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Abstract

The dynamic implicit curve/surface reconstruction demands no special requirement on the initial shapes in

general. In order to speed up the iteration in the reconstruction, we discuss how to specify the initial shapes so as to reflect
the geometric information and the topology structure of the given data. The basic idea is based on the combination of the
distance function and the generalized eigenvector fitting model.

Keywords

1 Introduction

Surface reconstruction from an unorganized data
point set is a challenging problem in Computer Aided
Design and Computer Graphics. Generally, since the
connectivity of the data sets and the topology of the
real surfaces could be rather complicated, it is difficult
to find a robust solution to the problem. A reconstruc-
tion procedure is expected to be able to deal with com-
plicated topology and geometry as well as noise and
non-uniformity of the data. The reconstructed surface
should be a good approximation of the data set and with
certain smoothness.

Traditionally, the parametric forms!! are used to
represent the reconstructed surfaces. In the process,
the parametrization of points in the data set is a hard
problem. Recently, implicit surfaces have attracted sig-
nificant attentions!?>?! and are used to represent the re-
constructed surfaces as well, where no parametrization
is needed.

The authors have proposed a dynamic implicit curve
and surface reconstruction scheme based on the Samp-
son distancel® and a trust region method in optimiza-
tion theory. The process gets started from a properly
specified initial shape and converges toward the target
data set through iterative minimization. The conver-
gence ratio usually depends heavily on the initial shapes.

In order to speed up the convergence in the dynamic
implicit curve/surface reconstruction, we wish that the
initial shapes should reflect the geometry information
and the topology structure of the given data as near
as possible. In this paper, we discuss the specifica-
tion of initial shapes for the dynamic implicit surface
reconstruction. The idea is based on distance func-
tion and generalized eigenvector fitting model. The dis-
tance function describes the geometric information of
the given data perfectly, and the generalized eigenvec-

Sampson distance, generalized eigenvector fitting, dynamic implicit surface reconstruction

tor fitting model can obtain a good approximation to
the topology structure of the data set. We will com-
bine them together to specify the initial shapes for the
dynamic implicit curve/surface reconstruction.

The rest of the paper is organized as follows. In Sec-
tion 2, we reviewed the dynamic implicit curve/surface
reconstruction algorithm proposed in [4]. In order to
specify a “good” initial shape for the algorithm, in Sec-
tion 3 we simplify the objective function in the recon-
struction algorithm and solve it with the generalized
eigenvector method. The result shape reflects the topo-
logical structure of the given data, but with large geo-
metric error. To improve the initial shape, we make use
of the distance function, which is reviewed in Section 4.
The computational method is presented as well in this
section. Then in Section 5, by assembling the distance
function with the sign of implicit function obtained from
Section 3, we give the specification of initial shapes for
dynamic implicit curve/surface reconstruction. Some
curve and surface examples are also implemented to il-
lustrate the efficiency of the scheme. Finally, we come
to summary our proposed approach in Section 6.

2 Dynamic Implicit Curve/Surface
Reconstruction

In this section, we review the dynamic implicit
curve/surface reconstruction method proposed in [4].

2.1 Algebraic Tensor-Product B-Spline
Surfaces

A tri-variate tensor-product B-spline function of de-

gree (d,d,d) is defined as

m,n,o

flz,y,2) = Z crst My (2) N5 (y) O4(2), (1)

r,5,t=1
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where {¢,st}mxnxo are the real coefficients (also
called control coefficients), { M, (z)}™;, {Ns(y)}"_; and
{O:(2)}7_; denote the B-spline basis functions of de-
gree d with respect to some user specified knot vectors
€ = & 1, m = (m )7 and ¢ = (G5

The zero set of the function f in domain D C R3 is
defined by

V() ={(z,y,2) e D| f(z,y,2) =0}, (2)

known as algebraic tensor-product B-spline surface. For
a fixed set of basis functions, the algebraic tensor-
product B-spline surface is determined by its control
coefficients.

In the dynamic implicit surface reconstruction,
we assume the given data point set is {P; =
(%i,Yi, 2;)"}Y. |, which represents the shape of some sur-
face I'. 'We are expected to look for a piecewise poly-
nomial function, whose zero contour approximates the
target shape.

