Journal of Information & Computational Science 2: 2 (2005) 375-384
Available at http://www.joics.com

A Successive Minima Method for Implicit Approximation

Zhouwang Yang™  Jiansong Deng, Changqi Hu

Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

Received 18 February 2005; revised 14 May 2005

Abstract

This paper is concerned with the problem of approximating a collection of unorganized data points
by an algebraic tensor-product B-spline curve. The implicit approximation to data points would be
ideally based on minimizing the sum of squares of geometric distance. Since the geometric distance
from a point to an implicit curve cannot be computed analytically, Sampson distance, which is the
first-order approximation of the geometric distance, is introduced via a derivation from the viewpoint of
optimization theory. Then, the implicit approximation is modeled as a nonlinear optimization problem
by minimizing the Sampson error and the fair term for smoothing effect. By the idea of successive
minima technique, we induct a quadratic constraint function of the data at every iteration step, and
show that the minimization reduces to a constrained quadratic optimization subproblem, which can
be solved as generalized eigenvector fitting. This successive procedure is stable and computationally
reasonable. Some examples are implemented in our approach, and the high-quality reconstruction curve
is obtained in a robust way.
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1 Introduction

Curves and surfaces in geometric modeling can be described by parametric and implicit represen-
tations. Currently, most applications rely on parametric representations [7, 8], since they offer
a number of advantages, such as simple sampling techniques, easy visualization. However, para-
metric representations introduce a parametrization of the geometry, which is often artificial. For
instance, in order to fit curves or surfaces to scattered data, one has to associate certain param-
eter values to the data, and this parametrization would determine the shape and topology of the
solution. Using implicit representations, it is possible to avoid this problematic parametrization
process. The representation of curves and surfaces in implicit form offers a number of advantages
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[3]. Recently, the piecewise algebraic curves and surfaces [1, 9, 10] are considered as powerful
representation in applications to blending, approximation and reconstruction.

Given a family of implicit functions defined by a finite number of coefficients and a finite set of
data points assumed to belong (or be vicinal) to the same curve or surface, we want to estimate
the coefficients that minimize the sum of squares of geometric distance from the data points to the
implicit curve or surface. Unfortunately, there is no closed-form expression for geometric distance,
and iterative methods are required to compute it. In this paper, we introduce Sampson distance
[13], a first-order approximation of the geometric distance, via a derivation from the viewpoint of
optimization theory. Then, the implicit approximation is modelled as a nonlinear optimization
problem by minimizing the Sampson error and the fair term for smoothing effect. Since the
Sampson error on a fixed set of data points is not a simple quadratic form in the coefficients, the
minimization needs to be solved by some well-established nonlinear optimization techniques.

In the past, researchers [4, 11, 1] have minimized the algebraic error on the data points under
different constraints. It is well known that this error function can produce a very biased result
sometimes. From studying the poor performance of algebraic error and the geometric conditions
under which Sampson distance failed to approximate the geometric distance, we induct a data-
dependent quadratic function as constraint and turn the minimization into a constrained quadratic
optimization subproblem. We then propose a successive minima algorithm, which is based on
generalized eigenvector fitting, to solve the model of implicit approximation. This procedure
helps to improve the solution stably at a low cost. In most of the cases, the final result of the
successive minima algorithm is a very good approximation to the given data set.

2 Algebraic Tensor-product B-spline Curves and Surfaces

Let f : R” — R be a smooth function with continuous first-order and second-order derivatives.
The zeros set of function f is defined by

V() ={X eR"[ f(X) =0}. (1)

We are interested in two particular cases for their applications in computer aided geometric design:
the zeros set V(f) is a planar curve if v = 2, and a surface if v = 3. It is well known that V(f)
is identical to V(af) for every nonzero a.

Let P; = (z;,4:)7,1 = 1,..., M, be the given data points or samples on a given planar-curve.
The data set is assumed to represent the shape of some planar curve I', which is called a target
shape model. We are looking for a piecewise polynomial function, whose zero contour approxi-
mates the given target shape model.

