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Abstract

Planar image processing has been widely investi-
gated for many years. The processing operations
include denoising, edge enhancement, edge detecting,
inpainting, and others. But there exists little work
about processing images on surfaces, since it is
difficult to extend the classic methods to deal with
the problem. In this paper, we study the inpainting
algorithm of images on implicit surfaces based on
the method of energy minimizing and PDE. It’s a
generalization of the inpainting algorithm of planar
images. An intrinsic energy functional is defined over
surfaces. Energy minimization problem is solved by
a numerical method, which needs data extrapolating.
Another contribution of this paper is a theorem on
how to control data extrapolating for processing
images on implicit surfaces. The experiment results
show the efficiency of our method.

Keywords: Image processing, implicit surfaces,
inpainting, energy functionals.

1 Introduction

Planar image processing has been investigated for
many years, and the typical processing operations in-
clude denoising, edge enhancement, edge detecting,
inpainting. Among them, inpainting is an artistic
synonym for image interpolation. It makes use of
computers to repair distorted images automatically

like artists. Usually the distortion of images includes
scratches, block missing, etc. Image inpainting algo-
rithms can be applied to not only information recov-
ery, but also removal of texts and absonant objectives
on photos. Currently there are many inpainting al-
gorithms for planar images. They are mostly based
on variation and PDE. Excellent results are obtained
by these algorithms.

Based on the anisotropic diffusion model [1] pro-
posed by P. Perona and J. Malik, and the energy
minimizing variation model [2] by S. Osher, the ap-
plication of variational principle and PDE to image
processing becomes more and more comprehensive,
including image denoising, image deblurring, image
inpainting, edge enhancing and detecting, and image
decomposition. Usually there are two kinds of im-
age data: gray image and color image (vector-value
image). Through variational method and PDE, re-
searchers proposed many edge preserving denoising
algorithms for gray images [1, 2, 3, 4, 5, 6]. Fur-
thermore, denoising models and algorithms for color
images also appear [7].

Image inpainting problem was first introduced by
M. Bertalmio et al [8] when they developed their
first PDE based model. Afterward T.F. Chan and J.
Shen proposed many efficient models based on varia-
tional principle and PDEs [9, 10, 11, 12, 13, 14, 15].
These models include local inpainting algorithm [9]
which is fastest but can only handle smooth images,
TV inpainting algorithm [13] which can handle not
only smooth images but also discontinuous images



for its edge preserving property, and inpainting al-
gorithms based on Euler’s elastica energy [10, 11].
Image inpainting from multiple views images was
first introduced in [12]. In [15] S. Esedoglu and
J. Shen proposed an inpainting algorithm based on
Mumford-Shah-Euler energy minimization. For this
MSE model, T.F. Chan gave a fast numerical method
based on Level Set Method[19]. Video inpainting was
first studied by M. Bertalmio through Navier-Stokes
equation in [16], then J. Shen proposed an inpaint-
ing model based on BV (Bounded Variation) image
model and Bayes statistical theory in [18]. In [17] J.
Shen gave a general summation of image processing
based on variational principle and PDEs. Inpainting
algorithms for planar images work very well now, but
video inpainting[16, 18] is still a large problem.

All of these works process classical images, that
is, planar images. In computer graphics, sometimes
we will face images on surfaces, such as textures on
surfaces. G. Sapiro and S. Osher proposed a frame-
work of processing of signals on implicit surfaces [20].
Based on this framework, they studied Harmonic
Maps energy of images on surfaces. Through vari-
ational method, the authors obtained corresponding
PDEs. They used these PDEs to denoise images on
implicit surfaces. It’s a generalization from planar
images to images on implicit surfaces. In this paper,
we generalize inpainting algorithm for planar images
to that for images on implicit surfaces. We favor the
generalization of the TV inpainting algorithm for ro-
bustness and computational efficiency. In fact, all
images that can be repaired by local inpainting can
also be repaired by TV inpainting, that is, TV in-
painting can handle more kinds of image data then
local inpainting. On the other hand, models based
on Euler’s elastica energy result in high order PDEs,
and numerical methods for these high order PDEs
are too complex and not very efficient.

In next section, we review some inpainting models
for planar images. The inpainting model for images
on implicit surfaces will be introduced in section 3.
In section 4, the inpainting algorithm and steps with
some examples are given. Finally, we will conclude
the paper in section 5.

