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0 Introduction

T-meshes are formed by a set of horizontal
line segments and a set of vertical line segments,
where T-junctions are allowed. It could be thought
of as a transition between the simple tensor-
product meshes and the complicated triangular
meshes. Over the T-meshes, we can define many
types of spline spaces. Currently, there are
basically two types of spline spaces defined over T-
meshes; one is from Sederberg et al''', and the
other is from Deng et al'?.

Ref. [1] invented T-spline. It is a point-based

% Received: 2005-11-10; Revised ;: 2006-05-17

spline over T-meshes, i.e., for every vertex, a
blending function is defined. Each of the blending
functions comes from some tensor-product spline
space. Though this type of spline supports many
valuable operations within a consistent framework,
some of them, such as, evaluation and local
refinement, are not simple. In the T-spline
theory, the basis functions are rational which lead
to evaluations and are not simple; on the other
hand, the local refinement is dependent on the
structure of the mesh, and its complexity is

uncertain. Furthermore, it is an ongoing problem
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whether T-spline blending functions are always
linearly independent™™. The reason for these
problems is mainly that the spline over every cell of
the mesh is not a polynomial, but a piecewise
polynomial.

Forcing functions to be a tensor-product
polynomial on every cell and to satisfy the specified
smoothness across common edges, Deng et al
introduced the spline spaces over T-meshes™ .
They derived the dimension formulae for the spline
spaces over regular T-meshes via a method based
on B-nets. Here “regular” means that the whole
domains are rectangles without holes inside.
Comparing with Sederberg’s T-spline, the surface
modeling based on the spline spaces over T-meshes
allows local refinement to be really local. And the
evaluation is quick since this type of spline is
polynomial, not rational.

However, all these works about spline spaces
over T-meshes only take into account the regular
T-meshes, and the spline surfaces defined over
such T-meshes will have topological equivalent to
the disks. In the practice of surface modeling, the
boundary of the domain of a complex surface may
be an arbitrary polygon, and the domain may also
have one or several holes. For example, if we fit a
spline surface over T-meshes according to the
range data of some mask, then we need the domain
T-mesh to have at least three holes inside, one for
the mouth, and the other two for two eyes. On the
other hand, if we want to model a simple close
surface or a cylindrical surface with a close section,
then we need periodic splines. Hence in this paper,
we consider the spline function spaces over general
T-meshes. For the regular T-meshes, periodic
splines are discussed as well. With the method
based on B-nets proposed by Deng et al'*', we
derive the dimension formulae of these spline

spaces.

1 Spline spaces over T-meshes

In this section, we first review some concepts

related to T-meshes and the spline function spaces

over T-meshes.
1.1 T-meshes

T-meshes are formed by a set of horizontal
line segments and a set of vertical line segments,
where T-junctions are allowed. We can also think
that the T-mesh is a simply connected domain
formed by the union of a set of rectangles whose
sides are horizontal or vertical. Fig. 1 illustrates
two examples of T-meshes, while in Fig. 2 two

examples of non-T-meshes are shown.

(@ (b)

Fig. 1 Two examples of T-meshes

(@) (®)

Fig.2 Two examples of non-T-meshes

Fig. 3 gives a more complicated T-mesh,
where three parts with gray fill-in are excluded
from the T-mesh. Hence there are three holes in
the T-mesh. Here each small rectangle in the T-
mesh is called a cell or a facet. The corners of
these rectangles are called vertices of the T-mesh.
If a vertex is on the boundary, then it is called a

boundary vertex. Otherwise, it is called an interior

b5 by by b
Vs Ve, v
Btk b Bz ]
2 T by
g by Bia by e
T4
Vi d By
b ? b |Bos * by by bis
1] v b
hg} b7
By o B 5 by
b] bz b_\_ b4 b.‘.

Fig.3 A T-mesh with notations
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vertex, For example, b;(i = 1, -+, 32) in Fig. 3 is called a boundary c-edge, for example, b6, in

are boundary vertices, and all the other vertices v,
(z =1,--+,8) are interior vertices.

Interior vertices have two types. One is
crossing, for example, v, in Fig. 3; and the other is
T-junctional, for example, v, in Fig.3. We call
them crossing vertices and T-vertices respectively.
Boundary vertices also have two types. If a
boundary vertex is on the boundary of some cell,
but not any corner of the cell, then it is called an
inner b-vertex; otherwise, it is called a free b-
vertex. For example, b; in Fig. 3 is an inner b-
vertex, and by a free b-vertex. Especially, if a free
b-vertex is the common corner and the only
intersection point of two cells, then it is called a
singular b-vertex, such as by and by in Fig. 3.

