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Abstract. The μ-bases of rational curves and surfaces are newly devel-
oped tools which play an important role in connecting parametric forms
and implicit forms of curves and surfaces. However, exact μ-bases may
have high degree with complicated rational coefficients and are often hard
to compute (especially for surfaces), and sometimes they are not easy to
use in geometric modeling and processing applications. In this paper,
we introduce approximate μ-bases for rational curves and surfaces, and
present an algorithm to compute approximate μ-bases. The algorithm
amounts to solving a generalized eigenvalue problem and some quadratic
programming problems with linear constraints. As applications, approxi-
mate implicitization and degree reduction of rational curves and surfaces
with approximate μ-bases are discussed. Both the parametric equations
and the implicit equations of the approximate curves/surfaces are easily
obtained by using the approximate μ-bases. As indicated by the exam-
ples, the proposed algorithm may be a useful alternative to other methods
for approximate implicitization.
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1 Introduction

The concept of μ-bases was first introduced in [9] to derive a compact repre-
sentation for the implicit equation of a planar rational curve. The basic idea of
μ-bases originates in a method called moving curves and surfaces to implicitize
rational curves and surfaces [16]. The μ-basis of a planar rational curve of degree
n consists of two polynomials p(x, y; t) and q(x, y; t) which are linear in x, y and
degree μ and n − μ in t respectively, where 0 � μ � �n/2�. The resultant of p
and q with respect to t gives the implicit equation of the rational curve. In the
generic case, μ = �n/2�, and thus the implicit equation of a rational curve can
be expressed as a determinant of size �n/2�×�n/2�, whereas previous resultant-
based methods express the implicit equation as either an n × n determinant or
an 2n × 2n determinant. The μ-basis can not only compute the implicit equa-
tion of a rational curve, but also recover the parametric equation of the curve
conveniently. Thus μ-bases connect the and the parametric form of a curve.

The concept of μ-bases was subsequently generalized to rational ruled sur-
faces[2,6] and general rational surfaces [7]. Various algorithms to compute the

M.-S. Kim and K. Shimada (Eds.): GMP 2006, LNCS 4077, pp. 175–188, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



176 L. Shen et al.

μ-bases for rational curves and rational surfaces were developed [3,10,19]. Ap-
plications of μ-bases to implicitization, singular point computation and surface
reparameterization are explored as well [4,5,8]. Thus μ-bases provide a new tool
to study curves and surfaces in geometric modeling.

However, the use of exact μ-bases leads to some problems in applications.
First, general μ-bases may have very complicated rational coefficients and/or
high degree, and they are therefore hard to use in practice. Second, it is very
costly to compute μ-bases, especially for surfaces. Finally, curves and surfaces
in CAD systems are usually described by floating point coefficients, and in these
situations, exact μ-bases are often unnecessary. To overcome these difficulties,
we introduce the concept of approximate μ-bases. These bases have low degree
and are described by floating point coefficients. They can be found by numerical
techniques.

A direct application of approximate μ-bases is the approximate implicitiza-
tion (see [1,11,17,18]) of rational curves and surfaces. As an obvious advantage
of the new approach, both a parametric and an implicit representation of the ap-
proximating curve or surface are available, and the parametric equation can be
easily recovered by evaluating the exterior product of the approximate μ-bases.
In addition, the new approach can also be used as a degree reduction technique
for rational curves and surfaces. See [12,13,14,15] for more information on this
topic.

The organization of the paper is as follows. Section 2 reviews some preliminary
results about the μ-bases of rational curves and surfaces. Section 3 introduces
approximate μ-bases for rational curves and presents an algorithm to compute
them. Applications of approximate μ-bases to approximate implicitization and
degree reduction are discussed. In Section 4, we generalize the results of Section
3 to rational surfaces. Finally we conclude this paper.

