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Abstract

We present a new interpolatory subdivision scheme
based on PB-splines (Point-Based B-splines), over trian-
gular meshes. Using the stencil of the interpolatory

√
3-

subdivision scheme, we propose a different refinement strat-
egy by introducing a variable α to each regular vertex (va-
lence = 6). By applying different α (locally or globally), the
scheme is suitable for adaptive refinement and can perfectly
reach different smoothness conditions (C0, C1 or C2).

1. Introduction

Given a subdivision scheme, a sequence of refined
meshes M1, M2, . . ., Mn can be computed from the ini-
tial coarse control mesh M0. This sequence of meshes con-
verges eventually to a continuous limit smooth surface M∞.

Many subdivision surface schemes have been proposed
in the last decade. Some are based on tensor-product sur-
face generation schemes [1, 3] and some are from 2-scale
relations in a more general functional space defined over
three-directional grids [4, 9, 11]. Due to the nature of re-
finement operators, the generalized tensor-product schemes
naturally lead to quadrilateral meshes while the others lead
to triangular meshes. In case of subdivision methods over
triangular mesh, the so called 1-to-4 split operation is most
popular which is implemented by introducing a new vertex
on each edge [4, 9] while face-split operation is also devel-
oped in the recent 10 years [5].

In 2000, L. Kobbelt introduced a new approximate sub-
division scheme, known as

√
3-subdivision, over triangular

mesh [6]. In that scheme, for each triangle of the coarser
mesh, its barycenter is computed and new topology is gen-
erated by connecting each vertex of the triangle and the in-
serted point and then flipping all old edges of the mesh.
After each two steps of the

√
3-subdivision scheme, ev-

ery triangle is subdivided into 9 sub-triangles and every
edge is split into 3 sub-edges, which leads to the name

√
3-

subdivision. U. Labsik and G. Greiner [7] proposed the

interpolatory version of
√

3-subdivision scheme in which
the generalization of a one-dimensional cubic interpolatory
polynomial p3(x) for given points f(0), f(1), f(2), f(3) is
considered. The stencil of the interpolatory

√
3-subdivision

scheme uses one triangle and its 1-neighbor triangles, which
has 12 vertices in the lump.

We present a subdivision scheme using the analog stencil
as the interpolatory

√
3-subdivision scheme but a different

approach to generate weights. Here we consider a family of
splines called Point-Based Spline [10] defined over a trian-
gular mesh. The spline we used is a piecewise-quartic (or
higher degree) function. New vertex added in the triangle is
computed by the combination of PB-splines of the vertices
over the stencil. The advantages of this scheme are that only
split operation is needed during each subdivision step, and
that the smoothness of the mesh can be controlled to satisfy
different continuity requirement from C0 to C2. This can be
done by introducing a variable α to each regular vertex of
the mesh.

The paper is organized as follows. In Section 2, we give
a review of interpolatory subdivision schemes, especially
interpolatory

√
3-subdivision scheme. In Section 3, PB-

spline over triangular mesh is introduced. Sections 4, and
5 describe our subdivision scheme based on PB-splines in
detail. In Sections 6 and 7 we present some examples and
draw a conclusion.

2. Interpolatory subdivision schemes

The Butterfly subdivision is a famous interpolatory sub-
division scheme over triangular meshes. In the Butterfly
scheme, an 8-point stencil is used to compute a new vertex
on an edge over a regular triangular mesh where all vertices
have valence 6 (See Figure 1.a).