The line segment connecting two adjacent
vertices is called an edge of the T-mesh. If an edge
is on the boundary of the T-mesh, then it is called
a boundary edge; otherwise it is called an interior
edge. For example, in Fig. 3, v by and v, v, are
interior edges while 0,65 and by b5, are boundary
edges.

Two cells are called adjacent if they share a
common edge as part of their boundaries. If one
cell is above or below the other, then they are
called adjacent vertically. If one cell is on the left
or right of the other, then they are called adjacent
horizontally. A cell is called adjacent to a grid line
(an edge or composition of several edges) if some
boundary line of the cell is part of the grid line. For
example, in Fig. 3, wvsv,usbys and b1 b1sbs are
adjacent vertically, wsvsvs0s and v,b17b150y are
adjacent horizontally, and v;v,v5015 is adjacent to
01015

A composite edge (shortly, c-edge) is the
longest possible line segment in the T-mesh. The
inner vertices (vertices except the end points of the
line segment) are all either interior T-vertices or
inner b-vertices. For example, in Fig. 3, vsby»
Ushos sv2b15, and bisby; are c-edges, while v v;,
vsb17 » 02015 and bigby; are not. C-edges have three

types. If a c-edge is just a boundary edge, then it

Fig. 3.

consists of only interior edges, for example, v v;

An interior c-edge is the c-edge which

and vsbys in Fig. 3. A mixed c-edge is the c-edge
which consists of both interior edges and boundary
edges, for example, v,0,5 and v5b55 in Fig. 3. Mixed
c-edges and interior c-edges are also called non-
boundary c-edges.

The regular T-mesh considered by Deng et
al' is such a T-mesh that the union of its cells
forms a rectangle, see Fig.1(b). In a regular T-
mesh, a c-edge is either a boundary c-edge or an
interior c-edge.

1.2 The spline space

Given a T-mesh T, we use 2 to denote all the
cells in T and 2 to denote the region occupied by all
the cells in J. The spline space over the given T-
mesh T is defined as
Smsn,asfBs J) =

(s(xyy) € CPQ) |s(xsy) |y € P VO E T,
where @, is the space of all polynomials with bi-
degree (m,n), and C* () is the space consisting
of all bivariate functions which are continuous in (2
with order « along the x direction and with order g
along the y direction.

It is obvious that the spline spaces are linear
spaces and the study as to its dimensions property
is an interesting problem. The results are useful for

surface modeling with the spline spaces over T-meshes,

2 Review of B-net method

B-net method is used in the proof of the
dimension formulae proposed by Deng et al'*). We
will also use Bmnet method to discuss the
dimensions of the spline spaces over general T-
meshes.

Let 7 (x,y) and 7, (x.y) be two polynomials
with bi-degree (m,n), defined over two adjacent
domains

[lfo »1'1] X [yo vy1:|
and
Larsze ] X [yo sy ]

respectively. They can be expressed in Bernstein-
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Bézier forms:

m (xsy) :i ib},kBy(]E*xo )B}j(yiyo )’

=0 k=0 X1 T o Y17 Do
VN r—x Yy — Yo
m(x,y) = b, B'-"( )B’§< )
2 [% 120;0 j kD j T — 1 k i — v ’

where B} (1) and B} (2) are Bernstein polynomials.
{b}.1} and {5} are called the Bézier ordinates of
m (x.y) and 7y (. y) respectively. It is well known
that ; (x,y) and 7, (x,y) are r times differentiable
across their common boundary if and only if ™

1 . _ 1
A by =

(&1 — )" (x; _I])I,A'-O b
= 0ueerante i = 04eeeur,
Here the difference operators are defined by
A0 bix = AT bivi.x — AT bj.
with A”°b; , = b, ;.
The geometric meaning of the above
conditions is illustrated in Fig.4. The Bézier
ordinates of two bicubic Bézier functions are shown
in solid and circle, respectively. Suppose 7 (x,y)
and 7, (x,y) are C* (k. = 0,1,2,3) continuous along
their common boundary, then the Oth to the kth
columns of the circle ordinates are determined by
the (3—k)th to the 3rd columns of the solid

ordinates.