2 μ-Bases of Rational Curves and Surfaces

Consider a planar rational curve in homogenous form

P(t) = (a(t), b(t), c(t)), (1)

where a(t), b(t), c(t) are relatively prime polynomials whose maximum degree
equals n. A moving line is a family of lines with parameter t,

L(x, y; t) := A(t)x + B(t)y + C(t) = 0, (2)

where A(t), B(t), C(t) are polynomials. For simplicity, sometimes we write a
moving line as L(t) := (A(t), B(t), C(t)). The moving line (2) is said to follow
the rational curve (1) if

L(t) · P(t) = A(t)a(t) + B(t)b(t) + C(t)c(t) ≡ 0. (3)

A μ-basis of a planar rational curve of degree n consists of two independent
moving lines p = p1x+p2y+p3 and q = q1x+q2y+q3 that follow the curve, where
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the degree in t of p and q sums up to n. Let p = (p1, p2, p3) and q = (q1, q2, q3).
Then the μ-basis has the following properties [3]:

1. p × q = κ(a, b, c) for some non-zero constant κ.
2. For any moving line l(t), there exist polynomials h1(t) and h2(t) such that

l(t) = h1p + h2q.

3. The resultant of p and q with respect to t gives the implicit equation of the
rational curve (1).

The concept of μ-bases can be generalized to rational surfaces. Let

P(s, t) = (a(s, t), b(s, t), c(s, t), d(s, t)), (4)

be a rational surface in homogeneous form, where a, b, c, d are bivariate polyno-
mials in s and t, and gcd(a, b, c, d) = 1. We assume that the rational surface
(4) is given by a proper parameterization. A moving plane is defined by

L(x, y, z; s, t) := A(s, t)x + B(s, t)y + C(s, t)z + D(s, t) = 0,

where A, B, C, D are polynomials in s and t. Sometimes we use L(s, t) :=
(A(s, t), B(s, t), C(s, t), D(s, t)) to denote the moving plane. The moving plane
L(s, t) is said to follow the rational surface (4) if and only if

L(s, t) · P(s, t) = aA + bB + cC + dD ≡ 0. (5)

A μ-basis of the rational surface (4) consists of three moving planes p,q, r fol-
lowing (4) such that

[p,q, r] = κP(s, t) (6)

for some nonzero constant κ. Here [p,q, r] is the exterior product of p, q, and r,

[p,q, r] =

⎛
⎝

∣∣∣∣∣∣
p2 p3 p4
q2 q3 q4
r2 r3 r4

∣∣∣∣∣∣
, −

∣∣∣∣∣∣
p1 p3 p4
q1 q3 q4
r1 r3 r4

∣∣∣∣∣∣
,

∣∣∣∣∣∣
p1 p2 p4
q1 q2 q4
r1 r2 r4

∣∣∣∣∣∣
, −

∣∣∣∣∣∣
p1 p2 p3
q1 q2 q3
r1 r2 r3

∣∣∣∣∣∣

⎞
⎠ . (7)

Furthermore, p,q, r are said to form a minimal μ-basis of the rational surface (4)
if p,q, r have minimal degree. Unlike curves, for surfaces many possible notions
of minimal degree exist. One notion that works well for tensor product surfaces
is the following.

1. among all triples p,q, r satisfying (6), degt(p)+degt(q)+degt(r) is minimal,
and

2. among all triples p,q, r satisfying (6) and the previous condition, degs(p)+
degs(q) + degs(r) is minimal.

Here, degt(p) = max1�i�4(degt(pi)) when p = (p1, p2, p3, p4), and degt(q),
degt(r), degs(p), degs(q), degs(r) are defined similarly. Sometimes we refer to
the three polynomials

p = p · X, q = q · X, r = r · X, X = (x, y, z, 1),

as the μ-basis of the rational surface (4). As observed in [7], a μ-basis forms a
basis for the set of all the moving planes following P(s, t).
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3 Approximate μ-Bases of Rational Curves

In this section, we introduce the novel concept of approximate μ-bases for ra-
tional curves and present an algorithm to compute them. The applications to
approximate implicitization and to degree reduction of rational curves are also
discussed.

3.1 Approximate μ-Bases

For the given rational curve P(t) defined in (1), if a moving line satisfies

A(t)a(t) + B(t)b(t) + C(t)c(t) ≈ 0, (8)

then we call the moving line A(t)x + B(t)y + C(t) = 0 an approximate moving
line of P(t). Here “≈” means that the left hand side of the equation (8) is
approximately zero with respect to some criteria which will be specified later.

