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Abstract

In the paper we propose a method to determine param-
eters that appear in algebraic surface blending. By mini-
mizing the surface energy and adding some point restric-
tions, we can select the free parameters such that a blending
surface with reasonable shape is constructed. The method
seems to be extensible for other surface blending problems,
although we concentrate on algebraic surface blending .

1. Introduction

Surface blending is a modelling technique which con-
structs smooth transitions between given surfaces. It has
wide applications in many different areas such as mechan-
ical design and manufacturing, computer graphics and ani-
mation, etc. Besides keeping the specified order of geomet-
ric continuity with the given surfaces, the blending surface
must satisfy some physical requirements of the design and
its shape should be aesthetically pleasing.

In the past two decades, much literature has focused on
the subject and many approaches have been proposed to
solve the problem. Depending on the representations of
the transitional surfaces, blending methods can be classified
into several categories, such as parametric methods, implicit
methods and combined methods. In this paper, we only dis-
cuss methods for algebraic surface blending.

The classic method of blending two intersecting surfaces
works by replacing the intersection curve and its vicinity
with part of a canal surface that is generated by a rolling
ball and which has G1 continuous contact to the initial sur-
faces [16]. Hoffmann and Hopcroft [10, 11] proposed a
general approach for blending surfaces by means of the po-
tential method. Li et al [12] suggested to use functional
splines to blend algebraic surfaces. Allen, Dutta [1] and
Pratt [14] constructed blending surfaces using cyclides and
supercyclides. Wu and Zhou [19] applied the method of
Gröbner bases to algebraic surface blending. Other blend-

ing methods using algebraic surfaces include Liming skill
[13], the substituting method [15], the ideal-theory-based
method [18] and Wu’s method [20]. All of these methods
produce algebraic blending surfaces of high degree in gen-
eral and some of them cannot be easily generalized to blend
surfaces with higher-order contact or to blend more than
two surfaces.

The main drawback to blend several surfaces using a sin-
gle algebraic surface is that the blending surface usually has
a high algebraic degree, especially for the case where high
order of contact with the initial surfaces is required. Alge-
braic surfaces of high degree are complicated in topology
and their shape is hard to control. Furthermore, high de-
gree algebraic surfaces are computationally more expensive
in subsequent geometric operations.

An approach to overcome the above drawbacks is to use
piecewise algebraic surfaces (PAS for short) instead. The
idea of PAS comes from Sederberg [17] and was applied by
Bajaj et al, Dahmen and Thamm-Schwar, Hartmann, and
Xu et al, in interpolation and free form modelling [2, 7, 21].
In [8], several approaches [4, 3, 5] are summarized to con-
struct piecewise algebraic blending surfaces. The examples
in [8] suggest some advantages of using PAS as blending
surfaces. First, the piecewise algebraic blending surfaces
in general have much lower degree than the blending sur-
faces generated by other methods. In particular, Gröbner
bases’ method and syzygy modules’ method can produce
blending surfaces of lowest possible degree in theory. Sec-
ond, the methods are general in the sense that they work for
any number of given surfaces in arbitrary positions and for
any order of geometric continuity. Thirdly, the expressions
of the blending surfaces using the syzygy modules’ method
are relatively simple. However, there is still much work that
needs to be done.

This paper is devoted to finding suitable free parame-
ter values in the solutions of the algebraic surface blend-
ing problem. The main idea of our parameter-determination
technique is to minimize the energy of the blending surface
and to add some point restrictions as an auxiliary means.
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The main advantages of our approach are: (a) the method is
almost automatic with only a few interactive manipulations;
(b) the method is efficient since only linear equations are to
be solved; and (c) the method seems to be extensible for
other surface blending problems, although we concentrate
on algebraic surface blending.

The rest of this paper is organized as follows. In Section
2, we briefly review the algebraic surface blending problem
and the syzygy module method. In Section 3, we describe
our method to choose suitable free parameter values in the
blending surfaces. In Section 4, several examples are pro-
vided to illustrate our approach. Conclusions and further
research problems are drawn in Section 5.

2. Surface blending with PAS

In this section, we review the surface blending method
using piecewise algebraic surfaces. We first recall some ba-
sic notations and preliminary knowledge about geometric
continuity of algebraic surfaces.