e ¢ @ @0 (o] e} 5
e e e e o o o
e e o oo o o o
a_& & #0 o o] fa.
0 1 2 g 1 2 3

Fig. 4 Bézier ordinates of two bicubic polynomials

If we define a polynomial of bi-degree (%£,3)
(k= 1,2,3) with the (3 — %) th to the 3rd
columns of the solid ordinates as its Bézier
ordinates, and similarly define a polynomial of bi-
degree (k,3) with the Oth to the £th columns of the
circle ordinates as its Bézier ordinates, then these
two polynomials are the same. Especially, for the
third order

polynomials 7, (x,y) and 7, (x,y) are identical.

continuity conditions, the two

Similar to the cases of regular T-meshes in
Lemma 3.1 of Ref. [ 2], for general T-meshes, we
have the following lemma, which will play an
important role in the proof of the dimension
formulae of the spline spaces over general T-
meshes.

Lemma 2.1 Given a T-mesh T and a spline
space S(m,n,a,>f3, 7) defined over T, consider a
horizontal non-boundary c-edge which consists of !
interior edges and has [ + 1 cells adjacent to it.
Then the 841 rows of the Bézier ordinates near the
c-edge in each of these cells will define an identical
polynomial of bi-degree (m, [) (see Fig.5).
Similarly, consider a vertical non-boundary c-edge.
The ¢ + 1 columns of the Bézier ordinates near the
c-edge in every adjacent cell will define an identical

polynomial of bi-degree (a, 7).

{a) a horizontal intcrior c-cdge

{1y) a horizonial mixed c-edge

Fig. 5 Bézier ordinates in every cell near a non-boundary
cedge (m=3,8=1)

Proof We just prove the case for horizontal
non-boundary c-edge. Suppose ¢, and ¢, are the two
leftmost adjacent cells near the c-edge with ¢,
beneath ¢,. According to the previous analysis, we
know that g+ 1 rows of the Bézier ordinates near
the c-edge in ¢, and ¢, will define the same
polynomial with bi-degree (m, B. If [ > 1, then
we select the leftmost cell in the rest of the
adjacent cells of the c-edge. The new cell will be
adjacent vertically to ¢, or $,. Therefore -+ 1 rows
of the Bézier ordinates near the c-edge in the new
By this

fashion, we can run through all the cells, and thus

cell will define the same polynomial.

all the B+ 1 rows of the Bézier ordinates near the c-

edge define an identical polynomial. L]
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. . . E—E,—E,=V-.. (3)
3 Dimension formula of spline spaces v :
Sy e meshcS V4V = E,+E, Vi+ V! =E +E. D
In this section, we will derive a dimension Proof

formula for the spline space S(m,n,a,8, T) over a
general T-mesh T whenm = 2o+ 1 and n=2p-+1.
3.1 Some notations for a T-mesh

Before we derive the dimension formula, we
introduce some notations for a T-mesh as shown in
Tab. 1.

Tab.1 Notations for a T-mesh

notations description
E} number of horizontal boundary edges
2 number of vertical boundary edges
E, number of horizontal interior edges
E, number of vertical interior edges
E; number of horizontal boundary c-edges
E number of vertical boundary c-edges
E, number of horizontal non-boundary c-edges
E, number of vertical non-boundary c-edges

number of interior edges on the jth horizontal non-

Ai boundary c-edge, j = 1, *++, E,
number of interior edges on the jth vertical non-

Hi boundary c-edge, j = 1, *=, E,

E number of interior edges
\%a8 number of interior crossing vertices
\’a= number of interior T-vertices

\% number of interior vertices
4 number of free b-vertices

\%4 number of singular b-vertices

Ve number of boundary vertices

F number of cells in the mesh

Similar to Lemma 4. 1 for a regular T-mesh in
Ref. [ 2], for a general T-mesh, we have the
following topological equations.

Lemma 3.1 Given a T-mesh with the
notations in Tab. 1, then

I

E,, E‘v

DA =E. Dy =E. (D
j=1 j=1

I

o9F—E,—E, =E,.2F—E'—E, =E,. (2
I

(I)Eq. (1) holds obviously according to the
definition of A; and y;.

(I ) Since every cell has two horizontal
boundary lines, each of which is part of some
horizontal c-edge, and every horizontal non-
boundary c-edge has A; + 1 adjacent cells, by the

contribution of boundary c-edges, it follows that
Fj/z

2F=E,+ >, +D.