Let us consider a bivariate tensor-product B-spline function of bi-degree (I, 1)

m,n

flay) = e (2)Ny(y), (2)
r,s=1
where {¢,s}mxn are the real coefficients (called control coefficients), {M,(x)}"™; and {N4(y)}",

denote the B-spline basis [6] functions of degree | with respect to certain user defined knot vectors
¢ ={¢ ™ and = {n, )" Accordingly, the zero set of the function f in domain D C R?

is defined by
V(f) ={(z.,y) € D| f(z,y) = 0}. (3)
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and it is called an algebraic tensor-product B-spline curve. For a fixed set of basis functions, the
algebraic tensor-product B-spline curve is determined by the control coefficients.

For simplicity, the control coefficients and the basis functions are gathered (in a suitable order-
ing) into two column vectors, denoted by f and q(z,y) respectively. By the notation, f(x,y) is
rewritten in form

Zf; q(z,y)f, (4)

where N = mn, £ = (f1, fo,..., fn)" = (011,012, ooy Cmn)” and q(x,y) = (Bi(x,y), Ba(z,y), .. .,
Bn(z,y))” = (My(x)N1(y), Mi(z)Na(y), ..., Myn(2)N,y(y))™. In this case, we can express the
value of f at a given point as
and the gradient of f(P;) as

vie) = (e lwo) - (3F). ©)

where q; = (B1<PZ), R ,BN(PZ‘))T, u; = (%(PZ% e agIN (P )) and V; = (883;1 (Pl), cee %(PZ))T

The basic problem of describing curves is related to the creation of geometric objects in the
context of specific applications. A generic method consists in determining a curve that almost
passes through (or approximates) a set of points {P;}}£, and at the same time satisfies some
application-dependent criteria. In general, besides obtaining a curve with a given shape, many
other conditions that measure the ‘quality’ of the curve can be imposed. Among those conditions
we could mention: Continuity; Fairness. Each condition imposes some restriction on the curve
to be constructed. These restrictions can be of analytical, geometrical or topological nature. A
convenient way to obtain curves that satisfy some set of conditions is to pose the problem in the
context of optimization: define an energy function such that the curves which are minimizers
of this functional automatically satisfy the desired criteria. A frequently used example is the
simplified thin plate energy [5], a quadratic function in the second partial derivatives,

Eng(f // 2 () + 212 () + f2,(2,y)) dedy = £7HE. (7)

It is quadratic in the control coefficients vector f, and the symmetrical matrix H can be computed
by Gauss integration.

The use of algebraic tensor-product B-spline curve offers several advantages, including simple
implementation, simple evaluation, simple conditions for global smoothness and differentiability,
sufficient flexibility and refinability. In what follows, we use algebraic tensor-product B-spline
curves as the result curves in implicit approximation.

3 Sampson Distance: First-order Approximation of Geo-
metric Distance

Given a collection of unorganized data points {P;}, in 2D-plane, Our aim is to generate a
planar algebraic tensor-product B-spline curve V() to fit the points. The problem is essentially
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about the reconstruction of the target shape by an implicit curve. Firstly, one needs to define a
meaningful metric

Err(f) = Err({P:}i5,, V(f)), (8)
as error function of data points set {P;}*, to the implicit curve V(f). We will now describe

several error functions which may be minimized in order to determine the control coefficients
vector f of the implicit curve V(f).

Generally, the geometric distance from one point to an implicit curve is defined by
Dist(P,V(f)) = [IX =P, (9)

where X € V/(f) is the nearest point (foot-point) on the implicit curve. For every point P,
the geometric distance Dist(P, V(f)) assigns it the shortest Euclidean distance to implicit curve
V(f). Then, we denote the sum of squares of geometric distance as geometric error

Errge,(f) = Z Dist(P;, V(f))>. (10)

It is ideal to minimizing the geometric error when an implicit curve approximates given data
points. Unfortunately, this metric entails an intractable minimization problem whose solution
cannot be expressed analytically in closed form.

In contrast with complexity of geometric error function, the algebraic error

Errg,(f) = Z f(P;)?, (11)

is straightforward to compute as the sum of squares of algebraic distance [1] on all points. The
minimization problem based on the algebraic error function is very simple, but this function can
produce a very biased result at some time. All these lead to a further error function that lies
between the algebraic error and the geometric error in terms of complexity, but gives a close
approximation to geometric error. We will refer to this error function as Sampson distance error
since Sampson used it for conic fitting [13]. We get to Sampson distance via a different derivation
from the viewpoint of optimization theory.