2 Inpainting Models for Planar
Images

Planar image processing problems include image de-
noising, deblurring, edge enhancement, detection,
and so on. Image decomposition and image in-
painting appeared recently as a hot research direc-
tion. After development of several decades, there are
many classical methods, such as Fourier analysis and
wavelet analysis, proposed for these operations. In
this paper, we consider processers based on varia-
tional principle and PDEs. To construct this type
of processers, an energy functional should be defined
first. Then, we minimize this functional, and obtain
an Euler-Lagrange equation via variational method.
Finally, the Euler-Lagrange equation is solved by well
developed numerical methods for the corresponding
PDE. It is the key part of this method that an energy
functional should be defined in a reasonable way. For
inpainting of planar images, there are a set of good
works currently. Please refer to [8] by M. Bertalmio
and G. Sapiro, and [9, 10, 11, 12, 13, 14, 15] by T.F.
Chan, and so on, for details. In the following we
review the models based on Harmonic Maps energy
proposed by T.F. Chan, et al.

Consider a planar image f defined in domain €2 C
R?, usually a rectangle domain. D C () is a subregion
in , as shown in Fig. 1. We assume the part of f on
D is distorted. To inpaint missing image data on D,
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Figure 1: A planar domain Q and D C Q

T.F. Chan proposed the following inpainting model
(energy functional):

minBfu, 0] = /

1
Q|Vu|pdf—i- /\D§/(f—u)2df (1)

Q



where

1, (z,y) € Q\D

)\D_)\lD_)\{ O,(l‘,y)ED

Here function 1p is called inpainting mask. T.F.
Chan studied two cases: p = 2(local inpainting) and
p = 1(TV inpainting). This energy minimization
problem is solved by variational method and results
in the corresponding Euler-Lagrange equation. T.F.
Chan and J. Shen proposed two approaches to solve
this equation. The first one is reformulating the equa-
tion into a developing equation by introducing a time
variable and then solving it by difference schemes.
The other method is based on iteration [4, 5].

3 Inpainting Images on Im-

plicit Surfaces

In this section, we present our generalized inpainting
model for images on implicit surfaces. Assume we
have an implicit surface S as the zero level set of
@ :R> = R. ¢ < 0 at inside of S, and ¢ > 0 at
outside of S. An image f = f(z,y, z)|s is observed.
Observation is made by various instruments including
human sensory such as human visual system. Usually
observed data is noisy and the noise is considered
to be a Gaussian. So the observed image f is not
the true image. We assume the true image on S is
u = u(x,y,z)|s and the information of w on D C S
is missing or distorted, as shown in Fig. 2. Now we
want to recover u from observed f, especially repair
the information on D (inpainting).

S

)

Figure 2: A surface S and D C S

Viewing this problem by vision phycology and

Bayes statistics, the objective of inpainting is to ob-
tain a maximum likelihood distribution, so that users
accept it as the most possible “true data”. That is,
inpainting is to maximize the posterior probability
Prob(u|f, D) as follows (MAP):

Prob u. D) - Prob(u
mj}x PI‘Ob(U|fa D) = 2 (£|I’O’b(])[ D)O ( )

(2)

To avoid the distribution construction from image
data, we convert this Bayesian framework to energy
minimization problem. Based on Gibbs-formula from
statistical mechanics (the relation between probabil-
ity and energy):

Prob(u) o exp (—GE[ul),

it is easy to see maximizing Prob(u|f, D) is just min-
imizing the corresponding energy

min Es[u|f, D] = Es[f|u, D] + Es[u] + const. (3)
since f and D are given. In the following we will
define the seemly energy functionals Es[f|u, D] and

E,[u], which are the generalized form from planar
images to images on implicit surfaces.

3.1 Energy Functionals on Implicit
Surfaces

In this section energy functionals on implicit surfaces
will be proposed first. Then through Dirac function,
we relate these functionals to the Gibbs-formula.

These energy functionals are the generalized form
of those used by T.F. Chan, et al. With the method
of computing intrinsic gradient proposed by S. Osher
in [20], we define Harmonic Maps energy functional
on implicit surfaces. Let ¢/ be a vector in 3D space.
Define an operator

=1
<y

®

Pg =1 - =
15112

(4)

When Py operates on a 3D vector, the operated vec-
tor is projected to the plane perpendicular to ¢. So
we can define

Vsu := PgVu (5)



to be the intrinsic gradient of u to the surface .S,
where N is the normal vector of S. Then the Har-
monic Maps energy functional of u on S is as follows:

Es[u]:/S|V5u|pdS (6)

On the assumption of the Gaussian noise, we can
define

Eu[flu, D] = )\D% / (f — u)2ds, (7

S

where Ap is similar to the case of planar images.