An approximate μ-basis of the rational curve P(t) consists of two approximate
moving lines p(t) and q(t) such that p(t)×q(t) is a good approximation to P(t).
It is obvious that a different choice for the approximation criteria will lead to
a different specification for the approximate μ-basis. In the next subsection, we
will provide more details of the criteria in order to facilitate the computation of
approximate μ-bases.

3.2 Computation

We describe the computation of the first and of the second approximate moving
line.

Computing the first line. The moving line is written in Bézier form,

p(t) =
μ∑

i=0

piB
μ
i (t) = (p1(t), p2(t), p3(t)),

where pi = (pi1, pi2, pi3), pi(t) =
∑μ

j=0 pjiB
μ
j (t), and 0 < μ � �n/2�. In order

to deal with condition (8), we introduce the following optimization problem:
∫ 1

0
(P(t) · p(t))2dt =

∫ 1

0
(a(t)p1(t) + b(t)p2(t) + c(t)p3(t))2dt → min . (9)

Furthermore, we normalize the approximate moving line by imposing
∫ 1

0
(p1(t)2 + p2(t)2)dt = 1. (10)

In order to find the first approximate moving line, we minimize (9) subject to
(10). Let

a(t)p1(t) + b(t)p2(t) + c(t)p3(t) = g(t) · x,

where g(t) is a vector of dimension 3(μ + 1) with the components



Approximate μ-Bases of Rational Curves and Surfaces 179

gi(t) = a(t)Bμ
i (t), gμ+1+i(t) = b(t)Bμ

i (t), g2μ+2+i(t) = c(t)Bμ
i (t),

i = 0, 1, . . . , μ, and x = (p0,1, · · · , pμ,1, p0,2, · · · , pμ,2, p0,3, · · · , pμ,3) is a vector
which consists of all the unknown coefficients of p(t). The objective function (9)
can be rewritten as

∫ 1

0
(a(t)p1(t) + b(t)p2(t) + c(t)p3(t))2dt =

∫ 1

0
x · g(t)T g(t) · xT dt = xMxT ,

where M is a positive semi-definite 3(μ + 1) × 3(μ + 1) matrix. Similarly, the
normalization condition is rewritten as

∫ 1

0
(p1(t)2 + p2(t)2)dt = xNxT ,

where N = diag(D,D, 0) is a positive semi-definite 3(μ + 1) × 3(μ + 1) matrix,
and D = (dij) is a positive definite μ+1×μ+1 matrix. The components of the
matrices are

mij =
∫ 1

0
gi(t)gj(t)dt and dij =

∫ 1

0
Bμ

i−1(t)B
μ
j−1(t)dt

the optimization problem can be rewritten as

xMxT → min subject to xNxT = 1. (11)

If detM = 0, then there exists x̄ = (p̄0,1, · · · , p̄μ,1, p̄0,2, · · · , p̄μ,2, p̄0,3, · · · , p̄μ,3)
such that

∫ 1

0
(a(t)p̄1(t) + b(t)p̄2(t) + c(t)p̄3(t))2dt = x̄Mx̄T = 0.

In this case, a(t)p̄1(t) + b(t)p̄2(t) + c(t)p̄3(t) ≡ 0, which means p(t) is an exact
moving line. Otherwise, if detM �= 0, i.e., if M is positive definite, then there
do not exist exact moving lines of degree μ. The solution of (11) then defines an
approximate moving line.

The problem (11) can be solved by using Lagrangian multipliers. A short
computation leads to the equations

det(M − λN) = 0, (M − λN)xT = 0, (12)

and xMxT = λ. Therefore computing an approximate moving line p(t) is equiv-
alent to solving the generalized eigenvalue problem (12).