First, let us recall that the geometric distance Dist(P, V(f)) is the Euclidean distance from P
to a nearest point on the implicit curve V' (f). If let X be the point on the variety V(f), the
geometric distance can be defined identically by a constrained minimization model:

min{|X — P|| | f(X) = 0}, (12)

From this model, the point which results in the geometric distance, cannot be estimated directly
except via iterative, because of the nonlinear nature of the variety V(f). The idea is to assume
that the function f(X) can be well approximated linearly in the neighborhood of the estimated
point. To first order, the function f(X) may be approximated locally with (Taylor) expansion

f(X) = f(P) + Vf(P) (X =P)+o(|X - Pl|). (13)

If we write 6p = X — P and desire X to lie on the variety V(f) so that f(X) = 0, then the
minimization problem is turned to find the smallest dp that satisfies linear constraint:

min{||dp| | f(P) + Vf(P)"dp = 0}. (14)
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We solve minimization problem (14) directly, and get

_—f®P)

op = -Vf(P). (15)
NI
P
This argument suggests that ||op|| = %, named Sampson distance, be a first-order ap-

proximation of the geometric distance, and the sum of ||dp, ||* be Sampson distance error:

fTAf
E = 1
rrsps Z va H2 — fTB,Lf Y ( 6)

where A; = q;q] and B; = w;u] + v;v]

Il ) | —
|

Fig. 1: Contours of constant distance to the curve V(f) = {(z,y) | zy = 0}.

Fig. 1 shows several contours of constant geometric distance, constant algebraic distance and
constant Sampson distance to an implicit curve V(f) = {(z,y) | zy = 0}. The Sampson dis-
tance also has several interesting geometric properties. It is independent of the homogeneous

representation of V(f). If a # 0 and f(X) = af(X), then

XL JefX) (X

IvFX)| Vi)l — VX (17)

1
Let Y = —RX + T be a similar transformation of the space variables and denote ¢g(Y) =
a

g(lRX +T) £ f(X), then Vg(Y) = lRVf(X), and therefore
« a

mreoln

7(X)
ZR S]] (18)

IV

where R is an orthogonal matrix and T is a translation vector. This derivation shows that the
Sampson distance is correspondingly scaling changed under a similar transformation. Specially,
it is invariant to rigid body transformation.
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4 Implicit Approximation Model via Successive Minima
Algorithm

Let {P;}¥, be given data points or samples on a given target curve I'. We are looking for a curve
V(f) with implicit representation to approximate the given data set. Then, the implicit curve
approximation is modeled as minimizer of a functional,

min Q(f Z va ||2 + wf™Hf. (19)

The first part of the object function is the Sampson distance error from given data points {P;},
to implicit curve V(f). With the Sampson error Errg,(f) minimization, one would fit an implicit
curve to the target shape of data points. The second part is a fair term Eng(f) with certain non-
negative weight w, and is used to enforce the fairness of the result curve. We add the fair term
to pull the approximating curve towards a simpler shape and keep away the unwanted branches.

Because the Sampson error (so the object function) is not a simple quadratic form in the
unknown control coefficients vector f, we cannot express the solution to minimization problem
(19) analytically in closed form. Usually some well-established nonlinear optimization techniques,
such as trust-region methods, are suggested to solve the model [16].

This numerical intractability can be avoided by an idea of successive minima technique, which is
similar in spirit to those “iterative weighted least-squares algorithms” and “reweight procedure”

that appear in the literature [12, 15]. First, we assume to have got an estimated f*), whose
1

IVFB P
be replaced with Z 0?).f(P;)* currently and the object function of problem (19) is turned into

gradient gives a guess to Vf(P;), and denote 6, = The Sampson error can

quadratic form of the control coefficients vector f. That is

QW (f) = frAWE, (20)

where A®) = 37 93 Ai+wH is a positive-definite matrix. Second, since the implicit representation

is homogeneous, we induct a quadratic constraint on the control coefficients

fBf = M (21)

M
to obtain a nontrivial solution. The constraint function is data-dependent, with matrix B = >~ B;

i=1
non-negative-definite.
Based on aforesaid analysis, we minimize Eq. (20) constrained by Eq. (21) and form a con-
strained optimization subproblem

min QW (f) = fTAWF,

st. £Bf= M (22)

at every iteration step in the successive minima method. From the principle of Lagrange-multiplier
[2], the constrained optimization subproblem (22) reduces to generalized eigenvector fitting

(A® — \B)f =0, (23)
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where ) is generalized eigenvalue of A®) to B. The procedure of generalized eigenvector fitting
would find the solution as generalized eigenvector related to the minimal generalized eigenvalue
Amin at a low cost.