2.1. Notation and preliminaries

Let R[x] := R[x1, · · · , xn] denote the set of polyno-
mials in x1, · · · , xn with real coefficients and R[x]m de-
note the set of m-dimensional row vectors with entries
in the polynomial ring R[x]. Given a set of polynomials
f1, · · · , fs ∈ R[x], the set of common zeros of f1, · · · , fs

is called a variety, denoted by V (f1, · · · , fs), i.e.,

{(a1, · · · , an) ∈ R
n : fi(a1, · · · , an) = 0, 1 ≤ i ≤ s}.

Especially, algebraic surfaces and algebraic curves in R
3

are varieties. A variety V is said to be reducible if it can
be expressed as the union of two proper subvarieties of V .
Otherwise, it is said to be irreducible.

Next we come to the syzygy module. Let F =
(F1, · · · ,Fs) be an s-tuple, where Fi ∈ R[x]m, i =
1, · · · , s. The set

Φ :=
{

(h1, · · · , hs)T ∈ R[x]s :
s∑

i=1

hiFi = 0
}

is a module, called a syzygy module of (F1, · · ·Fs), and is
denoted by Syz(F1, · · · ,Fs), or simply by Syz(F).

Let Gi, i = 1, · · · , k be a set of elements in Φ. If for
any G ∈ Φ, there are polynomials ai ∈ R[x], i = 1, · · · , k
such that

G = a1G1 + · · · + akGk,

then Gi, i = 1, · · · , k is called a generating set of Φ. By
Hilbert’s Basis Theorem, any module over a polynomial
ring has a finite generating set. Given the set of polyno-
mials F, a generating set of Syz(F) can be computed using
the Gröbner bases technique [6].

In the following, we will strict our discussion over poly-
nomial ring R[x, y, z].

2.2. Geometric continuity of algebraic surfaces

Geometric continuity provides an important characteri-
zation for the smoothness of geometric entities. One often
used definition of geometric continuity between algebraic
surfaces is called rescaling continuity [9].

Definition 2.1 Let V (f) and V (g) be two algebraic sur-
faces which intersect transversally at an irreducible alge-
braic curve C, where f, g ∈ R[x, y, z]. We say that V (f)
and V (g) meet with Gk rescaling continuity along the com-
mon curve C if

• V (f) and V (g) are smooth along C except at a finite
number of points;

• there exist two polynomials a, b ∈ R[x, y, z], which are
not identically zero over C, such that af and bg are Ck

continuous on C.

A general characterization of Gk continuity for two al-
gebraic surfaces on their common boundary is stated in the
following theorem [9]:

Theorem 2.2 Let V (f) and V (h) be two algebraic sur-
faces which intersect transversally at an irreducible alge-
braic curve C := V (f) ∩ V (h). The surfaces V (f) and
V (g) meet with Gk continuity along the common curve C
if and only if there are polynomials α(x, y, z) �= 0 and
β(x, y, z) such that g = αf + βhk+1.

In practical applications, V (h) is often assumed to be a
plane. In this case, we have the following result.

Proposition 2.3 Assume that an algebraic surface V (g) of
degree n and an algebraic surface V (f) of degree m(n ≥
m) meet along a common algebraic curve in a plane V (π).
If there exist polynomials α(x, y, z) of degree n − m and
β(x, y, z) of degree n − k − 1 such that g = αf + βπk+1,
then algebraic surfaces V (g) and V (f) meet with Gk con-
tinuity along the common curve.

2.3. Algebraic surface blending

The algebraic surface blending problem can be formu-
lated as follows.

Problem 2.4 Given m initial algebraic surfaces V (fi) and
additional m auxiliary surfaces V (hi), where fi, hi ∈
R[x, y, z], i = 1, 2, · · · ,m. Suppose that V (fi) and V (hi)
intersect transversally at a curve Ci = V (fi, hi), i =
1, 2, · · · ,m. The problem is to find a (piecewise) algebraic
surface V (f) such that V (f) meets V (fi) with Gk continu-
ity along the curve Ci, i = 1, 2, · · · ,m.
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The general approach for constructing piecewise alge-
braic blending surfaces is summarized as follows.

1. According to the given initial surfaces and transversal
surfaces, determine the defining region for the PAS.
Some heuristic rules should be applied in this step.

2. Form a system of algebraic equations from the geo-
metric continuity conditions for each pair of adjacent
surface patches.

3. Solve the system of algebraic equations to obtain
piecewise algebraic surfaces with free parameters.

4. Determine these free parameters to control the shape
of the blending surface.

We use a simple example to illustrate the above ap-
proach. For the details about the method, the reader is re-
ferred to [8].