=1
By Eq. (1), we have ]
2F—E,—E, = E,.
Similarly,
2F—E'—E,=E,.
(I Observe that
E—E,—E,= (E, —E)+(E,—E,).
Since E, —E, and E, —E, represent the numbers of
all interior T-vertices on all horizontal and vertical
c-edges, respectively, it follows that
E—E,—E,=VL
(V) I there are no singular b-vertices in the
T-mesh, according to the simple connectivity, it
follows that
V' = E;, +E..
Note that we can give a little perturbation to each
isolate the two cells

singular b-vertex to

intersected at it. Then we have
V' +Vi = E| +EL.
It is easy to know that the number of inner b-
vertices is equal to the number of boundary edges
but not boundary c-edges. Hence we have
Vi + Vi =E} +EL.
L]
3.2 The dimension formula
Now we are ready to prove the dimension
formula for the spline space S(m,n,a,B8, J) when
m=2a+1andn =28+ 1.
Theorem 3. 2 Given a general T-mesh and a
S(mynsasfs I),
suppose m = 2a+ 1 and n Z> 28+ 1, then

corresponding  spline  space
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dimsOm,nsa,fs J) =

Fim+Dm+D +V+D(@E+1) —

Vila+p+2) —E,(m+D(@E+1) —

E.(a+Dn+ 1D,
where F is the number of cells in J,E, and E, are
the number of horizontal interior edges and the
number of vertical interior edges respectively, V'
and V¥ are the number of interior vertices and the
number of singular b-vertices respectively.

Proof For any cell in the given T-mesh,

sincem = 2a+1 andn = 28+ 1, we can divide the
Bézier ordinates in the cell into nine parts as shown

in Fig. 6.

|<—a+1 —>| |<—a+1 —>|
)
v II v prl
X
n+l| I I I
Y
v v 1
l II +ﬁ+

— w1 —

Fig. 6 A cell in T-mesh

The Bézier ordinates in Part I are free since no
constraints are imposed on them. Hence we have
obtained the first component in the dimension
formula.

di =FLm+1D —2(+D]+D—=2@+D]=
Fm+1Dm+1) —2Fa@+Dm+1) —
2Fm+ DB+ 1D +4F(a+ DB+ D).

In the following we will consider how many
free Bézier ordinates there exist in parts ]I , [l and
V.

Firstly, we consider the horizontal boundary
c-edges. There are E} horizontal boundary c-edges.
It is easy to know that the number of free Bézier
ordinates in Parts [ near all the horizontal
boundary c-edges is

ds =E)[(m+1 —2(+D]B+1D =
El(m+1)(B+1) —2E (e + DB+ 1.
Secondly, we consider the horizontal non-
boundary c-edges as shown in Fig. 7. Referring to

Tab. 1, there are E, horizontal non-boundary

c-edges in the given T-mesh, and there are A;
interior edges on the jth c-edge, i.e., A; + 1 cells
are adjacent to the jth non-boundary c-edge. These
cells queue in two horizontal rows. Consider the
cell in the down-left corner. If we fix its top at §+1
rows of the Bézier ordinates ( (m—+1)(f+1) Bézier
ordinates in total), according to Lemma 2.1, all
the 8+ 1 rows of the Bézier ordinates in each cell
adjacent to the c-edge will be fixed as well. But
this does not mean that we have m—+1) (8+1) {ree
Bézier ordinates coming from this c-edge, since, if
we consider this horizontal non-boundary c-edge
within the original T-mesh, two end parts with the
size of (¢ +1)(B+1) could be possibly determined
cyclically. Hence we have just [(m + 1) —
2(a+ 1D ]J(B+ 1) affirmative free Bézier ordinates.
The total number is
ds =E,[(m+ 1D —2(+DIJBE+1) =
E,(m+1D Q@B+ 1 —2E,(a+ DB+ 1.

[ B

(b) a horizontal mixed c-cdge

Fig. 7 Horizontal non-boundary c-edges

Therefore, the total number of free Bézier
ordinates in Parts [| is
dz :d/é +d§ -
(E,+EDLm+1D —2G+DIE+1) =
(E,+EDm+1D@E+1) —
2(E, +ED G+ D @B+ 1.

Similarly, we can get the following number of
free Bézier ordinates in Parts [ near all the
vertical c-edges:

dy =(E,+E) e+ D[+ —2B+ D] =
(E,+E) a+Dn+1)—
2E,+E) (a+ DB+ D.