The determinant det(M − λN) is a polynomial of degree γ = 2(μ + 1) in
λ. Suppose the zeros of det(M − λN) are λ1 � λ2 � · · · � λγ , which are the
generalized eigenvalues, and the corresponding eigenvectors are x1,x2, · · · ,xγ .
Since xMxT = λ, the optimal solution is given by x = x1. Thus we get one
element p(t) = (x11 · t,x12 · t,x13 · t) of the approximate μ-basis. Here xi =
(xi1,xi2,xi3), xij is a vector of dimension μ + 1, i = 1, 2, . . . , γ, j = 1, 2, 3, and
t = (Bμ

0 (t), Bμ
1 (t), . . . , Bμ

μ(t)).
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Computing the second line. An obvious choice for the second element q(t)
of the approximate μ-basis is q(t) = (x21 ·t,x22 ·t,x23 ·t). However, such a choice
may have some limitations. First, the degree of q(t) must be the same as p(t).
Second, it may happen that the curve p(t)×q(t) is not defined at some parameter
values in [0, 1], i.e., there exists t0 ∈ [0, 1] such that the third component of
p(t0)×q(t0) is zero. Third, p(t)×q(t) may not be a good approximation of the
given curve P(t). In this section, we develop other techniques to find the second
element q(t) of the approximate μ-basis. We assume that deg(q) = μ̄ � μ.

Let y be the vector consisting of the coefficients of q(t). In order to define
a reasonable curve from p × q := P̄(t) := (ā, b̄, c̄), q must satisfy p1(t)q2(t) −
q2(t)p1(t) �= 0 for all t ∈ [0, 1]. On the other hand, we expect that P̄(t) is a good
approximation of P(t), i.e., ā/a ≈ b̄/b ≈ c̄/c. Hence, we minimize

∫ 1

0
(ab̄ − āb)2 + (bc̄ − b̄c)2 + (cā − c̄a)2dt = yM̄yT .

Summing up, we need to solve the optimization problem

yM̄yT → min subject to yNyT = 1 and p1q2 − p2q1 �= 0, t ∈ [0, 1]. (13)

We write p1q2−p2q1 in Bernstein-Bézier form. Suppose that its Bézier coefficient
vector is LyT , where L is a (μ + μ̄ + 1) × (3μ̄ + 3) matrix. Then the constraint
p1q2 − p2q1 �= 0 can be replaced by the sufficient linear conditions LyT � −E,
where E = (e1, e2, · · · , e3μ̄+3)T , ei is a small positive number, i = 1, . . . , 3(μ+1).
Thus instead of solving (13), we will solve

yM̄yT → min subject to yNyT = 1 and LyT � −E. (14)

In order to simplify this problem, we first solve a series of simpler optimization
problems,

yM̄yT → min subject to yi = 1 and LyT � −1, (15)

where i = 1, . . . , 3μ̄ + 3, and 1 = (1, 1, · · · , 1) is a column vector of dimension
3μ̄ + 3. If {y|yi = 1, LyT � −1} �= ∅, then there exists a solution for the
corresponding problem.

Suppose we obtain m solutions y1, . . . ,ym, m � 3μ̄ + 3. Then the coefficient
vector of q(t) is defined as an affine combination

y =
m∑

i=1

αiyi, where αi ∈ [0, 1] and
m∑

i=1

αi = 1.

In the following, we propose a technique to determine the optimal coefficients.
In order to find them, we maximize the angle between the two moving lines
p(t) = 0 and q(t) = 0. Since the normals of the two lines are (p2, −p1) and
(q2, −q1) respectively, we will minimize

∫ 1
0 (p1q1 + p2q2)2dt. This leads to the

following optimization problem:

αM̃αT → min subject to
m∑

i=1

αi = 1 and 0 � αi � 1, i = 1, . . . , m. (16)
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Consequently, in order to find the second moving line, we need solve at most
3μ̄ + 4 quadratic programming problems with linear constraints.

Remark 1. If μ̄ = μ, we can set

q(t) = α2x2 + . . . + αlxl, (17)

where x2, . . . ,xl are generalized eigenvectors defined in (12), and αi, i = 2, . . . , l
are the coefficients. Here we choose l � 2 such that λl � 2

√
λ1. The coefficients

can be computed by solving a quadratic programming problem.

Example 1. Given a rational curve P(t) = (a(t), b(t), c(t)) of degree 12:

a(t) = 654t12 − 5904t11 + 20592t10 − 38720t9 + 63360t8 − 126720t7 + 177408t6

− 101376t5 + 24576t − 4096,

b(t) = − 173t12 + 4752t11 − 50688t10 + 264000t9 − 760320t8 + 1241856t7

− 1005312t6 + 760320t4 − 675840t3 + 270336t2 − 49152t + 4096,

c(t) = 189t12 + 660t11 − 14916t10 + 45760t9 + 47520t8 − 570240t7 + 1478400t6

− 2027520t5 + 1647360t4 − 788480t3 + 202752t2 − 24576t + 8192.