Integrating these two parts, we obtain an energy
functional on implicit surface as follows

Eglulf, D] Z/S|V5u|pd5+)\pé/s(f—u)2d5’ (8)

Especially we call the functional Intrinsic Total Vari-
ation energy when p = 1.

Although this energy function is defined on surface
S, we can convert it to the form in Euclidean space
with help of Dirac function §(p). Concretely, we have

Bl f. D)= [ |Pe,VuPa(e)Velds
QCR3

1 -

g [ (- wse)velds
2 QCR3

so according to Gibbs-formula, we obtain the inpaint-

ing model of images on implicit surfaces as follows

min E[ulf, D] :/S|V5u|pdS+)\D%/s(f—u)2dS
(9)

Up to now, we have the energy functional of the
inpainting model. By an projecting operator, we con-
vert the gradient of u to the intrinsic gradient V su, so
our energy functional is intrinsic to the implicit sur-
face S. Nevertheless, the gradient Vu is still needed
when numerical computing. However, we have only
image data on the surface. Data extrapolating solves
this problem perfectly. Before inpainting, we extrap-
olate the image data to a band B C R? around S.

C

Figure 3: A curve and a function defined on it

3.2 Data Extrapolating

In this section our data extrapolating algorithm is
given. The image data defined on implicit surface .S
is extrapolated to a band around S by this algorithm,
which is based on a Hamilton equation proposed by S.
Chen in [22] and applied to fluid dynamics originally.
At first we show an example of curve for visuality.
Assume we have a closed curve C as shown in Fig.
3(a). f is an image (a function essentially) defined
on C. We show this image through the density in-
formation corresponding to it, as shown in Fig. 3(b).
The extrapolated image data is showed in figure Fig.
3(c). We can see that the image data on C is now
extrapolated to a band around C. In this band, the
gradient of the image can be computed.

It is very natural that the extrapolated data had
better keep constant along the normal direction of
the level sets of ¢, that is, Vu - Vi = 0. Here S is
the zero level set of . Taking this into consideration,
we extrapolate the data by a Hamilton equation as
follows

uy + sign(¢)(Vu - Vo) =0, (10)

where sign(¢p) is the sign function of .



This Hamilton equation is ill-posed for most func-
tion . When t — o0, the equation will not arrive a
steady solution. Shocks will appear when ¢ is large
enough indeed. Fortunately we need only a narrow
band to which the data is extrapolated, as shown
in Fig. 3(c) for the case of curve. The band will be
more and more wider as the solution time ¢ grows up.
So we solve the equation just in a short time. The
following theorem describes the relationship between
solution time ¢ and the width of band.

Theorem 1 Under the evolution of equation (10),
function u will be extrapolated along the normal di-
rection of the level sets of @. At t, the function
will be extrapolated to X = {(x,y,2) : o(x,y,2) =
ol (x,y,2)} (outside of S) and Y = {(z,y,2)
o(z,y,2) = ¢ (z,y,2)} (inside of S), where

o (2,9,7) = / V(4 (), 4 (7), 24 (7)) Pl

ot (,y,7) = - / V(e (7),y- (7). = (7))Pdr
(11)

Especially we have an estimation that u will be extrap-
olated to the level sets X = {(x,y,2) : @(x,y,2) =
¢4} (outside of S) and Y = {(z,y,2) : p(z,y,2) =
o' }(inside of S) of p, where

t = min Vo|?t
o+ (967@/7»2)750(967@/@20| #l (12)
ot =— min [Vol|?t

(%,y,2),p(w,y,2) <0

Proof: We just prove the case of the outside of S. The
case of the inside is similar. According to the prop-
erty of Hamilton-Jacobi equation, function u will be
extrapolated along the normal direction of the level
sets of ¢ under the revolution of equation (10) and
the extrapolating velocity is

dr __
_t_(p;n
Yy
at — Py
z
E_(pz

We assume that function u is extrapolated to X =
{(x,y,2) : p(z,y,2) = ¢'(z,y,2)} at time t. Ac-
cording to the illation above, the information of u
on a point (zs,ys,2s) on S will march along a nor-
mal curve C,, from point (zs,ys, 25). Here a “normal