Till now, only the Bézier ordinates around every
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vertices in parts labeled with [V have to be
determined. Following the analysis procedure*,
we know that the Bézier ordinates around interior
T-vertices and inner b-vertices will be determined
by the Bézier ordinates around interior crossing
vertices and free b-vertices. So we only have to
consider free b-vertices and interior crossing
vertices,

For every non-singular free b-vertex or
interior crossing vertex, we have (a + 1)(8+ 1)
free Bézier ordinates. For every singular b-vertex,
we have 2(a+ D (B+1) — (a+ 1) — (B+ 1) free
Bézier ordinates. Totally we have
di =V, =V +VH+D(@E+D+

Vi2@+D@+D —(a+D—@+D]=

V4V VD) a+D@B+1D —Vi(a+p+2)
free Bézier ordinates.

Now the dimension of the spline space is the
sumofd; (i =1,2,3,4):

4
dimSOn.nsasfps T = Dd; =
i=1

Fn+1Dn+1 —Q@CF—E,—E)(e+Dn+1) —
QF—E, —E)(m+D(@E+1D +

(4F —2E, —2F, — 2E, — 2E, +V}, + V2 +V*) «
(@t D@+ —Vi(at+p+2) =

Fon+Dm+1) —E,G+Dn+1) —
Em+D@+D+Ve+D@+D —V:(a+p+2).
since

AF —2E}, — 2E" — 2E, —2E, + V', + V! + V=

(2F—E, —E)+ QF—E,—E)+
(Vi +Vi—E,—E)—E,—E,+V'=
E,+E —E —E +V'=Vi4+V'=V.
This completes the proof of the theorem. L]

Now we illustrate some examples to show how
to use Theorem 3. 2 to calculate the dimensions of
spline spaces.

Example 3.3 Suppose we are given a general
T-mesh T, as shown in Fig. 8. In J,,F = 5,E, =
2,E, =2, andV =V’ = 0, then the dimension of
the spline space S(m,n,a,B, J1) is

dimsGm,nsasfs 1) =
Stim+Dn+1D —2m+DE+1) —

2+ Dn+D.

Fig. 8 A general T-mesh 7,

Example 3.4 Suppose we are given a general
T-mesh 7, as shown in Fig. 9. In J,,F = 8,
E, =8,E, = 8,V = 0, and V* = 1, then the
dimension of the spline space SGn,n,a,8, J2) is

dimsGm,nsasf, J;) =
8m+Dn+1 —(a+p+2)—
8m+D B+ 1) —8a+ 1 n+D.

Fig. 9 A general T-mesh T,

4 Periodic spline spaces over regular
T-meshes

In many applications, it is necessary to
approximate a function that is known to be
periodic. As it is usually desirable to work with
periodic approximation functions in such cases, we
devote this section to the study of periodic spline
spaces over regular T-meshes.

Given a regular T-mesh T, andQ =[xy ,x1 | X
[vosy1 ]s we define

5h(7’n 97’19&’7‘87 U) =

{s(xsy)|s€ Smansasfs T)osV (x0,3) =

S(’7)(119y)7y0<y<y1’ ] :Oyl""aa}.
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We call 8, the horizontally periodic spline space
over the regular T-mesh J. Similarly, we can
define the spline

vertically  periodic space

S,(msnsas B 9) and the bi-directional periodic

spline space S(m,n,a, 8, J) over the regular T-

mesh 7.

Fig. 10 Horizontally periodic spline

As illustrated in Fig. 10, for a horizontally
periodic spline, the Bézier ordinates in Part [[[ and
Part IV (referring to Fig.6) near the vertical
boundary edges (c-edges) are interrelated. When
counting the number of free Bézier ordinates, we
can imagine bending the T-mesh and gluing the
two vertical boundary grid lines together. Then
the boundary vertices on the vertical boundary grid
lines (except the four corner vertices) can be
considered as interior vertices, the four corner
vertices can be considered as two boundary
vertices, vertical boundary edges become vertical
interior edges, and new “crossing vertices” and
new “vertical c-edges” along the vertical boundary
lines can be introduced. Hence we have, with the
notation in the proof of Theorem 3. 2,
dy =Fl.n+1 —2(+D][(n+1—2@+1D];
dy = (E, +ED[m+1 —2(+DIE+1;
ds = (E,+AE) (a+D[(n+1) —2(8+1D7;
dy = V" +V' + AV —AV) (a + D (B4 D.
Here F.E, . E, . E. .V and V* are defined in Tab. 1,
AE, is the number of increased vertical interior c-
edges which come from the vertical boundary
edges, AV"' is the number of increased crossing
vertices, and AV’ is the number of reduced
boundary vertices. It is easy to know that AE, =
AVT+1,AV" = E', and AV is equal to the number

of pairs of the boundary vertices with the same

y-coordinates on the vertical boundary grid lines
(except the four corner vertices).