Set μ = 2, μ̄ = 3. With the method presented in the previous sub-subsection,
the approximate μ-bases are computed as

p = ( − 0.05102032592B2
0(t) − 0.4807954605B2

1(t) − 1.038288624B2
2(t),

− 0.06065488069B2
0(t) − 0.1692187275B2

1(t) − 1.694077190B2
2(t),

0.005200267248B2
0(t) − 0.2832738286B2

1(t) + 3.279553214B2
2(t)),

q = ( − 0.04159716413B3
0(t) + 0.9016040373B3

1(t) + 1.379605454B3
2(t)

− 1.727525622B2
3(t), 0.5204348143B3

0(t) + 0.6001839987B3
1(t)

+ 1.997824400B3
2(t) − 0.1722884058B3

3(t), −0.2875610577B3
0(t)

+ 1.146012829B3
1(t) − 4.681463727B3

2(t) + 3.431341524B3
3(t)).

As a comparison, the exact μ-basis computed by the algorithm in [3] consists
of two moving lines of degree six, and the coefficients in the μ-basis are integers
with approximately forty digits.

3.3 Applications

We present two applications of approximate μ-bases of rational curves to degree
reduction and to approximate implicitization, respectively.

Degree reduction. Based on the approximate μ-basis, a degree reduced ratio-
nal curve P̄(t) can be obtained directly from the exterior product of p(t) and
q(t). Assume the error between the original curve and the degree reduced curve
is measured by



182 L. Shen et al.

0.7

0.6

0.4

0.2

1.00.0

0.5

1.50.5−0.5

0.3

0.7

0.6

0.2

0.5−0.5

0.5

0.4

2.01.00.0

0.3

1.5

a. Approximate μ-basis b. Eck’s method

Fig. 1. Degree reduction without constraints

e(P, P̄) :=

√√√√√
∫ 1

0

⎛
⎝

(
a(t)
c(t)

− ã(t)
c̃(t)

)2

+

(
b(t)
c(t)

− b̃(t)
c̃(t)

)2
⎞
⎠ dt.

For the curve in Example 1, the approximation error is 0.00332. Figure 1.a
illustrates the approximation result, where the original curve is dashed, and the
degree reduced curve is solid.

As a comparison, if we use Eck’s method [13] to reduce the same degree of
the curve in Example 1, the degree reduction error is 0.0114. See Figure 1.b for
an illustration.

In some cases, boundary conditions [13] are required. In order to satisfy them,
we require that p(t) respects the conditions

di

dti
(P(t) · p(t))|t=0 = 0,

di

dti
(P(t) · p(t))|t=1 = 0, i = 0, 1, . . . , k. (18)

The conditions (18) can be written in matrix form QxT = 0, where Q is a
matrix of order 2(k + 1) × 3(μ + 1). Hence p(t) is the solution of the following
optimization problem:

xMxT → min subject to xNxT = 1 and QxT = 0. (19)

In order to find q(t), we add QxT = 0 to (15).

Example 2. We continue the previous example. If we impose C1 end-points
interpolation conditions, and — in order to simplify the computation — set
μ̄ = μ = 2, then

p = (0.7771853455(1− t)2 + 2.355233260t(1− t) + 0.8057279534t2,

− 0.6976122684(1− t)2 − 0.7195012836t(1− t) + 0.4112876045t2,

0.7373988081(1− t)2 − 2.767665960t(1− t) − 1.856287881t2),
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Fig. 2. Degree reduction with C1 constraints

q = (1.524480118(1− t)2 + 1.879443954t(1 − t) − 0.5076826073t2,

− 0.6343217809(1− t)2 + 1.998870979t(1 − t) + 0.5295267213t2,

1.079400949(1− t)2 − 5.200881704t(1 − t) + 0.5705104408t2).