For simplicity, the control coefficients and the basis
functions are gathered (in a suitable ordering) into two
column vectors, denoted by f and g(z, y, z) respectively.
By the notation, f(z,y, z) is rewritten in the form

CC Y, 2 Zlel x,Y,z)= q(xayvz)va
where .f = (fla"')fL)T = (0111;-"acmno)7—
and q(iB,y,Z) = (Bl(a:,y,z),...,BL(:L’,y,z))T =
(M7 (z)N1(y)O1(2), ..., M (2)Np(y)Os(2))”.  Hence,

we can express the value of f at a given point as
f(P:) = f(zi,yi,2:) = qlf, and the gradient of
fat Piis Vi(Pi) = (55(P:), g5 (P:), gH(P)™ =
(ul £, 0] f, Wl F)".

A generic method consists of determining a surface
that almost passes through (or approximates) a set of
points and at the same time satisfies some application-
dependent criteria, i.e., many conditions that measure
the “quality” of the surface. A frequently used example
is the simplified thin plate energy

Bng(f) = // 19202 asdodyd
=f"Hf, (3)

which is quadratic in the control coefficient vector f.
Here the symmetrical matrix H can be computed by
Gauss integration.

2.2 Sampson Distance Error

Given a collection of unorganized data points
{P;}Y, in 3D space, the aim is to generate an algebraic
tensor-product B-spline surface V(f) to fit the points.
Firstly, one needs to define a meaningful metric

= Err({P}N..,V(f)),

Err(f)
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as error function of data points set {P;}¥, to the im-

plicit surface V(f). We will prefer Sampson distance

error which had been firstly used for conic fitting in [5].
The Sampson distance is defined as

P
IVF(P)]

which could be regarded as a first-order approximation
of the geometric distance, and the sum of ||[§p ||* be
Sampson distance error:

Z IIVf ||2

where A; = q,q] and B; = u;u] + v;v] + w,w].

(4)

l6p | =

fTAf
ZfTBif, (5)

Erre,s(f

2.3 Algorithm Scheme

The algorithm scheme of the dynamic implicit
curve/surface reconstruction is outlined as follows.
0) Input a given data points set {P;}X;. Specify V(f°)
as the initial shape, and set wo > 0, k := 0.
1) Iteratively apply steps a.—b.—c. until the error reaches
a predefined threshold or some stopping criteria are satisfied.
a. Approximate the objective function R(f) = Err(f)+
wy Eng(f) at current coefficient vector f* with a lo-
cal quadratic model

T 1 T
Q™ (g9) = R(f*) + big + 59" Mg,

where wi, = o*wo with 0 < o < 1.
b. Calculate a trail step by solving the trust region sub-
problem:

minQ™(g) st. g'g <ef,

and get the solution g*. Here e; > 0 is a trust-radius
at the k-th iteration.
c. Renew the coefficient vector with displacement g* as

k
setting fF+! = H,‘;kiigzll’ and let k: =k + 1.

2) Output V(f**!) as the final approximation to the tar-
get shape model.

The trust region procedure ensures that the dynamic
implicit curve/surface V(f*) deforms towards the tar-
get shape in a robust way. As for details, please refer to

[4].
3 Generalized Eigenvector Fitting Model

Let {P;}Y | be the given data points. We are look-
ing for a surface V(f) with implicit representation to
approximate the data points set. Then, the implicit
surface approximation is modeled as minimizer of

Z IIVf

The first part of the objective function is the Samp-
son distance error from the given data points {P;}Y,

HfH n R ||2 Tuf Hf ()
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to the implicit surface V(f). With the Sampson error
Errgps(f) minimization, one would fit an implicit sur-
face to the target shape of the data points. The second
part is a fairing term Eng(f) with certain non-negative
weight w, and is used to enforce the fairness of the result
surface. We add the fairing term to pull the approximat-
ing surface towards a simpler shape and keep away the
unwanted branches.

