss the proper
choice of the initial shape of the
approximation curve. Examples are
provided to illustrate the effectiveness
and robustness of our algorithm. The
examples show that the proposed al-
gorithm is capable of handling point
clouds with complicated topologies.

Keywords Curve reconstruction ·
Active implicit B-spline curve · Trust
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1 Introduction

With the development of modern industry, higher surface
quality and aesthetic requirements of CAM products are
being increasingly considered in many industries, such
as jewelry and automobile industries. Free-form curves
and surfaces are used in such products. However, there
are difficulties in designing 3D free-form surfaces on 2D
computer screens using traditional CAD systems. Hence,
physical media such as clay models are first designed.
Meanwhile, some existing models and products with com-
plex free-form surfaces need to be reproduced, for in-
stance, some valuable antiques, models of human brains,
bones, teeth, etc., need to be precisely reconstructed for
research or medical treatment. The task of converting a
3D prototype object into a computer model for subsequent
CAD/CAM processes, is then left to the computer system
and specialized software.

During the fulfillment of the task, as the first step,
point clouds are generated with the coordinates of each
point captured from the surfaces of the existing models
and products. Some of these data, especially, the image
contours from the medical field, show curve shapes need
to be fitted with smooth curves. Here the data points
are unorganized, non-uniformly distributed, and possibly
with noise. The corresponding problem is called curve
reconstruction, where the curves are usually represented
in their parametric forms or implicit forms. Curve recon-
struction has been widely studied in computer graphics
and geometric modeling in the past decade. It has various
applications in CAD/CAM, computer vision, and many
other disciplines. A main approach to curve reconstruction
is based on the least-square fitting with a regularization
term that represents the fairness of the final result. Let
C(t) be a parametric curve, which is a linear combina-
tion of some basis functions, such as the B-spline bases,
the radial-basis functions, etc. Then, the approximation
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curve is computed by minimizing the objective function
R = dist({Pi}M

i=1, C(t))+wTs, where {Pi}M
i=1 are given

data points, Ts is the regulation term and w is a weight.
In general, both the first term and the second term are
the quadratic functions in the unknown control points C j .
Hence minimization of R leads to the solution of a lin-
ear system of equations. The solution depends largely on
the proper parameterization of the data set. However, it
is a difficult problem to estimate a proper parameter value
ti corresponding to a point Pi of the unorganized data,
though some data parameterization techniques have been
proposed [11, 15].

Another approach in parametric curve reconstruction
is based on the active contour models, also called snakes,
which are proposed by Kass et al. [13]. This technique
is originally introduced for detecting image contours, and
later is extended to other areas such as computer vi-
sion [2]. Recently, Pottmann et al. [18] applied the tech-
nique to curve approximation, and they proposed an active
parametric B-spline model to fit unorganized points [19].
Wang et al. [22] explore the above idea more thoroughly
and improve the algorithm dramatically.

One problem with parametric curve fitting methods is
that it is difficult to handle data sets with complicated
topology. Furthermore, as we addressed earlier, parame-
terization is always a non-trivial problem in curve fitting.
To overcome these difficulties, implicit representations for
curves/surfaces are introduced.

The common approach in implicit curve/surface re-
construction uses a combination of some smooth basis
functions, say radial basis functions, to find a scalar func-
tion such that all data points are close to an iso-contour
of that scalar function [3, 16, 17, 21]. In [6] polyharmonic
radial-basis functions and multi-pole methods are intro-
duced, enabling the authors to model large data sets by
a single radial basis function. The signed distance func-
tion has been used to reconstruct and represent an implicit
curve/surface on a rectangular grid with the signs to dis-
tinguish inside and outside [1, 4, 10]. Similar ideas have
been applied to shape reconstruction from range data and
image fusion [7, 9]. Zhao et. al. [24, 25] applied the level
set method in surface reconstruction by solving a PDE
equation numerically; Jüttler [12] described a technique
for fitting implicitly defined algebraic spline curves and
surfaces to scattered data by simultaneously approximat-
ing points and associated normal vectors which are esti-
mated from the given data. In all these methods, either
additional information such as normals, signed distance
functions has to be provided, or the algorithm is inefficient
and/or not robust.