curve” is a curve like this: the starting point of the
curve is on surface S (zero level set of ¢) and the
tangent vector is the normal vector of the level sets
of ¢ anywhere along the curve. Suppose there is an
object on a point on S. Let this object move with
the velocity determined by equation (10), then it will
move along the normal curve determined by the start-
ing point. The object will arrive at a point of X at
time ¢. It is obvious that any point (x,y,z) in X
is on a certain normal curve whose starting point is
(zs,Ys, 2s) € S hypothetically. We have

x=x(t) = [) pudr +
y=y(t) = [ eydr +ys
2= 2(t) = [} p.dr + 2

therefore,

p(2,y,2) = (x(t), y(t), 2(1))

t t t
=@ (xs —|—/ PdT, Ys —|—/ Py dT, Zs +/ <pzd7'>
0 0 0

It is obvious that the function above is a single vari-
able function of ¢ along any normal curve. Marking
it renewedly

o' = o(x,y,2) = p(a(t), y(¢), 2(t))
Differentiating both sides, we obtain
0L = Papu + oypy + 0202 = | Veo(a(t), y(2), (1))
Integrating the equation above and taking it into con-
sideration that we extrapolate the data from the sur-
face S(¢ = 0), the theorem is proved. Since

min Vol?t < ot < max Vol*t
(x,y,z),wx,y,z)zo' plts el s (ac,y,zmo(ac,y,z)zo' ?|
Vo[t <" <—  min VeIt

— max
(z,9,2),¢(z,y,2)<0

equation (12) holds. W

(z,y,2),(z,y,2)<0

Because signed distance function is very important
among presentations of implicit surfaces, we give the
following corollary for this case.

Corollary 1 If ¢ is the signed distance function of
surface S, then u will be extrapolated along the nor-
mal direction of the level sets of ¢ under the rev-
olution of equation (10). At t, u will be extrapo-
lated to the level sets X = {(z,y,2) : p(z,y,2) =



¢} (outside of S) and Y = {(z,y,2) : p(z,y,2) =
o' }(inside of S) of ¢, where
oh=t ¢L=-t (13)

Proof: Since ¢ is the signed distance function of S, it
follows that
Vol =1

Substituting this into the theorem, our corollary is
proved. H

3.3 Euler-Lagrange Equation

According to the discussion above, we obtain a
seemly energy functional. Simplifying the notation,
our inpainting model is as follows:

minE:/|PV¢Vu|pdS+)\D%/(f—u)2dS (14)
u S s

In the section the corresponding Euler-Lagrange
equation is given via variational method, and a
method to solve this equation is presented.

Theorem 2 (a) When the energy E is minimal, we

have

ﬁv (P Py V"2 Po VulVe|) + Ap (f —u) = 0

(b)Let o

7 V- 0lPe, Tl 2P, VulVil) +An(f—w) = i,
(16)

then E will decrease by the speed
dE

1
P A
+ /\D(f — u))QdS

as the solution time t grows up.

: (p|Pvg,Vu|p_2Pvg,Vu|Vgp|)

Proof: (a) In fact the corresponding Euler-Lagrange
equation is needed. We import the Dirac function to
obtain the variation of E and then give the Euler-
Lagrange equation which minimizes the energy. Let-
ting AFE stand for the variation of E, we have

AE_/SA(|PW,Vu|p)dS+)\D%/SA((f—u)Q)dS

= [ AP Tup)s() Vel
AD

+ 22 [ A~ wio)VeldE
RS
= [ plPo VUl A (1Po, Vul)i(e) Vilds
+22 [ (s~ (- 2o Veldr
RS

_/Rsp|PWvu|P2PWvu-PWV(AU)5(¢)|V¢|df
o /R (f — ) D ud(p)] Vi

- /R lPe, Va2 Po, Vu - (V(5u))0(0)| Veldz
o /R (f — u) D ud(p)] Vi

= [ V- lPe,VuP 2 Pe, Vus(e)| Vi) & uds
R3
- AD/ (f —u) A ud(p)|VeldZ
R3

—— [ (V- (lPe,TuP 2 Pe, TulTe)o(p)
R
+ (p| Py, VulP "2 P, Vu| V) - (8 (9) Vi) A udz
o / (f - u) A ub(¢)| Vipldi
R3

— / (V- (0| Poy VP~ P, VulVig))
RS
+ Ap(f —u)|Vgp|) () A ud®
= [ wa®
+ Ap(f —w)|Ve|) AudS
1
=— | (=—V - (p|Pg,VulP 2Py, Vu|V
(¥ 0lPe,Vulr2Pe, Tuive)
+Ap(f —w) AudS

Because the energy is minimal, that is, AE = 0 for
any Au, so

- (p|Pgy VulP™ 2PV¢VU|VSD|)

1 _
ooV (PP VUl PeaVulViel) + An (f — ) =0
This is the Euler-Lagrange equation corresponding to
energy functional E.