Given the result of k-th subdivision step, the position of
new vertex qk+1 is computed as follows

qk+1 =
1
2
(pk

1 + pk
2) + 2w(pk

3 + pk
4) − w(p5

k+

pk
6 + pk

7 + pk
8), (1)
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where w is a tension parameter normally set to 1/16. Con-
sidered as a scalar valued function over a three directional
grid, when the function value is constant along one of these
directions, the Butterfly scheme reduces to a 4-point scheme

qk+1 = (
1
2

+ w)(pk
i + pk

i+1) − w(pk
i−1 + pk

i+2) (2)

along the other two directions [7] and the generaliza-
tion of this 4-point scheme leads to the interpolatory

√
3-

subdivision (See Figure 1.b).
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Figure 1. Stencil of the Butterfly scheme (a)
and interpolatory

√
3-subdivision scheme (b)

In this 12-point stencil, a new point is computed as

qk+1 = a(pk
0 + pk

1 + pk
2) + b(pk

3 + pk
4 + pk

5)+

c(pk
6 + pk

7 + pk
8 + pk

9 + pk
10 + pk

11). (3)

The parameters a, b, c can be derived from equation

p(
5
3
) = − 4

81
f(0) +

20
27

f(1) +
20
27

f(2) − 5
81

f(3), (4)

where p(x) is a cubic polynomial interpolating four given
points f(0), f(1), f(2), f(3) [7]. By evaluating the equa-
tion above, we get a = 32

81 , b = − 1
81 and c = − 2

81 .

3. Point-based splines

Thomas W. Sederberg et al proposed point-based (PB)
spline over rectangular grids in [10]. This type of tensor-
product PB-spline is defined as

P(s, t) =
n∑

i=1

PiB
n
i (s, t)/

n∑

i=1

Bn
i (s, t), (5)

where Pi are control points and Bn
i (s, t) is the basis func-

tion given by

Bn
i (s, t) = M3

i0(s)N
3
i0(t),

where M3
i0(s) is the cubic B-spline function associated with

knot vector si = [si0, si1, si2, si3, si4] and N3
i0(t) is the

cubic B-spline function associated with knot vector ti =
[ti0, ti1, ti2, ti3, ti4].

Sederberg’s PB-splines are defined over rectangular do-
main. In this paper, we propose a new PB-spline defined
over a regular triangular parametric domain D. The basis
function Pi(u, v, w), with barycentric coordinate (u, v, w),
is a piecewise polynomial which is constructed as follows.
First, a 1-disc basis function Di(u, v, w) is defined over the
1-neighborhood of each vertex pi, Ωi (Union of all triangles
around pi, See Figure 2.a).
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Figure 2. Ωi(a) and the Clough-Tocher split
over triangle �i2(b)

A piecewise Bézier function Fij(u, v, w) of degree N ≥
4 is defined over the macro-elements of Clough-Tocher(CT)
split [2] for each triangle �ij ⊂ Ωi, j = 0, . . . , 5. In Fig-
ure (2.b), we show the CT split for j = 2. It should be
noted that the value of Fi2 is 1 at pi, 1

3 at barycenter Oi2

and 0 along the boundary pi2pi3. More constraints should
be added to maintain the C1(G1) smooth boundary condi-
tions between �i2 and its neighbor (�i1,�i3 and outside
Ωi respectively). [8]. By applying above procedure to each
triangle in Ωi, we get a piecewise Bézier function Di of de-
gree N over D which has local support Ωi (See Figure 3.a)
and

Di|�ij
= Fij , j = 0, . . . , 5.

The 1-disc PB basis functions Di have the following ad-
vantages:

1. 0 ≤ Di(u, v, w) ≤ 1 for any (u, v, w) ∈ D, and Di ≡
0 on D\Ω;

2. Di |pi
= 1 and Di |Oij

= 1/3 for j = 0, . . . , 5 and any
i, where Oij is the barycenter of triangle �ij .

3.
∑

i Di ≡ 1 over D if all triangles are equilateral.
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Now the 1-disc PB-spline can be defined as

D(u, v, w) =
∑

i

ciDi(u, v, w)/
∑

i

Di(u, v, w). (6)

(a) (b)

Figure 3. 1-Disc (a) and 2-Disc (b) PB spline

We note that the value of
∑

i Di at the barycenter of tri-
angle �pipjpk depends on only three basis functions: Di,
Dj and Dk, i.e., Di|p = Dj |p = Dk|p = 1/3. When
applied to generate a subdivision scheme in 3-dimensional
space by adding a new point at its barycenter u = v = 1/3,
it is easy to verify that the new point is coplanar with the
vertices pi, pj , pk, thus the ‘refinement’ operation has no
effects on the coarser mesh.