Hence, a good curve reconstruction algorithm should
be able to deal with data sets with complicated topology as
well as with noise and non-uniformity, without requiring
some additional information, which is not easy to obtain
in some circumstances. The final result should be a rea-
sonable shape with good approximation to the data set. In

this paper, we present an active implicit B-spline model,
similar to the active parametric B-spline model proposed
by Pottmann [19], to solve the curve reconstruction prob-
lem. In this model, we start with some properly specified
initial shape for the active implicit B-spline curve, then we
iteratively modify the active curve such that it converges
to the target shape of the data points by solving some op-
timization problem. The algorithm stops after the implicit
curve well approximates the data set. In this model, only
the positions of data points are taken as input.

The rest of the paper is organized as follows. In Sect. 2,
the implicit B-spline curve is introduced. In Sect. 3, we
study the local approximation of the geometric distance
function and setup the building block for the active model.
In Sect. 4, the active model is proposed, and the recon-
struction scheme with active implicit B-spline curves is
outlined. The trust region algorithm is applied to solve
the corresponding optimization problem in the reconstruc-
tion. In Sect. 5, some examples are implemented and high-
quality reconstruction curves are illustrated. Finally, in
Sect. 6, we conclude the paper with some problems for
future research.

2 Algebraic tensor-product B-spline curves

Let f(x, y) (or f(P)) be a bivariate tensor-product B-
spline function of bi-degree (l, l′) defined over some do-
main Ω:

f(x, y) =
∑

r,s

crs Mr(x)Ns(y) , (1)

where {Mr(x)}m
r=1 and {Ns(y)}n

s=1 denote the B-spline ba-
sis functions of degree l and l′ with some given knot se-
quences. The zero set of the function f is defined by

V( f) = {(x, y) ∈ Ω ⊂R2 | f(x, y) = 0} , (2)

and it is called an implicit B-spline curve. For a fixed
set of basis functions, the implicit B-spline curve is de-
termined by the coefficients {crs}m×n (called the control
coefficients). For simplicity of notations, the control coef-
ficients and the basis functions are gathered (in a suitable
ordering) into two column vectors, denoted by f and q(P)
(or simply q), respectively. Using the notations, we can
write f(P) as

f(P) = q(P)τ f = qτ f , (3)

and the gradient of f(P) as

∇ f(P) =
(

∂ f

∂x
(P),

∂ f

∂y
(P)

)τ

=
(

uτ f
vτ f

)
, (4)

where u = ∂q
∂x and v = ∂q

∂y .
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The curve reconstruction problem is to find a B-spline
function f such that V( f) gives a good approximation to
the given point clouds. We require that the geometric dis-
tance between the implicit curve V( f) and the point clouds
be as small as possible. On the other hand, we hope the
implicit curve has a good “quality”, such as continuity
and fairness. In this paper, we impose the condition that
the implicit curve has a minimal simplified thin-plate en-
ergy [5]:

EngT( f ) =
∫∫

Ω

(
f 2
xx +2 f 2

xy + f 2
yy

)
dxdy = f τ Hf . (5)

It is quadratic in the coefficient vector f , and the symmet-
rical matrix H can be computed by a Gauss integral.

3 Local approximation of geometric distance

The active model of the implicit curve reconstruction we
propose in the next section heavily relies on a local ap-
proximation of the geometric distance of a given data
point to an active implicit curve.

Let {Pi}M
i=1 be a collection of unorganized data points.

At first, one needs to define a meaningful metric

Err( f ) = Err({Pi}M
i=1, V( f)) , (6)

as the error function of the data set {Pi}M
i=1 to an implicit

curve V( f). Generally, the geometric distance is an opti-
mal choice for this metric. For every point P in the data
set, the geometric distance d(P, V( f)) is the Euclidean
distance from P to the implicit curve V( f):

d(P, V( f)) = min
Y∈V( f)

‖P −Y‖ . (7)

Suppose X ∈ V( f) is the nearest point (foot-point) on the
implicit curve to P. It then satisfies the following precon-
ditions:
⎧
⎨

⎩

f(X) = 0 ,

(P − X)τ
(

0 1
−1 0

)
∇ f(X) = 0 .

(8)

The error function is defined as the squared sum of the
geometric distances:

Errg( f ) =
M∑

i=1

d2(Pi, V( f)) . (9)

An ideal algorithm to curve reconstruction would min-
imize the geometric distance error Eq. 9. Unfortunately,
this metric results in an intractable minimization problem
whose solution cannot be expressed analytically in closed

Fig. 1. Estimation of foot-point on an active implicit curve

form because of the non-linearity of V( f). To avoid the
difficulty of numerical minimization, we consider a local
approximation of the geometric distance d(P, V( f)), with
the unknown coefficients vector f being the variables.