(b)Under the given condition, this is straightforward
via differentiating £.

The condition of energy minimizing is given for
general case in Theorem 2(a). When numerical
computing, we convert the Euler-Lagrange equation
to a time developing equation as showed in Theorem
2(b). In this paper, we study a special and impor-
tant case of p = 1(Intrinsic Total Variation energy).
The corresponding Euler-Lagrange equation is an
anisotropic diffusion equation:

1 ( Py, Vu
Vel NPy Vul

[Vl + Ap(f =) = 0(uz) (17)

Numerical method in detail is given in next section.

3.4 Numerical Method

In this section numerical scheme for equation (16) is
given. Although our Euler-Lagrange equation is ob-
tained on S, we still should solve it in a band around
S for numerical computing of Vu. Therefore, at first,
we extrapolate the image data given on S to a band
around S such that the extrapolated data keep con-
stant along the normal directions of the level sets of
¢ as mentioned above. Our model is intrinsic to the
surface S since we project the gradient of data to the
tangent plane of the level sets of ¢. A grid cell in the
solving band is showed in Fig. 4.

(i3, k +1)
(1,7 +1,k)
(6,4, k+3)

T (17.7"'_ §7k

(Z_ 17]7k) (Z_ %7]7k12,],l€
‘ -

ij—1 o
( J “Zvjak_%)

(Za]_lvk) (Zajvk_l)
[ J

Figure 4: Grid cell

In [20] a discrete method of first forward then back-
ward difference scheme is proposed to treat derivative

T+ LK) (41,5, k)

term of order 2. In fact this method is equivalent with
the straightforward central difference scheme for lin-
ear operator (p = 2) but not with any nonlinear cases
(p # 2) in equation (16), such as our Intrinsic Total
Variation model. So another discrete scheme is given
in the follows.

Let \%4 = (VI V2 Vv3) =
p| Py, Vu|P~2 Py, Vu|Ve|, we have

(V- (p| Py VulP~* Pg, VulVe|)) i .0

:(le)(i,j,k) + (Vy2)(i,j,k) + (Vj)(z‘,j,k)

V V 1%

1 B 2
(i+1.7,8) Vi

1
_ (=3.0k) | “Gitsk)  "(i=30k)
Az Ay
3 13
Vigrrd = Vaar-b
Nz

Taking V! = p|Pg,VulP~2?(u, — %Q%HV(M for

example, we introduce our difference scheme at semi-
grid points.

At first, we compute the derivatives of ¢. Because
¢ does not change as time grows up, only once com-
putation of these derivatives is needed. We average
the derivatives at grid points to get the derivative
at semi-grid points. For example, at semi-grid point
(i + 3,4, k),

(P2) (4 2,.0) = (P2) (i) T (L) i+1,5,k))/2
(Py) i1k = (Ly) g0 + (Py)(i+1,5,0))/2
(P2) (42 .0y = ((@2)(a50) + () i+1,5,0)) /2

while at grid points central difference scheme is ap-
plied:

Px)igk = (SD(iJrl,j,k) - 90(1'71,;',1@))/(2 A x)
(Spy)i,j,k = (@(i,jﬂ,k) - Sp(i,jfl,k))/(2 AN y)
(2)igk = (PG, k+1) = Plje—1))/ (2 A 2)

The discrete scheme for the space derivatives of u is
not simple. We adopt the so-called Minmod function
proposed by S. Osher, et al. Again we take the semi-
grid point (i + 3,7, k) as an example (Fig. 4),

(Ua)(it3.5.0) = (U(it150) — UG gm)/ D
Uiy 1,k) ~ U(ig—1k)
2Ny ’

(uy) (s 1 jr) = Minmod(



W(it1,j+1,k) — uu+1,j_1,k))
2Ay
U(i,g,k+1) — U(d,5,k—1)
2Nz ’
U(it1,5,k+1) — U(i+1,5,k—1) )
VAN

(w2)(ig 1wy = Minmod(

where

sign(a) + sign(b)

Minmod(a,b) = 5

min(|al, [b])
here sign(+) is the sign function.