The error is 0.0525. If we use Eck’s method to obtain an end-point C1 interpola-
tion reduction, the approximate error is 0.156. Figure 2.a and Figure 2.b depict
the degree-reduced curves.

A more detailed comparison with other techniques for degree reduction may be
a subject for further research. Unlike most existing techniques, our method can
handle rational curves, and it generates a truly rational curve.

Approximate implicitization. By computing the resultant of p = p(t) ·
(x, y, 1) and q = q(t) · (x, y, 1) with respect to t, we obtain the approximate
implicit equation of the original curve. Note that the curve defined by the im-
plicit equation has — at the same time — a rational parameterization.

Example 3. An approximate implicit equation of the curve in Example 1 is

F (x, y) := 0.3790735866 x5 − 0.1877970243 x4y − 0.7592764650 x3y2

+ 0.038491110 x2y3 + 0.2978093541 xy4 − 0.3360449642 y5

− 0.0124850348 x4 + 1.716117584 x3y + 1.20600026 x2y2

− 0.740052063 xy3 + 3.030997755 y4 − 1.929933707 x3

− 4.54990339 x2y + 0.903009110 xy2 − 9.592329447 y3

+ 3.245601207 x2 − 0.76223425 xy + 13.59527146 y2

− 0.40069231 x− 7.860226927 y + 0.769956394 = 0.
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4 Approximate μ-Bases of Rational Surfaces

We generalize the results for approximate μ-bases of rational curves to rational
surfaces. Since the discussions are similar to those for rational curves, we just
outline the main results.

4.1 Definition and Computation

Consider a rational parametric surface of bi-degree (m, n) in homogeneous form,

P(s, t) = (a(s, t), b(s, t), c(s, t), d(s, t)) :=
m∑

i=0

n∑
j=0

PijωijB
m
i (s)Bn

j (t), (20)

where Pij = (xij , yij , zij , 1) and ωij , i = 0, 1, . . . , m, j = 0, 1, . . . , n are control
points and their corresponding weights respectively. An approximate moving
plane of P(s, t) is a moving plane A(s, t)x + B(s, t)y + C(s, t)z + D(s, t) = 0
which minimizes

∫ 1

0

∫ 1

0
(A(s, t)a(s, t) + B(s, t)b(s, t) + C(s, t)c(s, t) + D(s, t)d(s, t)) ds dt (21)

subject to the normalization condition
∫ 1

0

∫ 1

0
(A(s, t)2 + B(s, t)2 + C(s, t)2 + D(s, t)2) ds dt = 1. (22)

An approximate μ-basis of P(s, t) consists of three approximate moving planes

p(s, t) = (p1(s, t), p2(s, t), p3(s, t), p4(s, t)),
q(s, t) = (q1(s, t), q2(s, t), q3(s, t), q4(s, t)),
r(s, t) = (r1(s, t), r2(s, t), r3(s, t), r4(s, t)),

such that [p(s, t),q(s, t), r(s, t)] �= 0 approximates P(s, t) with respect to some
criteria.

We represent the three moving planes in Bernstein-Bézier form,
⎛
⎝

p(s, t)
q(s, t)
r(s, t)

⎞
⎠ =

m0∑
i=0

n0∑
j=0

⎛
⎝

pij

qij

rij

⎞
⎠ Bm

i (s)Bn
j (t) (23)

with control points pij = (pij1, pij2, pij3, pij4), etc. While each of the three mov-
ing planes could have different degrees, we choose all of them to be equal to
m0, n0.

Similar to the curve case, the approximate moving planes can be obtained by
solving the generalized eigenvalue problems

det(M − λN) = 0, (M − λN)xT = 0, (24)

where both M and N are semi-positive definitive matrices of order 4(m0+1)(n0+
1). It follows that det(M−λN) is a polynomial of degree γ = 3(m0 +1)(n0 +1)
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in λ. Assume the zeros of det(M − λN) are λ1 � λ2 � · · · � λγ , and their
corresponding generalized eigenvectors are y1,y2, . . . ,yγ . Then we can take y1,
y2, and y3 to be coefficients of p(s, t), q(s, t), and r(s, t), respectively. But if we
expect [p(s, t),q(s, t), r(s, t)] to represent a rational surface patch over [0, 1]2,
then for any (s, t) ∈ [0, 1]2, ∣∣∣∣∣∣

p1 p2 p3
q1 q2 q3
r1 r2 r3

∣∣∣∣∣∣
�= 0. (25)

must hold. In order to satisfy this condition, we only select y1 and y2 as the
coefficients of p and q respectively. The coefficient vector z of the element r is
set to be the linear combination of y3, . . . ,yl for some l < γ: z =