To overcome above limits, we extend the 1-disc PB-
splines to 2-disc PB-splines which need 2-neighborhood of
a vertex and use a parameter α to combine the 1-disc PB-
splines.

The 2-disc PB-spline basis function Pi(u, v, w) over tri-
angular domain D can be written as

Pi(u, v, w) = Di(u, v, w) + α

5∑

j=0

Dij(u, v, w), (7)

where Di(u, v, w), {Dij}5
j=0 is the 1-disc PB-spline basis

function of vertex pi and its 1-neighbor {pij}5
j=0 respec-

tively. Now function Pi is 1 at pi, α at 1-neighbor vertices
{pij}5

j=0, and constant 0 outside the 2-neighborhood (See
Figure 3.b). Moreover, Pi has some nice properties:

1. If triangles in domain D are all equilateral triangles,∑
i∈Z

Pi(u, v, w) ≡ 1 + 6α, for any (u, v, w) ∈ D.

2. Pi(u, v, w) is a C2 continuous Bézier function over
each macro-element of Clough-Tocher split of domain
D and C1 continuous on the boundary of each macro-
element, as well as C1 continuous along the boundary
of the whole support.

Now a 2-disc PB-spline of degree N (N ≥ 4) over a
triangular domain can be written as

P(u, v, w) =
∑

i

ciPi(u, v, w)/
∑

i

Pi(u, v, w). (8)

In the next section we will propose a subdivision scheme
over triangular mesh based on 2-disc PB-splines.

4. Subdivision scheme

The new point added to each triangle during one step of
subdivision is the linear combination of all points whose
2-disc splines influence the triangle. Therefore a 12-point
stencil is needed when computing a new point (See Figure
1.b).

From the stencil and the properties of PB-spline we
know that

∑
i Pi|p = 1 + 6α, where p is the barycenter of

any triangle domain. So given heights hi over each vertex
of the stencil, the height of p, say h, is computed as

h = (
11∑

i=0

hiPi|p)/(1 + 6α), (9)

where Pi|p can be derived from equation (7) as

P0|p = P1|p = P2|p = (1 + 2α)/3,

P3|p = P4|p = P5|p = 2α/3, (10)

Pi|p = α/3, i = 6, . . . , 11.

Given the control mesh Mk ⊂ R
3 of the k-th subdivision

step, we now generate the (k + 1)-th finer mesh Mk+1 by
introducing a point to each triangle of Mk. To do so, we
first find the stencil in which all vertices are regular (valence
= 6), and then we determine the new point qk+1 by the
following equation

qk+1 = a(pk
0 +pk

1 +pk
2)+b(pk

3 +pk
4 +pk

5)+c
11∑

i=6

pk
i , (11)

where pk
i is the vertex on Mk ⊂ R

3, and

a = (1 + 2α)/(3 + 18α), c = α/(3 + 18α), b = 2c.

Obviously this scheme leads to C0 continuous limit sur-
face since 3a + 3b + 6c ≡ 1 for any parameter α ∈
R\{−1/6}, while a, b, c have no definition for α = −1/6.
The subdivision matrix S of the scheme, which has a size
of 37 × 37 and whose elements are determined by equa-
tions (11), maps a certain region of Mk to a ‘scaled’ region
in the (k + 1)-th mesh Mk+1. L. Kobbelt [6] suggests to
use matrix S̃ = RSS instead of S to analyze the conver-
gence of the scheme where R is a permutation matrix. The
eigen-analysis of matrix S̃ = RSS shows that the scheme
is convergent and leads to C1 limit surfaces if the leading
eigenvalues of S̃ are

λ0 = 1, λ1 = λ2 = 1/3, |λi| < 1/3, i = 3, . . . , 36.
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For our scheme, these conditions are satisfied for any
α ∈ (−0.08,−0.025) by computing the eigenvalues of S̃
numerically.