Thus the dimension of the spline space

5/1(7’}77719(1957 (j) 15
1
dims, (msn,a,f, J) = Edi =
i—1

Fn+Dm+1) —
QF—E,—E)m+D@E+1) —
QF—AE, —E)(@+ D+ 1)+

(AF —2E} — 2E, — 2AE, —2E, + V' +
VP AVT — AV (a+ DB+ 1) =
Fom+Dh+1) —E,n+DQ@E+1) —
(E,+AE) (a+ D+ 1)+

V2V e+ D@+ =
dimS(non,asfs D) —AE, (o + 1D (n+1) +
AVG+D @+ D,

where AE, = E* — AV"— 1 is the number of
increased vertical interior edges, and AV = E’ —
AVt— 2 = AE, — 1 is the number of increased
interior vertices. For example, in Fig. 10, F = 7,
E, =7,E,=5,E'=6,V=6, and AV' =1, then,
AE, =6—1—1=4,AV=4—1=3.

As a summary, for the horizontally periodic
spline space ;h(m,n,a s6>9), we have the
following theorem.

Theorem 4. 1

corresponding horizontally periodic spline space

Given a regular T-mesh and a

gh (msn,asfBs J) 5 suppose m=2a+1 and n=2p+1,
then

dimS, (s nsasBs T) =

dim S(m,nsa,8,9) —AE (e + D+ 1) +

AVia+D @B+ D,
where AE, = E!, —AV) —1,AV = AE,— 1;E is the
number of vertical boundary edges. and AV} is the
number of pairs of the boundary vertices with the
same y-coordinates on the vertical boundary grid
lines (except the four corner vertices).

Similarly, for the wvertically periodic spline

space S,(msn,a,fs J), we have
Theorem 4.2 Given a regular T-mesh and a
spline

corresponding vertically periodic space



% 6

Dimensions of spline spaces over general T-meshes 581

251,(m,77,a,ﬁ, ), suppose m=2a+1 and n=2p+1,
then

dimiSl,(m,n,a,ﬂ, TJ) =
dimsGm,nsasfs ) —AE, (m+ 1D (BE+1D +
AVia+D @B+ 1D,

where AE;, = E; —AV —1,AV = AE, —1;

number of horizontal boundary edges, and AV} is

% is the

the number of pairs of the boundary vertices with
the same x-coordinates on the horizontal boundary
grid lines (except the four corner vertices).

For the bi-directional periodic spline space

iﬁ(m,n,a,,@, ), we have the following theorem.
Theorem 4.3 Given a regular T-mesh and a

corresponding bi-directional periodic spline space

g(m,n,ayﬁ, ), suppose m=2a+1 and n==2p+1,
then

dim:S(m,n,a,,B, g) =

dim S(m,n,a.8, 7)) +AV(e+ DR+ 1) —

AE, (m+1D(E+1) —AE (e + D+ 1),
where AE, = E} — AV, —1,AE, = E, — AV —1,
AV = AE, + AE, — 1. Here, E} and E” are the
number of horizontal boundary edges and the
number of vertical boundary edges respectively,
AV} is the number of pairs of the boundary vertices
with the same x-coordinates on the horizontal
boundary grid lines ( except the four corner
vertices), and AV, is the number of pairs of the
boundary vertices with the same y-coordinates on
the vertical boundary grid lines (except the four

corner vertices).

5 Conclusion and future work

This paper presents the dimension formula for
the spline space S(m,n,a,B, ) over a general T-
mesh J when m = 2¢ + 1 and n = 25+ 1. The

periodic spline spaces defined over regular T-
meshes are discussed as well. These dimension
formulae will be useful in the surface modeling
with these splines, by then we can design some
“good” basis functions. We will address the basis
function construction of the spline spaces over T-
meshes in future paper.

When m >>2a+1 and n>23+1, the dimension
formula of S(m,n.aspBs J) is a linear combination
of F,E,,E, and V, where the combinational
coefficients depend only on m,n,as and 5. Hence
we can think of the dimension formula as a
weighted Euler formula. If we remove the
constraints m = 2a + 1 and n = 28+ 1, the Bézier
ordinates in every cell cannot be divided into four
parts and all the Bézier ordinates will influence
each other. The dimension formula may fail to
hold. A general dimension formula without these
constraints is still unavailable. In fact, we even do
not know whether the dimension relies on the
geometry of the T-mesh or not. In future

research, we will investigate these problems.
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