∑l
i=3 αiyi. The

coefficients will be determined by requiring (25) holds and the angles between r
and p (and q) are not too small. Then r is the solution of the following problem

zM̄zT → min subject to zNzT = 1 and LzT � −E. (26)

where L is a matrix of size (3m0 +1)(3n0 +1)×4(m0 +1)(n0 +1). This problem
can be solved in a similar way as in the curve case.

4.2 Examples and Applications

We provides two examples to illustrate some applications of approximate μ-bases
of rational surfaces — approximate implicitization and degree reduction.

Example 4. Given a bicubic surface defined by:

a(s, t) =
1
4
(3s3t3 − 6s2t3 + 3st3 − 9s3t2 + 18s2t2 − 9st2

+ 9s3t − 18s2t + 9st − 3s3 + 6s2 + 9s),

b(s, t) = − 3s3t3 + 3s3t2 + 3s2t3 − 3s2t2 + 3t,

c(s, t) =
1
2
(3s3t3 − 6s3t2 − 6s2t3 + 9s2t2 + 3st3 + 3s3 + 2t3 − 6s2 − 6 t2 + 4),

d(s, t) =
1
5
(−s3t3 + 3s3t2 + 3s2t3 − 3s3t − 9s2t2 − 3st3 + s3 + 9s2t + 9st2

+ t3 − 3s2 − 9st − 3t2 + 3s + 3t + 4).

A linear approximate μ-basis can be computed as

p = ( − 0.3179763603 + 0.01129769996s − 0.005706462242t,

− 0.05643886419 − 0.02026545412s + 0.00006577262458t,

0.03369450553 − 0.01391833112s − 0.001238259243t,

− 0.08609427199 + 1.0s + 0.2529721651t),

q = ( − 0.08463698360 − 0.03287295861s + 0.00661036891t,

0.4542005463 + 0.01115597009s − 0.02382379534t,

− 0.03488009368 + 0.00195597407s − 0.00519198472t,

0.04412801971 + 0.3068345570s − 1.340134559t),
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r = ( − 10.22862360 + 1.851570346s + 17.56377500t,

15.86139849 − 21.35392833s + 0.2563277660t,

5.474325695 + 2.113435284s − 0.650356134t,

− 14.90107308 + 36.65715509s − 33.69498870t).

A cubic rational parametric surface can be obtained from [p,q, r]. The approx-
imation error between the original surface and the new surface is 0.0264.

By eliminating s, t from p · (x, y, z, 1) = q · (x, y, z, 1) = r · (x, y, z, 1) = 0, one
obtains an approximate cubic implicit equation for the given surface,

F (x, y, z) := 0.2063266181 x3 − 0.2187304282 x2y − 0.04778543831 x2z

+ 0.3449682259 xy2 + 0.1115861554 xzy − 0.01039875210 xz2

+ 0.03791855132 y3 + 0.004111063445 zy2 − 0.005055353827 z2y

+ 0.001142730024 z3 − 1.317908681 x2 + 1.286241307 xy − 0.1681655 xz

− 1.252094004 y2 − 0.3605440520 zy + 0.1401044281 z2 − 2.990107224 x

− 3.033340596 y − 8.359734692 z + 19.68286052 = 0.

Note that the exact implicit degree of the surface is 18.