With the above analysis, we generate the successive minima algorithm for implicit curve ap-
proximation as follows:

Successive Minima Algorithm

(1) Input the given data points {P;}¥,, generate the matrices H and B. Given initial guess
of the control coefficients vector £(), and compute Sampson error Errg,,(f®). Set w > 0,
e>0and k:=0.

(2) Compute 6;; and synthesize the matrix A*). Solve the subproblem (22) based on gener-
alized eigenvector fitting, which gives a solution f. Resize the vector f = (M /f"Bf)/?f.

Errg,s (f' )

Errsps(f(k)) 3 and set

(3) Calculate the ratio p =

f(k-l—l) _ f if p< L
£ otherwise.

(4) If p<1—¢,set k:=k+ 1 and go to step (2); Otherwise, output the control coefficients

vector f+1),

k+1)

Thus, the control coefficients vector f( would determine a result implicit curve

VD) = {(e.y) € DI f5 (@, y) = ale, )Y = 0},

as final approximation to the target shape model T, i.e., given data points {P;}},.

5 Implementation and Examples

In the implementation of implicit curves approximation, our first task is to obtain the knots
vectors, with which the tensor-product B-spline function is defined. When a set of data points
is given as the target shape model, we consider a slightly enlarged area of the data bounding
box, and subdivide the area into rectangular cells with equidistant grids on the x and y axis.
By adding additional [ knots at the beginning and at the end of the grids, we obtain the knots

vectors ¢ = {¢.}™H and n = {n, )T

As mentioned in the previous section, the successive algorithm for implicit approximation is
iterative and an initial step is required. In order to begin our calculation, we are optional to make
an initial guess of the control coefficients vector f¥), or to directly set 6;g = 1 fori = 1,---, M.
For the former, we give an ordinary specification of initial implicit curve V (f(?)), as setting the
control coefficients

©) _ 40 _ _rm—r+1)s(n—s+1) o
fj _f(rfl)nJrS_cTS_ m n — Cp, ]—1,,N (24)
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Fig. 2: The graph of f(©(z,y) and the initial curve V (f(©).

The constant ¢, is properly chosen to make the initial curve V(f®) encase the target shape
model, i.e., given set of data points {P;}},  as show in Fig. 2.

Various experiment of implicit approximation is implemented in the successive minima method
which is described in previous section. The successive procedures of some selected examples are

illustrated in Fig. 3- Fig. 6, where we set [ =2, m = 8 and n = 8.

\ A
. i
(c)

Fig. 3: Example 1. (a) data points and initial curve; (b) 1st step; (c) 2nd step.

Fig. 4: Example 2. (a) data points and initial curve; (b) 1st step; (c) 2nd step.
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Fig. 6: Example 4. (a) noisy data; (b) 1st step; (c) 2nd step; (d) 3rd step.

6 Conclusions

We have described a successive method for fitting implicitly defined curves to planar scattered
data points. The examples in this study demonstrate that the successive minima algorithm for
implicit curve approximation is stable and computationally reasonable. In most of the cases, the
successive procedure would get a very good approximation of the given data points.

Due to the use of tensor-product B-spline, the implementation of our method is relatively simple.
In fact, the successive minima method can be applied to any implicitly defined planar-curve, not
only to algebraic curves and surface in tensor-product representation. For instance, one can apply
this successive minima algorithm to bivariate piecewise polynomials of total degree [, which is
defined on triangular domain or T-mesh [14]. In the future, we will try to extend the method
to implicit surface reconstruction. Furthermore, it is worthwhile to explore the applications of
implicit B-spline curves and surfaces in geometric modeling and computer graphics.
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