Usually some well-established nonlinear optimiza-
tion techniques, such as trust region methods, are sug-
gested to solve the model. This numerical intractabil-
ity can be lessened by an idea of successive minima
technique, which is similar in spirit to those “itera-
tive weighted least-squares algorithms” and “reweight
procedure” that appear in the literatures!®7. First,
we assume to have obtained an estimated f(k), whose
gradient gives a guess to Vf(P;), and denote 6, =
1/|VF*(P;)||. The Sampson error can be replaced
with ZZ]\LI Oikf(Pi)Q currently and the objective func-
tion of problem (6) turns into a quadratic form of the
control coefficient vector f. That is

QW (f) = fTAP £, (7)

where A®) = Zf\;1 0? A; + wH is a positive definite
matrix. Second, since two implicit representations up to
a scalar define the same surface, we induct a quadratic
constraint on the control coefficients

D_IVHPII* = fBf =N (8)

to obtain a nontrivial solution. The constraint function
is data-dependent with the matrix B = Zf\il B; non-
negative definite.

Based on the former analysis, we will minimize (7)
under the constraint in (8), and form a constrained op-
timization subproblem

in k) — 7AW T -
min Q"W (f)=fTAYWf st. fTBf=N (9)
at every iteration step in the successive minima method.
From the principle of Lagrange-multiplier, the con-
strained optimization subproblem (9) reduces to a gen-
eralized eigenvector fitting model
(A% —AB)f =0, (10)
where ) is a generalized eigenvalue of A" with respect
to B. The procedure based on the generalized eigenvec-
tor fitting should find the solution as a generalized eigen-
vector corresponding to the minimal generalized eigen-
value A\, at a low cost.

With the above analysis, we outline the algorithm of
generalized eigenvector fitting model as follows.

(a) Input the given data points {P;}~,, and generate
the matrices H and B. Set w > 0, & > 0, {6;0 = 1}, and
k:=0.
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(b) Compute 6; j, and synthesize the matrix A®). Solve
the subproblem (9) based on generalized eigenvector fit-

ting, which gives a solution f. Resize the vector f =
(N/f Bf)'/*f.
(c) Calculate the ratio p =

j_.(k+1) _ { ?a if p <1

f(k), otherwise.

Errsps (.f)

—P=~ and set
Brreps(F*))’

(d) If p<1—¢,set k:=k+ 1 and go to step (b);
otherwise, output the control coefficient vector f = f(k+1).

Thus, the control coefficient vector ? would deter-
mine an implicit surface

~ —~ o~

V(f) = A{(=,y,2)|f(z,y,2) = q(z,y,2)" f =0}

as a final approximation to the target shape model.
Here, we implement several curve examples to illus-

trate the effect of implicit curve approximation algo-

rithm based on the generalized eigenvector fitting model.

SN X

(@

Fig.1. Curve example 1. (a) Data points. (b) After iter. 1. (c)
After iter. 2.
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Fig.2. Curve example 2. (a) Data points. (b) Implicit func. (c)

Result curve.

It should be noted that in all these examples, after
two or more iterations, we will obtain a good approxi-
mation of the topology structure to the data points. But
the geometric errors are large still, and the correspond-
ing implicit representations are not stable. See Fig.2(b)
for an example, where the most parts are flat, the im-
plicit curves will collapse nearly to the plane when we
want to reduce the geometric error by more iterations.
The similar situations happen in the implicit surface fit-
ting. This is the reason why we will combine the current
model to the distance functions.

4 Distance Functions

In recent years, signed distance functions are widely
applied in Computer Graphics for its good geometric
properties. In this section we will review the definition
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of signed distance function and some principal methods
for computing distance function.

A signed distance function of a given surface I is
one of its implicit descriptions. Let ¢ (z,y,z) be the
signed distance function of the given surface. Then I’
is just the zero level set of implicit function v, that is
Y(z,y,z) =0, (z,y,2) € ['. For any points (z,y,2) ¢ I',
the function value ¥(z,y,z) is the signed distance of
point (z,y, z) to the given surface. Here the “distance”
is the Euclidean distance. The Euclidean distance of a
point X to the surface I' is defined as follows:

d(X) = diSt(XaF) = glel% ||X - P”E)

where || X — P||g is the Euclidean distance between two
points X and P. The signed distance of a point to a
surface is determined by the Euclidean distance and the
topological relationship between the point and the sur-
face. The absolute value of the signed distance is just
the Euclidean distance. If the surface is open, then the
signed distance is just “+” for any points in 3D space.
If the surface is close, then the sign of the signed dis-
tance function is used to show whether a point is inside
or outside of the surface. Usually the sign of the point
inside the surface is supposed to be “—”, otherwise “+”.
We call the function d(z,y, z) = |¢(z,y, z)| the distance
function of the given surface. Usually, a singed distance
function is generated in two steps: first computing the
distance function, and then tagging it with proper signs.