Example 5. We consider a given surface of bi-degree (5, 5),

a = − 25/2 s5t5 + 50 s5t4 + 50 s4t5 − 75 s5t3 − 200 s4t4 − 75 s3t5 + 50 s5t2

+ 300 s4t3 + 300 s3t4 + 50 s2t5 − 25/2 s5t − 200 s4t2 − 450 s3t3 − 200 s2t4

− 25/2 st5 + 50 s4t + 300 s3t2 + 300 s2t3 + 50 st4 − 75 s3t − 200 s2t2 − 75 st3

+ 50 s2t + 50 st2 − 25/2 st + 5 s,

b = 25/2 s5t5 − 50 s5t4 − 50 s4t5 + 75 s5t3 + 200 s4t4 + 75 s3t5 − 50 s5t2 − 300 s4t3

− 300 s3t4 − 50 s2t5 + 25/2 s5t + 200 s4t2 + 450 s3t3 + 200 s2t4 + 25/2 st5

− 50 s4t − 300 s3t2 − 300 s2t3 − 50 st4 + 75 s3t + 200 s2t2 + 75 st3

− 50 s2t − 50 st2 +
25
2

st + 5 t,

c = 50 s5t5 − 100 s5t4 − 150 s4t5 + 50 s5t3 + 300 s4t4 + 150 s3t5 − 150 s4t3

− 300 s3t4 − 50 s2t5 + 150 s3t3 + 100 s2t4 − 50 s2t3 − 5 s4 − 5 t4 + 10 s3

+ 10 t3 − 10 s2 − 10 t2 + 5 s + 5 t,

d = − 1/6 s5t5 + 5/6 s5t4 + 5/6 s4t5 − 5/3 s5t3 − 25/6 s4t4 − 5/3 s3t5 + 5/3 s5t2

+ 25/3 s4t3 + 25/3 s3t4 + 5/3 s2t5 − 5/6 s5t − 25/3 s4t2 − 50/3 s3t3

− 25/3 s2t4 − 5/6 st5 + 1/6 s5 + 25/6 s4t + 50/3 s3t2 + 50/3 s2t3 + 25/6 st4

+ 1/6 t5 − 5/6 s4 − 25/3 s3t − 50/3 s2t2 − 25/3 st3 − 5/6 t4 + 5/3 s3

+ 25/3 s2t + 25/3 st2 + 5/3 t3 − 5/3 s2 − 25/6 st − 5/3 t2 + 5/6 s + 5/6 t + 5/6.

An approximate μ-basis of bi-degree (1,1) is computed as

p = (0.2085266555 − 0.007372293503 s − 0.1428724898 t + 0.005537995913 st,

0.1808522216 + 0.2050867177 s − 0.009074759098 t + 0.007914352425 st,
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− 0.01878293690 + 0.01746191813 s + 0.01597674812 t − 0.01869048639 st,

− 0.006408507364 − 1.0 s − 0.8531656420 t − 0.3816705478 st),

q = ( − 0.08053392989 − 0.05754492900 s + 0.005132654152 t + 0.006652036180 st,

0.08191584666 − 0.01108549693 s − 0.05549170597 t + 0.003943449557 st,

− 0.1025013651 + 0.03199060344 s + 0.02845654330 t − 0.03187909295 st,

0.02672843678 + 0.6709819071 s − 0.1475467029 t − 0.002951798803 st),

r = (0.1162420910 − 0.2753649567 s + 0.09208042082 t − 0.07226311792 st,

− 0.02104547875 + 0.2915682775 s − 0.3705920517 t + 0.1046918855 st,

− 0.4890160153 + 0.1394880492 s − 0.1022402645 t + 0.03867595945 st,

0.1307117232 + 0.6920411693 s + 1.964792505 t − 2.063871335 st).

The bicubic parametric surface [p,q, r] can serve as a degree-reduced surface.
The approximation error is 0.0436. An approximate implicit equation of degree
six can also be obtained by eliminating s, t from p, q, r. Note that the exact
algebraic degree of the surface is 50.

5 Conclusion and Future Work

In this paper, approximate μ-bases of rational curves and surfaces are studied.
Algorithms are provided to compute the approximate μ-bases, which amount to
solve generalized eigenvalue problems and some quadratic programming prob-
lems. Applications of approximate μ-bases in degree reduction and approximate
implicitization are explored. Examples seem to suggest that the techniques pre-
sented in this paper are competitive with other known methods, but this should
be studied further.

In order to compute the approximate μ-bases, quadratic programming prob-
lems have to be solved. In the future, we will discuss how to define and compute
approximate μ-bases in a more general and efficient approach. Other applications
of approximate μ-bases will be explored as well.
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