Example 1 Consider the G1 blending of two coaxial
cylinders with different radii :{

f1 : y2 + z2 − 1 = 0, x ≥ 1

f2 : y2 + z2 − 4 = 0, x ≤ −1

The auxiliary planes are given by

F1 : x − 1 = 0 and F2 : x + 1 = 0.

For simplicity, we use a single surface patch to blend the
two cylinders. According to Theorem 2.2 and Proposition
2.3, the blending surface V (f) has to satisfy

f = α1f1 + β1F
2
1 = α2f2 + β2F

2
2

with αi, βi ∈ R[x, y, z], i = 1, 2. It follows that

α1f1 − α2f2 + β1F
2
1 − β2F

2
2 = 0.

This polynomial equation (with α1, α2, β1, β2 being un-
knowns) can be solved by computing the Gröbner basis of
the syzygy module Syz(f1,−f2, F

2
1 ,−F 2

2 ). With a sym-
bolic computation software such as Maple, the Gröbner ba-
sis with graded lex order is computed as


g1 = 4 y2 + 4 z2 − 16 + (6 − 3x)(x + 1)2

g2 = −4x (y2 + z2 − 4) − 3 (x + 1)2

g3 = (y2 + z2 − 1)(x + 1)2

g4 = (y2 + z2 − 1)(y2 + z2 − 4)

Thus the blending surface is f =
∑4

i=1 aigi, where ai ∈
R[x, y, z], i = 1, · · · , 4 are free polynomials.

One advantage of Gröbner basis method is that it can
obtain blending surfaces of lowest possible degree. In this
example, the lowest degree blending surfaces are given by
f = a1g1 + a2g2 = 0, where a1 and a2 are constants.

There are still problems need further investigation in sur-
face blending with PASs, i.e., problems in Step 1 and Step
4. In this paper, we will propose a method to solve the prob-
lem in the last step, i.e., determining the free parameters in
the surface blending problem.

3. Determination of free parameters

After obtaining all the blending surfaces of lowest degree
by the syzygy module method, we need to choose suitable
free parameters to adjust the shape of the final blending sur-
face. In [4], the authors control the shape of the blending
surface by expressing each surface patch into B-B form and
adjust the free parameters according to the the Bézier or-
dinates. This is a very sophisticated approach and is totally
non-automatic. In [8], the authors adjust the free parameters
by interpolating or least-square approximating a set of spec-
ified points. However, this approach does not produce a rea-
sonable shape in certain circumstances. Thus how to deter-
mine the free parameters of the blending surfaces and how
to avoid multiple sheets of the algebraic surface patches is
still an unsolved problem.

In this section, we present a technique to choose the free
parameters in the algebraic blending surfaces with only a
few interactions. The method is based on minimizing the
blending surface energy and adding some point restrictions
as an auxiliary means. The examples in the next section
seem to suggest that the proposed technique produces rea-
sonable result in most circumstances.

3.1. Minimizing surface energy

A (piecewise) algebraic surface is defined as the zero set
of an implicit function f . The shape of the algebraic surface
is totally determined by the implicit function. One way to
get a reasonable shape of the algebraic surface is to mini-
mize the smooth energy of the surface which is a functional
of the corresponding implicit function.

In our application – constructing (piecewise) algebraic
blending surfaces, we aim that the blending surface will not
have multiple sheets and that the shape of the surface is aes-
thetically pleasing. Hence in this paper we choose the thin
plate energy model as follows, which minimizes the surface
area.

E(f) =
1
2

∫
Ω

‖∇2f‖2
Frobenius dxdydz (1)

For example 1, assume that the blending surface is ex-
pressed as f =

∑4
i=1 aigi, where a4 = 1 − ∑3

i=1 ai. The
thin plate energy of f can be written as

E(f) =
1
2

xT Hx + bT x

Here
x = (a1, a2, a3)T

H =


 234112/9 218368/9 213248/9

218368/9 391552/9 192128/9
213248/9 192128/9 470656/15




b =
1
9

(−218368,−270592,−253184)T ,
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and the integral domain is Ω = { |x| ≤ 1, |y| ≤ 2, |z| ≤ 2}.
Solving the equation ∇E(f) = 0 gives

x =
1

17070338
(−146624, 6476809, 11008845)T

So we get the blending surface (see Figure 1.a).
Using the same method we can also get the lowest degree

blending surface (see Figure 1.b).

a. Quartic blending surface b. Cubic blending surface

Figure 1. Blending surfaces of example 1

3.2. Point constraints

In some situations, the blending surface based merely
on minimizing the surface energy may have an undesirable
shape. In this case, we need to add some point restrictions
as an auxiliary means.