It is time-consuming to compute distance functions
directly by the definition. In fact, the distance func-
tion d(z,y, z) of I' is a solution of the so-called Eikonal
equation:

{ |Vd(z,y,2)| =1,
d(z,y,z) =0,

(z,y,2) € R
(z,y,2) € I'.

(11)

In real applications, a gridding will be given and only
the distance function values at these grid points are com-
puted. Usually there are two methods to compute the
numerical solution of (11). The first method changes the
Eikonal equation to a developing Hamilton equation by
introducing a time variable and numerically solves the
Hamilton equation by difference schemes. The second is
the fast sweeping method proposed in [8]. Experiments
show that the fast sweeping method is much more effi-
cient than the first one.

The fast sweeping method is designed based on
Gauss-Seidel iteration. For simplicity, let {(z;,y;, zx)|1
<1< 1,1<j<J,1<k < K} be the uniform gridding
in solution region with space steps Ax = Ay = Az = h.
Assume that u” stands for the numerical solution un-
der the grid scale h. Then we outline the fast sweeping
method into three parts as follows.

1) The discrete scheme of the Eikonal equation. For
interior grid points, the upwind difference scheme is
used,

J. Comput. Sci. & Technol., Mar. 2006, Vol.21, No.2

h h +12 _ 22
+[(uz 'kiuzmin) ] =h ) (12)
3
wherei=2,...,I-1,5=2,...,J-1,k=2,..., K—1,
and
h sk h
Uz min = mm(ui—1,j,kaui+1,j,k)a
h s h h
Uy min = mln(ui,j—l,kaui,j-&-l,k)a
h s h h
Uz min = mln(ui,j,k—l)ui,j,k+1)'
Here

(x)+:{:c, x>0

0, <0

is the truncated power function. For those boundary
grid points, one-sided difference scheme is used. Tak-
ing grid points with index ¢ = 1 for an example, the
one-sided difference scheme is as follows:
[(Uibjk - u’zl,j,k)+]2 + [(uzh,j,k - u21nin)+]2
[l — )P = 2. (13)

2) Initialization. For those grid points which is on (or
near) the surface I', assign them the accurate distance.
These values keep unchanged after the fast sweeping
procedure. For other grid points, assign a large enough
positive number to them. These values will be updated
after the fast sweeping procedure.

3) Gauss-Seidel iteration. At any grid point
(24,Yj, 2z ), compute the solution of (12) or (13) by tak-
ing ui’jk as unknown. The solution is denoted to be
u. Then we update the distance value at grid point
(24,95, %) by the minimum of original uﬁj’k and u:
uﬁﬁk +— min(u?’ﬁk,ﬂ). Several iterations will be done
according to different loop orders of index (7,7,k). In
detail, we make the following eight iterations:

3)i=1:1,j=1:J k=1:K;
32)i=1:1,j=1:J, k=K : 1;
33)i=1:1,j=J:1,k=1:K;
34)i=1:1,57=J:1,k=K: 1;
35)i=I1:1,j=1:J,k=1:K;
36)i=I1:1,j=1:J, k=K :1;
37N i=I1:1,j=J:1,k=1:K;
38)i=1:1,j=J:1,k=K:1.

In the Gauss-Seidel iteration, we have to solve an
equation as follows:

(& —a)* ] +[(z = )" + [(z — ) *]* = ?

Without loss of generality, assume a < b < ¢. We find
the unique solution

a+h, Case 1
b 2(h2 —a? - b2 b)2
a+b+ /2 . JF@rd)? oy
Tr =
a+b+tec+/3(h*—a?—b2—c?)+ (a+b+c)?
3 )
Case 3
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where

Case 1:b—a > h;
Case 2:b—a < h and (c — a)? + (c — b)* > h?
Case 3: (c —a)® + (c — b)? < h?.