We also analyze the behavior of the difference scheme of
6-ring subdivision matrix which is the size of 127×127 [6],
and we have numerically proved that the largest singular
value of the 3rd directional difference matrix Sn is less than
1/9 when α ∈ (−0.056,−0.032), i.e.,

32 ‖ Sn(α) ‖< 1,

which means our subdivision scheme is C2 convergent for
any parameter α ∈ (−0.056,−0.032).

5. Rules for extraordinary vertices & bound-
aries

The rule presented above works only for regular triangu-
lar meshes. New rule has to be derived such that the limit
surface near extraordinary vertices and along boundaries is
at least C1 continuous.

5.1. Extraordinary vertices

In case of extraordinary vertex we use the method pre-
sented in [7] to treat the problem. In the interpolatory

√
3-

subdivision, a new vertex qk+1 is computed by

qk+1 = αpk +
n−1∑

i=0

αip
k
i , (12)

where pk is the extraordinary vertex of the mesh Mk,
{pk

i }n−1
k=0 is the neighbor set of pk, n is the valence of

pk, and α, αi are the weights of pk, pk
i respectively. The

subdivision matrix S over the extraordinary vertex pk is a

� �
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Figure 4. Curve subdivision rules along the
boundary edges

(n + 1) × (n + 1) matrix. With the help of sophisticated
eigen-analysis of S̃ = RSS similar to the regular case, we
get the weights for a double step subdivision scheme as fol-
lows (n ≥ 5):

α̃ = 8/9, α̃n
i = {1

9
+

2
3

cos(
2πi

n
) +

2
9

cos(
4πi

n
)}/n,

for n = 3 we have

α̃ = 8/9, α̃3
0 = 7/27, α̃3

1 = α̃3
2 = −2/27,

and for n = 4 we take

α̃ = 8/9, α̃4
0 = 7/36, α̃4

1 = α̃4
3 = 1/36, α̃4

2 = −5/36.

And the weight in matrix S is a suitable square root of
S2 which can be obtained by eigenvector analysis of S2.
With these weights, the leading eigenvalues of S̃ for n ≥ 5
are

λ0 = 1, λ1 = λ2 = 1/3, λ3 = λ4 = λ5 = 1/9. (13)

5.2. Boundary edges

No inner vertices should be involved in computation of
boundary edge points, which means the boundary edge sub-
division rule should be a curve subdivision scheme other
than a surface one.
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Figure 5. ‘Virtual’ points near boundary of the
mesh

Splitting a boundary edge into three parts in every two
steps of subdivision, we use the rules proposed in [7]. Two
vertices are inserted on the edge using the stencil which
contains 4 points (See Figure 4). The scheme leads to C1

boundary curves.
The subdivision rules are

pk+1
3i−1 = − 4

81
pk

i−2 +
10
27

pk
i−1 +

20
27

pk
i − 5

81
pk

i+1

pk+1
3i+1 = − 5

81
pk

i−1 +
20
27

pk
i +

10
27

pk
i+1 −

4
81

pk
i+2.
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5.3. Boundary triangles

For the case of boundary triangles, ‘virtual’ points [7]
might be used to construct the entire stencil which are com-
puted as follows:

p̃k
3 = pk

0 + pk
1 − pk

2 , p̃k
6 = 2pk

1 − pk
2 , p̃k

11 = 2pk
0 − pk

2 .

where points p̃k
3 , p̃k

6 , p̃k
11 are ‘virtual’ points that lie outside

the mesh (See Figure 5). By applying the regular subdivi-
sion rule on this modified stencil, new face point is added to
the boundary triangle where each inner vertex has valence
6. If the valence of the vertex is not 6, the rule for extraor-
dinary vertex is implemented.