Suppose V( f 0) is an implicit B-spline curve computed
in some iterative step, and P is a point in the point clouds.
Let f 0 denote the coefficient vector of f 0 and X0 = X( f 0)
be the foot-point of P. The foot-point X0 and the geomet-
ric distance d(P, V( f 0)) = ‖P − X0‖ can be computed
numerically using the technique called the nearpoint pro-
cedure [8].

After one iteration, suppose the control coefficients
vector is changed to f = f 0 + g. We attempt to estimate
the new foot-point X( f) on the implicit curve V( f) (see
Fig. 1). It is easy to see that

X( f) ≈ X( f 0)+ L[ f 0]τ g = X0 +∆X , (10)

where L[ f 0] = (lx[ f 0], ly[ f 0]) is the coefficients of the
linear part in the Taylor expansion of X( f) at f0.

We expand Eq. 8 at f 0 and obtain

[∇ f 0(X0)+∇g(X0)]τ∆X = −g(X0), (11)[
(P − X0)τ

(
0 1

−1 0

)(∇2 f 0(X0)+∇2g(X0)
)

+ (∇ f 0(X0)+∇g(X0)
)τ

(
0 1

−1 0

)]
∆X

= − (P − X0)τ
(

0 1
−1 0

)
∇g(X0) . (12)

Solving the above linear system of equations about ∆X
gives

∆X = L[ f 0]τ g =
(

lx[ f 0]τ g
ly[ f 0]τ g

)
. (13)

Denote

P − X0 = (a1, a2)
τ , ∇ f 0(X0) = (b1, b2)

τ

∇2 f 0(X0) =
(

c11 c12
c21 c22

)
,
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g(X0) = qτ g, ∇g(X0) = (uτ g, vτg)τ ,

∇2g(X0) =
(

Rτ g Sτ g
Sτ g Tτ g

)
,

det[ f 0] = det
(

b1 b2
λ1 λ2

)
,

where λ1 = a1c21 −a2c11 −b2, λ2 = a1c22 −a2c12 −b1. It
follows that
⎧
⎪⎨

⎪⎩

lx[ f 0] = b2(a1v−a2u)− (a1c22 −a2c12 +b1)q
det[ f 0]

ly[ f 0] = b1(a2u−a1v)+ (a1c21 −a2c11 −b2)q
det[ f 0] .

(14)

Hence the local approximation of the squared geomet-
ric distance d2(P, V( f)) is a quadratic function in g:

F(g; P, f 0)

= ‖P − X0 − L[ f 0]τ g‖2

= ‖P − X0‖2 −2(P − X0)τ L[ f 0]τ g +‖L[ f 0]τ g‖2 .
(15)

This is a building block for our new technique of implicit
curve reconstruction presented in the next section.

4 Active model of implicit curve reconstruction

In this section, we propose a model for curve reconstruc-
tion with an implicit tensor-product B-spline curve V( f).
The order and the knot vectors of the B-spline basis func-
tions are specified by users. Then the curve reconstruction
problem can be formulated in the following optimization
problem:

min R( f ) =
M∑

i=1

d2(Pi, V( f))+wEngT( f ) . (16)

The first part in Eq. 16 is the geometric distance error
from the data points to the implicit curve. The second
part is a fairing term, and is applied to enforce the fair-
ness of the final approximating curve. As we have stated
in Sect. 3, it is a difficult task to estimate the geometric
distance d(Pi, V( f)) in an explicit form. An iterative cor-
rection procedure is proposed to overcome the difficulty
based on the local approximation of geometric distance
function.

4.1 An active model

The active implicit curve we are using is an algebraic
spline curve, which is governed by its coefficients vector.