An algebraic surface V (f) divides R
3 into three parts:

the surface itself f = 0 , the interior of the surface f < 0
and the exterior of the surface f > 0. Instead of requiring
that the surface passes through (or approximates) a point
set, we only impose the constraint that a point set is inside
(or outside) the surface. Thus we need to solve the follow-
ing optimization problem

Min E(f)
s.t f(pi) ≤ 0, i = 1, · · · , r

f(qj) ≥ 0, j = 1, · · · , s

The point sets {pi} and {qj} can be chosen interactively.

4. Examples and results

In this section, we provide several examples .
Example 2 Consider the G1 blending of two coaxial el-

liptic cylinders with the same major axis and minor axis :{
f1 : 2 y2 + z2 = 2, x ≥ 1

f2 : y2 + 2 z2 = 2, x ≤ −1

The auxiliary planes are given by

F1 : x − 1 = 0 and F2 : x + 1 = 0

Using the syzygy module method, we obtain the blend-
ing surface f =

∑4
i=1 aigi, where


g1 = −8x (y2 + 1/2 z2 − 1) + (3 z2 − 2)(x − 1)2

g2 = 16x (y2 + 1/2 z2 − 1) + (3 y2 − 2)(x − 1)2

g3 = (y2 + 2 z2 − 2)(y2 + 1/2 z2 − 1)
g4 = (2x2 + 4x + 2)(y2 + 1/2 z2 − 1)

Assume that ai, i = 1, · · · , 4 are constants and a4 = 1 −∑3
i=1 ai. Similarly writing E(f) of the integral domain

Ω = { |x| ≤ 1, |y| ≤ 3/2, |z| ≤ 3/2} into matrix form and
solving the equation ∇E(f) = 0, we get

x =
(
t, 2 t − 36207

81682
,

4634
40841

)T

where t is a free parameter. The blending surface corre-
sponding to t = 1 is shown in Figure 2.

Figure 2. Blending surface of example 2

Example 3 Consider the G1 blending of two cylinders
whose axes are perpendicular to each other :{

f1 : y2 + z2 − 1 = 0, x ≥ 2

f2 : x2 + z2 − 1 = 0, y ≥ 2

and the corresponding auxiliary planes are

F1 : x − 2 = 0 and F2 : y − 2 = 0

Using the syzygy module method, we obtain five gener-
ators for the blending surface:
���������
��������

g1 =(x + y − 4)(y2 + z2 − 1) + (x + y)(x − 2)2

g2 =(z2 − 4 y + 11)(y2 + z2 − 1) + (z2 − 4 x − 5)(x − 2)2

g3 =(y2 − 4 y + 4)(x − 2)2

g4 =(y2 − 4 y + 4)(y2 + z2 − 1) + (y2 − 4 y + 4)(x − 2)2

g5 =(x2 + z2 − 1)(x − 2)2

Notice that using g1, one can get the lowest degree blending
surface (see Figure 4.a). But its shape is fixed.

Unfortunately, the blending surface f =
∑5

i=1 aigi = 0
obtained by minimizing the thin plate energy ( with integral
domain Ω = { |x| ≤ 2, |y| ≤ 2, |z| ≤ 2} ) is not closed and
has multiple sheets (see Figure 3). To get a proper blending
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Figure 3. Surface with multiple sheets

surface, we add point constraint as:f(−1/4,−1/4, 0) ≤ 0.
Solve the constrained minimization problem, we get:

(a1, a2, a3, a4, a5)T =




0.3387104474
−0.2071533438
−0.04550660490
−0.2473380977




The corresponding blending surface is shown in Figure 4.b.

a. Cubic blending surface b. Quartic blending surface

Figure 4. Blending surfaces of example 3

Example 4 Given three cylinders as follows :


f1 = y2 + z2 − r2
1 = 0, x > h1 > r1 > 0

f2 = z2 + x2 − r2
2 = 0, y > h2 > r2 > 0

f3 = x2 + y2 − r2
3 = 0, z > h3 > r3 > 0

We want to seek a Gk continuous PAS f = 0 in the region
{(x, y, z) : |x| ≤ h1, |y| ≤ h2, |z| ≤ h3} which meets
f1 = 0, f2 = 0 and f3 = 0 at