6. Examples

We applied our subdivision scheme to several examples.
The parameter α in our models is set to be −0.045, though
other choice might be used in practical applications. Figure
6 shows the resulting mesh of a 2-Torus model using classi-
cal Butterfly scheme (6.b) and our subdivision scheme (6.c).
We see that a fair number of creases appear in (6.b) while
they disappear when using our scheme.

(a) (b) (c)

Figure 6. Subdivision comparison over a
2-torus model. Images from left to right
are: initial mesh(a); 4-step Butterfly resulting
mesh(b); our scheme after 5 steps(c). Here
we see considerable wrinkles appear after us-
ing Butterfly scheme(b), while they disappear
in our scheme(c).

Another example is Doraemon model. We compare
the interpolatory-

√
3 scheme with our subdivision scheme

based on PB-splines(See Figure 7). The two schemes lead
to the same mesh size with 304236 vertices and 608472 tri-
angles. (7.b) and (7.c) show the resulting meshes along with
some local details. Here we see that our method has more
powerful capability to handle the sharp characters such as
the mouth corner.

We also apply our scheme to some other models. Fig-
ure 8 shows the resulting mesh of famous Venus model
and Table 1 shows the Gaussian curvature distributions (and

other details) of these schemes, from which we see our
new scheme demonstrate more advantages against Butter-
fly scheme - much less wrinkles, lower curvature bound and
lower curvature variance.

(a) (b) (c)

Figure 7. Famous cartoon character Dorae-
mon model. (a) is the coarse mesh; (b) is
4-step interpolatory-

√
3 resulting surface and

(c) is resulting mesh of our scheme after 4
steps. More details on the mouth corner are
shown as well.

Model V T GI GA GV GR

1 Btfly(4) 8k 17k -1.2 2.3 0.6 0.6
Our(5) 8k 16k -0.6 1.3 0.3 0.3

2 I-
√

3(4) 304k 608k -26.4 29.3 1.4 9.3
Our(4) 304k 608k -21.5 23.7 1.1 7.5

3 I-
√

3(5) 172k 344k -3.8 5.7 0.9 1.6
Our(5) 172k 344k -2.6 4.2 0.8 1.1

Table 1. Subdivision methods compar-
ison via Gaussian curvature distribu-
tion. The columns from left to right
are: Model (1: 2Torus, 2: Doraemon,
3: Venus), Subdivision Type (Number),
Vertices, Triangles, Gaussian curvature
mInimum/mAximum/aVerage/vaRiance.

7. Conclusions & future work

We have derived a new interpolatory subdivision scheme
for triangle meshes based on PB-splines. It can produce
various smooth surfaces and lead to C0, C1 or C2 smooth
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(a) (b) (c)

Figure 8. Subdivision Surfaces from Venus
model. (a) is the original mesh with 711 ver-
tices and 1418 triangles; (b) is the result-
ing surface after 5 steps of interpolatory-

√
3

scheme and (c) is the surface after 5 steps of
our scheme, details on the sharp characters
are shown in smaller pictures.

surfaces by applying different values of a parameter α to
each regular vertex.

By using 1-to-9 split in every other step instead of 1-to-
4 split which is commonly used in methods of triangular
subdivision, only three new triangles are computed out of a
coarse triangle in each step. Therefore the growth of mesh
size is reduced compared to the normal 1-to-4 split and
more refinement levels can be computed before the mesh
reaches the prescribed complexity.

By far we only apply parameter α on regular vertices
(valence=6) to refine triangle meshes. It’s believable that
α(n) with respect to the valence n, may be obtained through
further analysis of the subdivision stencil near extraordinary
vertex. Although it’s hard to get the analytic expression of
α(n), numerical value or approximation of α(n) might be
reasonably investigated from which new subdivision refine-
ment rules over irregular vertices may be available.

Another open question is how to decide accurate α based
on local curvature. Examples in this paper use uniform
value of −0.045, but other choices should be explored in
practical designs.
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