The key idea to the active model is iteratively correcting
the coefficient vector f with the help of the local ap-
proximation of the geometric distance function, so that
the active implicit curve V( f) deforms towards the target
shape. In each step, we solve a minimization subproblem,
which ensures that the geometric distance error function
Errg({Pi}M

i=1, V( f)) decreases quickly.
Our active model of the implicit curve reconstruction is

outlined in the following steps:

1. Initialize the active implicit B-spline curve V( f 0).
Generally, we require that V( f 0) encloses the input
data points {Pi}M

i=1.
2. Repeatedly apply the following steps (a–c) until the

approximation error reaches a pre-defined threshold or
some stopping criterion is satisfied:
(a) With the current coefficient vector f k, compute, for

i = 1, . . . , M, the foot-point Xk
i = Xi( f k) of Pi to

V( f k) and Li[ f k] based on Eq. 14.
(b) Compute the displacement vector g = gk for the

coefficient vector f k by minimizing the function:

Q(k)(g) =
∑

i

F(g; Pi, f k)+w( f k + g)τ H( f k + g).

(c) Set f k+1 = f k + gk.
3. Output the active implicit curve V( f k+1) as the final

approximation to the target shape model.

Figure 2 shows one step in the active model of implicit
curve reconstruction.

It should be noted that Q(k)(g) is only a local quadratic
approximation of the original function R( f k +g). In a cer-
tain iteration step, gk may not necessarily make the ob-
jective function decrease. We will apply the trust region
technique to obtain global convergence in the next section.

Fig. 2. One step in the active implicit curve reconstruction
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4.2 Trust region algorithms

Trust region algorithms in optimization theory are a group
of algorithms for ensuring global convergence while re-
taining fast local convergence. Many different versions of
trust region algorithms have been proposed and applied
to minimization problem in practice [20]. In all these ver-
sions, we first choose a trial step length ek and then se-
lect the best step of this length by solving the following
quadratic problem:

min Q(k)(g)

s.t. gτ g� e2
k .

(17)

The trial step length ek is ensured an estimation of how far
we trust the quadratic model, and is called a trust radius.

In this section, we will consider the curve reconstruc-
tion problem Eq. 16 by utilizing the trust region technique.
Denote ri( f ) = ‖Pi − Xi( f)‖ and r( f ) = (r1( f ),· · · ,
rM( f ))τ . We reformulate the problem of the implicit curve
reconstruction as a non-linear optimization problem:

min R( f ) = 1

2

[
r( f )τr( f )+wEngT( f )

]
. (18)

At the kth iteration, if f k does not satisfy the Kunh–
Tucker conditions, we calculate a trail step by solving the
trust-region subproblem:

min Q(k)(g) = R( f k)+bτ
k g + 1

2
gτ Akg

s.t. gτ g� e2
k .

(19)

Here ek > 0 is a trust radius at the kth iteration, and

bk = −
M∑

i=1

Li[ f k](Pi − Xk
i ) , (20)

Ak =
M∑

i=1

Li[ f k]Li[ f k]τ +wH . (21)

From the principles of the optimal condition [14], the
trust region subproblem Eq. 19 is equivalent to the linear
system of equations:

(Ak +µk I)g = −bk , (22)

with some µk � 0 and Ak +µk I a positive definite matrix.
One can easily solve gk from the above equations.

Let Dk be the “predicted change”:

Dk = Q(k)(0)− Q(k)(gk) = µk‖gk‖2 + 1

2
gkτ

Akgk . (23)

Then we calculate the ratio

ρk = R( f k)− R( f k + gk)

Dk
(24)

of the actual change to the predicted change in the ob-
jective function R( f ). We set f k+1 = f k + gk if ρk > 0;
otherwise f k+1 = f k. It means that the trial step is ac-
ceptable whenever the objective function is reduced. Then
a vector bk+1 and a symmetric matrix Ak+1 are defined be-
fore finishing the kth iteration.

The choice of the next trust radius ek+1 depends on
ek and ρk. From Eq. 22, we can give a mode to select the
trial step by changing parameter µk adaptively, which is
equivalent to choosing ek.

A formal description of our algorithm for the curve
reconstruction based on the trust region technique is as
follows:

1. Initialize the coefficient vector f 0 ∈ RN , and compute
b0 and A0. Set µ0 > µ > 0 and 0 < β1 < β2 < 1, and
choose a threshold ε > 0. Let k := 0.

2. If ‖bk‖� ε, terminate the algorithm. Otherwise solve
the linear system of equations Eq. 22 to obtain gk.

3. Calculate the ratio ρk by Eq. 24 and set

f k+1 =
{

f k + gk, if ρk > 0,

f k, otherwise .

and

µk+1 =
⎧
⎨

⎩

4µk, if ρk < β1,

max( 1
2µk, µ), if ρk > β2,

µk, otherwise .