F1 : x − h1 = 0; F2 : y − h2 = 0; F3 : z − h3 = 0

with Gk continuity respectively.
For this particular problem, the defining region of the

blending surface can be determined as follows [4]. Choose
three surface patches V (G1), V (G3), and V (G5) to meet
the three cylinders with Gk continuity, respectively. Now
we need other three surface patches V (G2), V (G4), and
V (G6) which serve as the transitional surfaces between
V (G1), V (G3), and V (G5). Thus in total we need
six patches to compose the blending surface. Since the
transversal planes V (Fi)(i = 1, 2, 3) of the three cylinders
intersect at one common point, the defining region of the

V1

V2

V3

V4

V5

V6

Z1

Z2

Figure 5. Partition of the defining region

blending surface can be defined as the composition of six
tetrahedrons as shown in Figure 5.

The vertices of the defining region are as follows: Z1 =
(h1, h2, h3), Z2 = (−h1,−h2,−h3), V1 = (h1, 0,−h3),
V2 = (0, h2,−h3), V3 = (−h1, h2, 0), V4 = (−h1, 0, h3),
V5 = (0,−h2, h3), V6 = (h1,−h2, 0). Let πi = 0 be the
plane passing through Z1, Z2 and Vi for i = 1, · · · , 6 and
Ti = Z1Z2Vi−1Vi, i = 1, · · · , 6. Then

π4 = π1 : h2h3x − 2h1h3y + h1h2z = 0
π5 = π2 : −2h2h3x + h1h3y + h1h2z = 0
π6 = π3 : −h2h3x − h1h3y + 2h1h2z = 0

Assume the surface patch in the tetrahedron Ti is defined
by Gi = 0 and that Gi satisfies Gi+1 = Gi+αiπ

k+1
i , i =

1, · · · , 6, where αi are polynomials in x, y, z. By the con-
sistency condition, αi satisfies

∑6
i=1 αiπ

k+1
i = 0. On the

other hand, V (G1), V (G3) and V (G5) meet V (f1), V (f2)
and V (f3) with Gk continuity respectively, so

Gi = γifi + βiF
k+1
i , i = 1, 3, 5

where βi, γi are polynomials in x, y, z. Thus we obtain a
system of equations

6�
i=1

αiπ
k+1
i = 0

γ1f1 + β1F
k+1
1 + α1π

k+1
1 + α2π

k+1
2 = γ2f2 + β2F

k+1
2

γ1f1 + β1F
k+1
1 − α6π

k+1
6 − α5π

k+1
5 = γ3f3 + β3F

k+1
3

Taking k = 1, h1 = h2 = h3 = 3
5 and r1 = r2 = r3 = 1

5 ,
we can obtain three generators with the lowest degree by
solving the above system of equations.

(αj
1, · · · , αj

6, β
j
1, · · · , βj

3, γ
j
1, · · · , γj

3)
T , j = 1, 2, 3

the corresponding expressions for the PAS f j = 0 are:

Gj
i =

{
γj
(i+1)/2f1 + βj

(i+1)/2F
2
(i+1)/2, i = 1, 3, 5

Gj
i−1 + αj

i−1π
2
i−1, i = 2, 4, 6

Assume that the blending surface is f =
∑3

j=1 ajf
j ,

and let a3 = 1 − ∑2
i=1 ai. We need to choose a1 and
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a2. Without loss of generality, we apply our method on
G1 =

∑3
i=1 aiG

i
1. Define the thin plate energy E(G1)

in Ω = { 1
4 ≤ x ≤ 3

5 ,− 2
5 ≤ y ≤ 2

5 ,− 2
5 ≤ z ≤ 2

5}.
Add different point restriction of G1(0.5, 0.5, 0.5) ≤ 0
and G1(−0.2,−0.2,−0.2) ≤ 0, G1(−0.1,−0.1,−0.1) ≤
0 or G1(0, 0, 0) ≤ 0. After solving these constrained min-
imization problems, we get three different cubic PASs (see
Figure 6).

Figure 6. Three different PASs of example 4

5. Conclusion

In this paper, we proposed a method to determine the free
parameters which are common in algebraic surface blending
(Especially when PAS is used). Mainly depending on mini-
mizing surface energy and adding some point restrictions,
we can select those parameters which provide a smooth
blending surface of the problem. The method seems to be
extensible to many surface blending problems, although we
concentrate on algebraic surfaces.
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