For the given gridding, the time complexity of the
fast sweeping algorithm is O(IJK). Besides this, the
generalization to other dimensional problem is straight-
forward. It takes only 2% iterations for v dimensional
problem.

The distance function describes the Euclidean dis-
tance between any point in the space and the implicit
surface. It represents the geometry of the given target
model perfectly, but lacks information of topology. The
main shortcoming is that the distance function cannot
indicate inside or outside of a close curve or surface.
Hence the signed distance function is needed.

To generate the signed distance function on a given
gridding, the tagging procedure based on recursion pre-
sented in [8] is hard and expensive. The recursion depth
is constrained by the memory size and the stack often
overflows for 3D problems. Furthermore, for the target
shapes with complex structure of topology, an improp-
erly tagged signed distance function would lead to the
shape with incorrect topology, as shown in Fig.3. In-
stead of recursive tagging procedure, we obtain the sign
on grid points via the result function f of generalized
eigenvector fitting model in Section 3.

0.3
0
—0.31'
1
-1-1 0
@ ) ©

Fig.3. Curve example 3. (a) Data points. (b) Signed dist. func-

tion. (c) Result curve.

5 Synthesized Scheme of Initial Shapes
Specification

The result surface obtained from the generalized
eigenvector fitting model could reflect the complicated
topology of data set with possibly large geometric error.
On the other hand, the distance function represents the
geometry of the target shape perfectly.

For simplicity, let {X;;x = (@i, y;, 2x)} be the uni-
form gridding in the solution region. First, we compute
the distance function of I' = {P;}}¥ | on the gridding
without signs. By assembling the distance function with
the sign of result function f obtained in Section 3, then
we define an implicit function

¢(Xijr) = sign[f(Xiji)] - d(Xijn).-

One can fit the function value of ¢ at these fixed grid
points {Xijk}f’]f]’klil with least-squares method. Let

(14)
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flz,y,2) = ZlL:1 fiBi(z,y,2z) be the tensor-product
B-spline function with user-specified basis functions
{Bi(z,y,2)}}, and unknown control coefficient vector

f=(f1,...,fL)". Solving the least-squares model
I,J,K
min Y (f(Xik) — ¢(Xign))* +wEng(£),  (15)
i k=1

we get an implicit function f(z,y, z) with coefficient vec-
tor f, and immediately obtain a good specification of

the initial shape V(f) for the dynamic implicit surface
reconstruction.

We have applied our new scheme to some data ex-
amples. Comparing the result in Fig.2, where only gen-
eralized eigenvector fitting is used, the result in Fig.4
is more stable. Note the difference between two graphs
in Figs. 2(b) and 4(b). More curve and surface exam-
ples are given in Figs. 5, 6, and 7. The computational
statistics of surface examples by a PIV-2.2GHz PC are
listed in Table 1, including the iterations and time for
generalized eigenvector fitting model (GEFM), and the
grids and time for distance function computing (DFC).

: 0.2
=i -0l
06
0. 0.4
— 2—0.2 '_0.3‘0~2
(@ (b) ©

Fig.4. Example 2 by synthesized scheme. (a) Data points. (b)

Implicit func. (c) Init. curve.

(a) ©)

Fig.5. Example 3 by synthesized scheme. (a) Data points. (b)

Implicit func. (c) Init. curve.

(a) (b)

Fig.6. 2torus by synth. scheme. (a) Data points. (b) Init. surface.



(b)

Fig.7. Teapot by synth. scheme. (a) Data points. (b) Init. sur-

face.

Table 1. Computational Statistics of 3D Examples

Exam. # points GEFM DFC

iter. time (s) grids time (s)
2torus 4352 3 5.0 71 x 71 x13 2.1
Teapot 4255 3 6.2 64 x 41 x 32 2.7

6 Conclusions

A scheme of initial shapes specification has been de-
veloped in the paper, which is based on the generalized
eigenvector fitting model and the distance function. The
generalized eigenvector fitting model may perfectly re-
flect the topology structure of a given target shape. The
distance functions can give the geometric information
accurately. For a given data points set, we synthesize
an implicit function by assembling the distance function
with the sign obtained through generalized eigenvector
fitting, and give a good specification of initial shapes for
the dynamic implicit surface reconstruction.
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