3. Generate bk+1, Ak+1 according to Eq. 20 and Eq. 21.
Set k := k +1 and go to Step 2.

The constant µ0, µ and βi(i = 1, 2) can be chosen by
users. The typical values are µ0 = 1, µ = 10−5 and β1 =
0.25, β2 = 0.75.

According to the convergence analysis of the trust re-
gion algorithms in [20], the above algorithm could reach
a local optimal solution corresponding to the minimization
problem, and the resulting curve may have a large geo-
metric error from the data set. In this case, knot insertion
algorithm has to be adaptively applied in the reconstruc-
tion process. We will explore this issue in a forthcoming
paper.

5 Implementation and examples

In the section, we discuss briefly the initial shape specifi-
cation of the active model and illustrate our new algorithm
for the implicit curve reconstruction with some examples.

5.1 Initialization

Before we implement our algorithm, we first need to
set the knot vectors for the B-spline basis functions. We
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consider a slightly enlarged rectangle, which encloses the
given point clouds. For simplicity, the knots are chosen
uniformly along x and y axes in the rectangle.

As the first step of our algorithm for implicit curve
reconstruction, an initial curve V( f 0) is required. We
present a specification, with little price, of the initial im-
plicit curve by setting the control coefficients to be

Fig. 3. The graph of f 0(x, y) and the initial curve V( f 0) enclosing the target shape

Fig. 4. Example 1: A concave shape

Fig. 5. Example 2: Another concave shape

f 0
j = f 0

(r−1)n+s = crs = r(m −r +1)

m

s(n − s +1)

n
− c0 ,

(25)

where N = mn, j = 1, . . . , N, and the constant c0 is prop-
erly chosen such that the initial active curve V( f 0) en-
closes the target shape (as shown in Fig. 3).
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Fig. 6. Example 3: Rose curve

Fig. 7. Example 4: Chinese knot

In some situations, the convergence ratio depends
heavily on the initial shape. A deeper analysis about the
initial shape specification for the dynamic implicit curve
reconstruction is presented in another paper [23].

5.2 Examples

In this subsection, we implement several examples to il-
lustrate the effect of our implicit curve reconstruction

technique. The results are presented in Figs. 4, 5, 6, 7, 8,
and 9. In all examples, we display the data points and the
initial shape followed by one or two intermediate shapes
and the final shapes. The examples demonstrate several
advantages of our implicit curve reconstruction algorithm.
First, it can easily adapt to data sets with complicate top-
ology and geometry. Second, it can handle data sets with
noise. Finally, the algorithm converges in the most com-
mon circumstances.
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Fig. 8. Example 5: Disconnected target

Fig. 9. Example 6: Data with noise

6 Conclusions and future works

In this paper, an active model for implicit curve recon-
struction is proposed. The implicit curve is represented as
the zero set of a bivariate tensor-product B-spline function,
and the active model is based on a local approximation
of the geometric distance error function. By minimizing
the geometric distance between the point set and the im-
plicit curve and some energy term, a sequence of curves
are generated to approximate the target shape. The trust
region algorithm from optimization theory is applied to
solve the minimization problem. We test many examples,
which show several advantages of our algorithm, such as,
the ability to cope with data sets with complex topology
and geometry, insensible to noises and robustness in most
circumstances.

There are still some problems that need further investi-
gation in the proposed curve reconstruction model.
– Currently, the knot sequences along x and y directions

are chosen to be distributed uniformly. In the future,
we will allow, during the iteration process, knot inser-
tions to produce adaptive curve reconstruction.

– Since we have to compute the foot-point for each point
in the point clouds and a non-linear optimization prob-
lem has to be solved, the proposed algorithm is a little
time-consuming. It is worthwhile to improve the effi-
ciency of the algorithm.

– The current model does not treat the singular points
of the reconstruction curve especially. This may result
in incorrect topology structure near the singular points
(see Fig. 6 for an example). A mechanism should be in-
troduced to force the implicit curve reflect a reasonable
structure around the singular points.

– We will also try to extend the current model to im-
plicit surface reconstruction. Furthermore, it is worth-
while exploring the applications of the implicit tensor-
product B-spline curves and surfaces in geometric
modeling and computer graphics.
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