For (Ap(f —u))(,j,k) We take the value of the grid
point straightly. Forward difference scheme is applied
to us. Integrating these discrete schemes, the numer-
ical scheme of equation (16) is obtained. Numeri-
cal schemes with high order accuracy (for example
TVD-RK with WENO scheme) can be constructed,
but much extra algorithm complexity may also be
produced. Experiments in the next section show our
numerical method works efficiently and generates sat-
isfying results.

4 Algorithm Steps and Experi-
ment Results

Based on the energy functional and numerical
method, in this section, we describe our inpainting al-
gorithm of images on implicit surfaces in detail. Then
some experiment examples are presented.

Assume we have an implicit surface S as the zero
level set of ¢. f is an observed image on S and the
information on D C S is missing or distorted. Our
inpainting algorithm is:

a Extrapolate the image data f to a band accord-
ing to equation (10);

b Extrapolate the inpainting mask 1p to the same
band according the equation (10) (controlling
the resolution time);

¢ For any grid points in the extrapolated band, if
the corresponding extrapolated inpainting mask
is greater than 0.5, then mark it to be 1; else
mark it to be 0;

d Determine a solving band within the band ob-
tained in (a) and (b) according to the data ex-
trapolating theorem 1. Then solve equation (16)
using f as the initial condition.

Note that step (c) is necessary. Because of nu-
meric errors, the extrapolated inpainting mask at
some points in the band may not accurately equal
to 0 or 1. The parameter X in our inpainting model
is just for domain S\ D and should not affect the in-
formation in domain D. So an acurrate inpainting
mask is needed and (c) is necessary.

Several examples are presented to finish the sec-
tion. Because of the use of straightforward Carte-
sian numerics, the overall algorithmic complexity is
reduced and the implementation is simplified. In
our experiments, the functions presenting surfaces
are all signed distance functions, that is, |Ve| = 1.
We made the extrapolating equation to run a pe-
riod of time ¢, = 20 X h in step (a) and (b), where
h is the grid scale. Then we can choose a band
B = {(z,y,2) : —ts < @(x,y,2) < ts,ts < to} for
our inpainting model in step (d). In our experiments
we chose t; = 5 x h and A = 20000. We studied a
special and important case of p = 1(Intrinsic Total
Variation energy) as mentioned before in our experi-
ments.

The surface in Fig. 5 is a sphere. We defined an
image of a triangle on it. In Fig. 5(a) the image was
distorted. Fig. 5(b) is the inpainted result. In this
example, our inpainting algorithm not only repaired
the distorted image but also denoised it. The volume
used contains 148 x 148 x 148 voxels.

A more complex example of Lena on a bottle is
shown in Fig. 6. The distorted image is shown in Fig.
6(a). There are many scratches on it. Furthermore,
some scratches crossed the edges of the image. By our
inpainting model, the image is inpainted perfectly not
only in the smooth area but also at the image edges,
as shown in Fig. 6(b). This is the very advantage
of the Intrinsic Total Variation energy model. The
volume used contains 216 x 130 x 125 voxels.

Fig. 7 shows an example of image on a general
surface. There is a horse and an image of Chinese
character “%” is defined on it. Suppose for various
reasons the character image was distorted where a



few scratches appeared. Furthermore, some scratches
crossed the edge of the character image. Fig. 7(b)
is the inpainting result. Here we see the advan-
tage of the Intrinsic Total Variation energy model
again. Our inpainting model is robust for distortion
at smooth area and discontinues area (edges) of im-
ages. The volume used contains 220 x 187 x 112 vox-
els.

a

Figure 5: A triangle on sphere

Figure 6: Lena on a bottle

a b

Figure 7: A Chinese character on a horse

5 Conclusion and Future Work

In this paper we generalized an inpainting algorithm
of planar images to the case of images on general
implicit surfaces via generalizing energy functionals.
Especially we studied an important inpainting model
based on Intrinsic Total Variation energy model. In
addition, we obtained a theorem about data extrap-
olating needed in numerical computing. According
to this theorem, users can choose a valid and correct
band to solve their inpainting equation.

It should be pointed out that the distorted domain
is supposed to be known in our algorithm. In fact
he detection of D is a problem. We suggest two
ays for solving it. The first one is an automatically
detection method based on learning theory and arti-
ficial intelligence. The second one is based on man-
machine conversation. In the latter the distorted do-
main is chosen by users. The geometry information
of surfaces will be used for correctness.

Another future work is to inpaint color images (vec-
tor valued images) on implicit surfaces. For color
images, channel by channel method may be used or
other methods based on seemly energy functionals of
vector valued data.
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